Prepared for

NAES Corporation Sandy Creek Energy Station 2161 Rattlesnake Road Riesel, TX 76682

RUN-ON AND RUN-OFF CONTROL SYSTEM PLAN FOR SOLID WASTE DISPOSAL FACILITY REGISTRATION NO. 88448

SANDY CREEK ENERGY STATION RIESEL, MCLENNAN COUNTY, TEXAS

Prepared by

consultants 8217 Shoal Creek Blvd., Suite 200 Austin, Texas 78757

October 2016

TABLE OF CONTENTS

1.	INT	RODUCTION	. 1
	1.1	Purpose	. 1
	1.2	Background	. 1
	1.3	Organization of Plan	. 1
2.	REC	GULATORY REQUIREMENTS	. 2
	2.1	Run-on and Run-off Controls	. 2
	2.2	Preparation of Plan	. 2
	2.3	Amendment of Plan	. 2
3.	RUN	N-ON CONTROL SYSTEM	. 3
	3.1	Overview	. 3
	3.2	Initial Run-On Control System Plan	. 3
	3.3	Final Run-On Control System Plan	. 3
	3.4	Compliance Assessment	.3
4.	RUN	N-OFF CONTROL SYSTEM	.4
	4.1	Overview	.4
	4.2	Initial Run-Off Control System Plan	.4
	4.3	Final Run-Off Control System Plan	.4
	4.4	Compliance Assessment	
5.	PRC	DFESSIONAL ENGINEER CERTIFICATION	6
6.	REF	ERENCES	. 7

DRAWINGS

Drawing 1 of 16	Site Layout (Geosyntec, 2014a)
Drawing 5 of 16	Subcell 2C Filling Plan (Geosyntec, 2014a)
Drawing 6 of 16	Subcell 2D Filling Plan (Geosyntec, 2014a)
Drawing 7 of 16	Subcell 2E Filling Plan (Geosyntec, 2014a)
Drawing 3 of 7	Stormwater Management Plan (Geosyntec, 2014b)
Drawing 5 of 7	Final Cover System Details (Geosyntec, 2014b)
Drawing 6 of 7	Stormwater Management System Details I (Geosyntec, 2014b)

APPENDICES

Appendix A	Surface Water Management System Design – Final Conditions
Appendix B	Final Cover Soil Erosion Loss Calculation

1. INTRODUCTION

1.1 <u>Purpose</u>

This document presents the Run-on and Run-off Control System Plan (Plan) for the Solid Waste Disposal Facility (Landfill) at the Sandy Creek Energy Station (SCES). This Plan was prepared to comply with the United States Environmental Protection Agency's (USEPA's) requirements for run-on and run-off control systems plans (40 CFR §257.81(c)) for coal combustion residuals (CCR) landfills. The Plan was prepared by Geosyntec Consultants (Geosyntec) under the direction of Dr. Beth A. Gross, P.E., a qualified professional engineer.

1.2 <u>Background</u>

The SCES is a coal-fired power plant located in Riesel, McLennan County, Texas. CCR generated at the SCES are disposed in the Landfill, which is located on the southwest corner of the property east of a drainage easement maintained by the Texas Department of Transportation (TxDOT) (Drawing 1 of 16). At final buildout, the Landfill will occupy approximately 65 acres and will consist of four cells, Cells 1 to 4 (Drawing 1 of 16). Cells 1 and 2 were constructed with a 3-foot thick compacted clay liner with a hydraulic conductivity less than 1×10^{-7} cm/s and a leachate collection system and are currently being filled to interim grades with CCR.

Run-off from active areas of the Landfill and leachate collected in the leachate collection system are conveyed to the Leachate Evaporation Pond (Drawing 1 of 16); this pond will continue to be used for leachate management after the Landfill is closed. Stormwater run-off from areas of the Landfill with intermediate soil or final cover can be conveyed to the Stormwater Pond; this pond will continue to be used for management of stormwater from the final cover system after the Landfill is closed.

1.3 Organization of Plan

The remainder of this Plan is organized as follows:

- Section 2 summarizes the regulatory requirements for the run-on and run-off controls systems and the Plan (40 CFR §257.81);
- Section 3 describes how the run-on control system for the Landfill has been designed and constructed to prevent flow onto the active portion of the Landfill;
- Section 4 describes how the run-off control system for the Landfill has been designed and constructed to collect and control flow from the active portion of the Landfill;
- Section 5 presents a certification by a qualified professional engineer that this initial Runon and Run-off Control System Plan meets the requirements of 40 CFR §257.81(a) and(b); and
- Section 6 provides a list of references cited in the Plan.

2. **REGULATORY REQUIREMENTS**

2.1 <u>Run-on and Run-off Controls</u>

In accordance with 40 CFR §257.81(a), the run-on and run-off control systems for the Landfill must be designed, constructed, operated, and maintained to prevent flow onto the active portion of the Landfill and collect and control flow from the active portion of the Landfill during the peak discharge from a 24-hour, 25-year storm. As described in the rule preamble, the purpose of the run-on controls is to prevent erosion, prevent the surface discharge of CCR in solution or suspension, and minimize the percolation of run-on through wastes. The purpose of the run-off controls is to collect and control the water volume falling on the active portion. Run-off from the active portion must be handled in manner that complies with the National Pollutant Discharge Elimination System (40 CFR §257.81(b)). Although the term "active portion" has often been used to refer to a portion of a landfill that is actively receiving waste, under USEPA's CCR regulations "active portion" is that part of a CCR unit that has received or is receiving waste and has not completed closure (40 CFR §257.53). Thus, the active portion includes areas where waste is being disposed and inactive areas, including areas overlain with intermediate cover.

2.2 <u>Preparation of Plan</u>

In accordance with 40 CFR §257.81(c), a Run-on and Run-on Control System Plan that documents how the run-on and run-off control systems have been designed and constructed to meet the requirements of 40 CFR §257.81(a) and (b) must be prepared and placed in the facility's Operating Record. The Plan must be supported by engineering calculations, and a certification from a qualified professional engineer must be obtained to document that the Plan meets the requirements of 40 CFR §257.81(a) and (b).

As described in the rule preamble, submittal of the Plan documents that run-on and run-off control systems have been designed and operated to meet 40 CFR §257.81(a) and (b), and the requirement of 40 CFR §257.81(c)(4) that the Plan be revised every five years is consistent with the requirement that run-on and run-off control systems also be operated and maintained to meet 40 CFR §257.81(a) and (b).

2.3 <u>Amendment of Plan</u>

In accordance with 40 CFR §257.81(c)(2), this Plan may be amended at any time provided the revised Plan is placed in the facility's Operating Record. This Plan must be revised whenever there is a change in conditions that would substantially affect the Plan in effect. Any amendment of the Plan requires a certification by a qualified professional engineer that the revised Plan meets the requirements of 40 CFR §257.81(a) and (b).

3. RUN-ON CONTROL SYSTEM

3.1 <u>Overview</u>

This section describes the run-on control system for the Landfill as it currently exists and at final grades. In general, run-on to active areas of the Landfill is controlled by topography and by the Landfill perimeter berm. The north side of the Landfill is on a topographic high, and the ground surface around the Landfill primarily slopes to the west to southwest (Drawings 1 of 16 and 3 of 7). In addition, the perimeter berm for the Landfill deflects stormwater run-on, and this potential run-on is collected in a stormwater channel at the toe of the outboard side slope of the berm and conveyed to the Stormwater Pond located southwest of the Landfill.

3.2 Initial Run-On Control System Plan

Cells 1 and 2 of the Landfill are currently active. While waste has been placed across the floor of Cell 1, Cell 2 is being incrementally filled in five subcells (Subcells 2A to 2E) to facilitate management of stormwater and leachate. CCR is placed in Cells 1 and 2 in a manner that limits the active area of the Landfill. As exterior slopes reach interim grades, they are covered with soil cover, and run-off from the soil cover is directed to the perimeter channel which conveys stormwater to the Stormwater Pond (Drawings 5 of 16 and 6 of 16). Thus, based on topography, stormwater from the exterior slopes of the of the Landfill will not run-on to active areas of the cells. Futhermore, potential run-on from areas outside of the cells will not overtop the existing perimeter berm and enter into Landfill.

As new subcells are developed, run-on will continue to be controlled by perimeter berms and adjacent stormwater channels. In addition, run-on from inactive waste slopes that have received soil intermediate cover will be directed from cells actively receiving CCR by temporary diversion berms (Drawings 5 of 16, 6 of 16, and 7 of 16).

3.3 Final Run-On Control System Plan

At final conditions, the Landfill will be closed with final cover and will no longer be active (Drawing 3 of 7). Run-on to the closed Landfill will continue to be controlled by topography and the landfill perimeter berm and adjacent stormwater channel.

3.4 <u>Compliance Assessment</u>

Based on review of the topography of the ground surface around the Landfill perimeter and the engineering controls designed for the Landfill (e.g., perimeter berm and stormwater channel, temporary stormwater diversion berms), the Landfill will continue to be designed, constructed, operated, and maintained to prevent flow onto the active portion of the Landfill. Therefore the Landfill is in compliance with the run-on control requirement of 40 CFR §257.81(a).

4. **RUN-OFF CONTROL SYSTEM**

4.1 <u>Overview</u>

This section describes the run-off control system for the Landfill as it currently exists and at final grades. In general, run-off from the Landfill is controlled by topography, the landfill perimeter berm and stormwater channel, and the stormwater management system components that will be constructed on the Landfill as it is developed (Drawings 5 of 16, 6 of 16, 7 of 16, and 3 of 7).

4.2 Initial Run-Off Control System Plan

Run-off from areas of Cells 1 and 2 that have not been covered with intermediate cover or final cover could have potentially come in contact with CCR and is, therefore, managed as contact water. To facilitate the removal of contact water from the Landfill, CCR is placed in the Landfill in a manner that directs this run-off to a common collection point (low point) from which it is pumped to the Leachate Evaporation Pond. Contact water that infiltrates into the CCR in the Landfill and makes its way to the leachate collection system is also conveyed to the Leachate Evaporation Pond. The perimeter berm and temporary diversion berms in the Landfill, as well as the underlying liner system, keep run-off that has contacted CCR within the Landfill until the water is removed. As exterior slopes reach interim grades, they are covered with soil cover. Run-off from areas of the Landfill with intermediate or final cover has not contacted CCR and can be directed to the perimeter channel which conveys stormwater to the Stormwater Pond (Drawings 5 of 16 and 6 of 16).

As new subcells are developed, run-off of contact water will continue to be controlled by the perimeter and interior berms of the Landfill ((Drawings 5 of 16 and 6 of 16). Areas will be covered with final cover and the permanent stormwater management system as they reach final grade.

4.3 Final Run-Off Control System Plan

After the final cover has been constructed on the Landfill, stormwater run-off from the landfill surface will be conveyed off the landfill through a series of components, including top deck diversion berms, side slope diversion berms, downchutes, an access road channel, and a perimeter channel (Drawing 3 of 7). Except for one top deck diversion berm which routes water to the access road channel, the diversion berms direct water from the top deck and side slopes to the downchutes. Flow in the perimeter channel is conveyed to the Stormwater Pond.

While 40 CFR §257.81(a) requires that run-off control systems be designed to collect and control flow from a 24-hour, 25-year storm, the Texas Commission on Environmental Quality's (TCEQ's) Technical Guideline No. 3 (TCEQ, 2015) recommends that run-off control systems be designed for a 24-hour, 100-year storm, a storm that would result in greater peak discharge and require larger drainage features than a 24-hour, 25-year storm. Therefore, the stormwater management system components for the Landfill were conservatively designed to route

stormwater run-off resulting from the 100-year, 24-hour design storm event. The design of these components is presented in Appendix A, and details of these components are shown on Drawings 5 of 7 and 6 of 7.

The stormwater management features are also designed to control run-off velocities and limit soil loss to permissible values. The soil loss on the final cover system top deck and side slope is calculated in Appendix B using the Revised Universal Soil Loss Equation (RUSLE) and compared to a permissible maximum soil loss of 3 tons/acre/year (0.015 inches/year). Based on this calculation, the maximum vertical spacing between drainage benches was limited to 74 feet. To control erosion in the drainage downchutes, the downchutes will be lined with articulated concrete block (ACB) or an alternative lining material that provides sufficient erosion resistance.

4.4 <u>Compliance Assessment</u>

Based on review of the topography of the ground surface around the Landfill perimeter, the engineering controls designed for the Landfill (e.g., perimeter berm and stormwater channel, temporary stormwater diversion berms), the operational procedures for the Landfill, and the fact that contact water and leachate from the Landfill is managed in the Leachate Evaporation Pond, the Landfill will continue to be designed, constructed, operated, and maintained to collect and control flow from the active portion of the cells and handle run-off in a manner that complies with the National Pollutant Discharge Elimination System. Therefore the Landfill is in compliance with the run-off control requirement of 40 CFR §257.81(a) and the run-off management requirement of 40 CFR §257.81(b).

5. PROFESSIONAL ENGINEER CERTIFICATION

Based on the demonstrations and evaluations presented in this Run-on and Run-off Control System Plan for the Solid Waste Disposal Facility (Landfill) at the Sandy Creek Energy Station, it is my professional opinion that the Plan meet the requirements of 40 CFR §257.81(a) and (b).

F-1182

Beth am Geoss

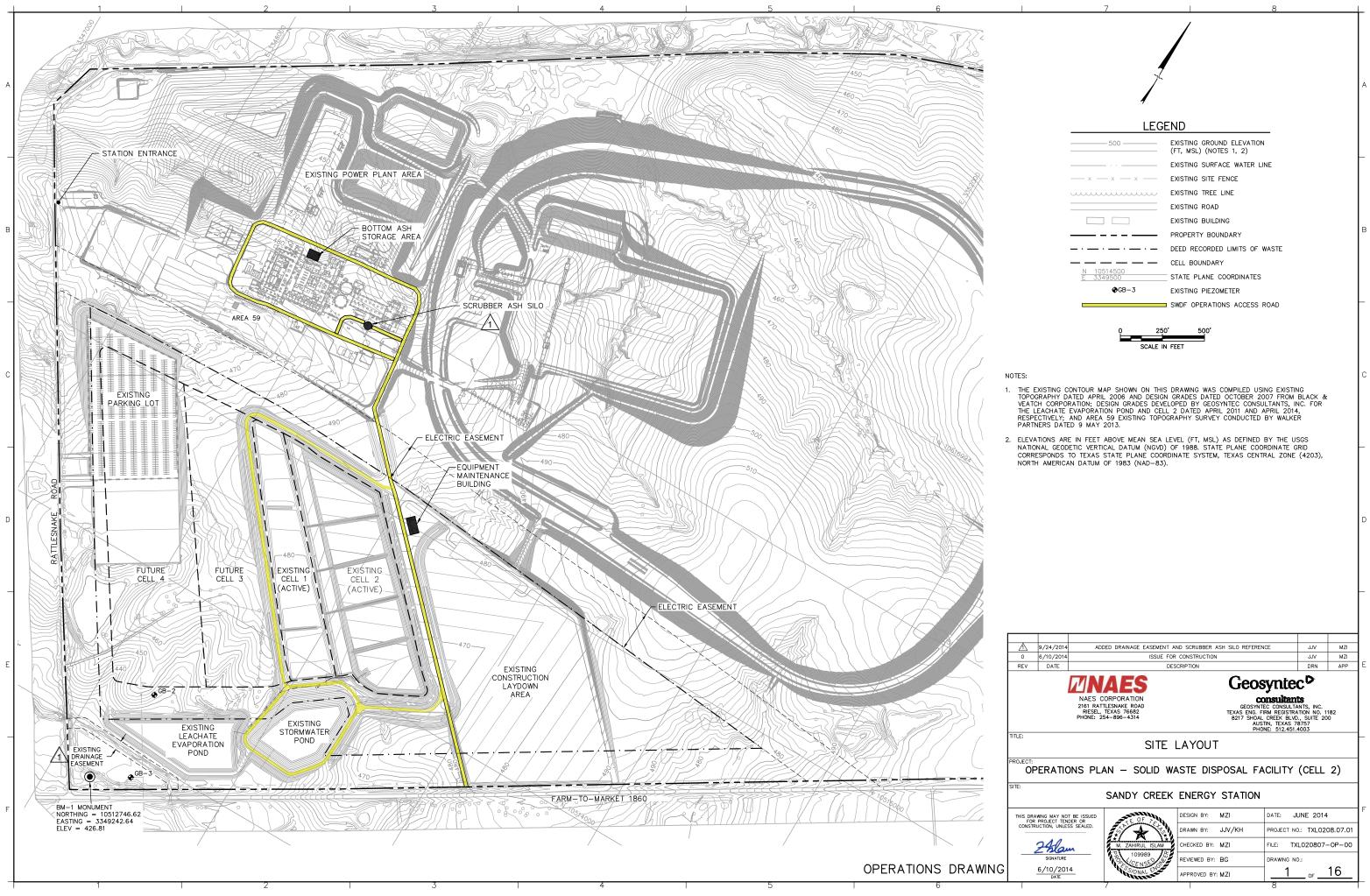
Beth Ann Gross, Ph.D., P.E., D.GE

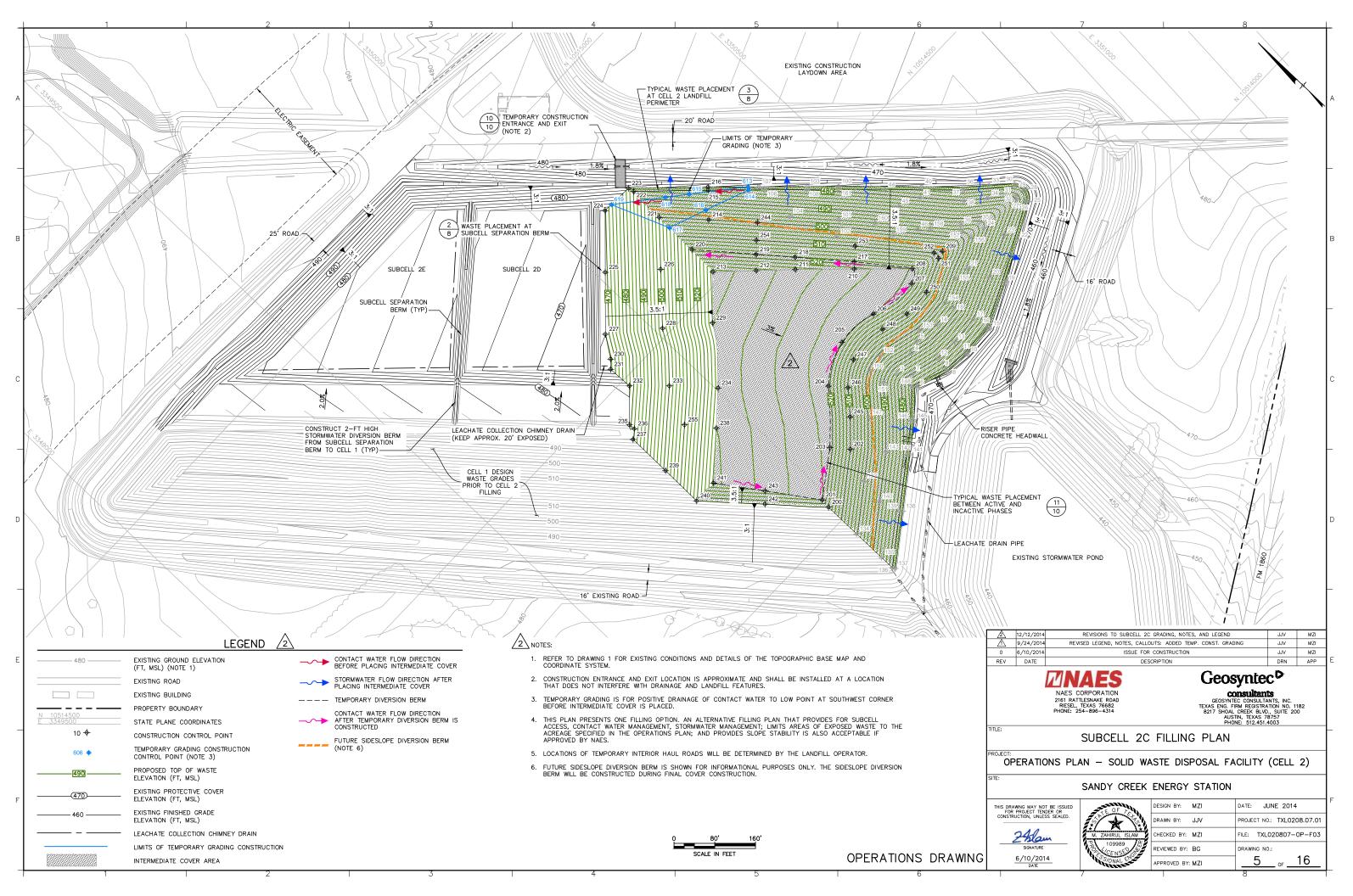
10/14/2016

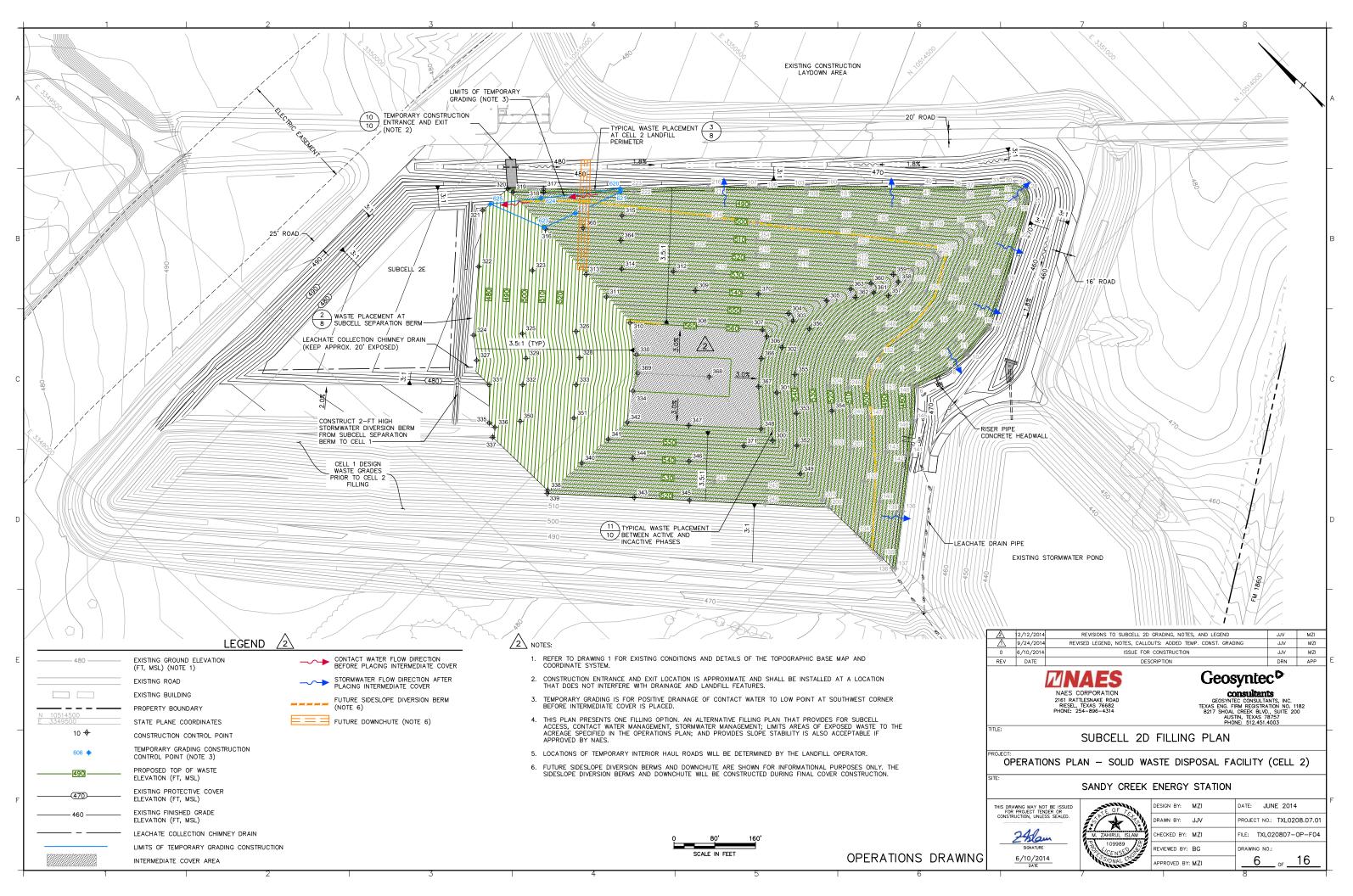
Date

6. **REFERENCES**

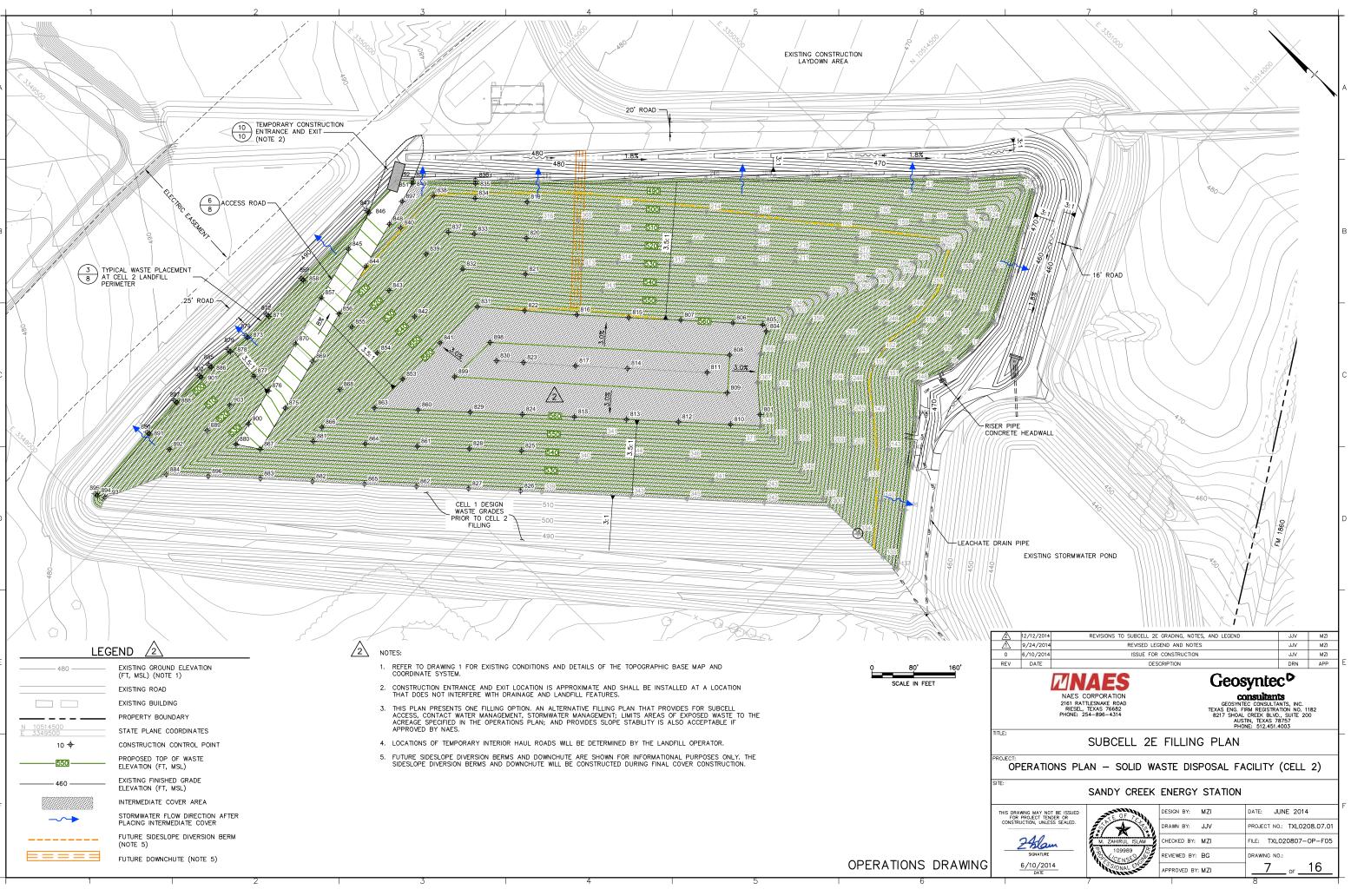
Geosyntec Consultants (2014a). "Cell 2 Operations Plan, Solid Waste Disposal Facility, TCEQ Registration No. 88448, Sandy Creek Energy Station, Riesel, McLennan County, Texas" prepared for NAES Corporation.


Geosyntec Consultants (2014b). "Engineering Design Drawings, Solid Waste Disposal Facility Final Cover, Sandy Creek Energy Station, Riesel, Texas," prepared for NAES Corporation.


Giroud, J.P., Bachus, R.C., and Bonaparte, R. (1995). "Influence of Water Flow on the Stability of Geosynthetic-Soil Layered Systems on Slopes", *Geosynthetics International*, Vol. 2, No. 6, pp. 1149-1180.


Texas Commission on Environmental Quality (2015). "Landfills," Industrial Solid Waste Management Technical Guideline No. 3.

Texas Commission on Environmental Quality (2007). "Guidance for Addressing Erosional Stability During All Phases of Landfill Operation (Draft)", 14 February.


DRAWINGS

RAWING: Austin P:\CADD\Projects\S\Sandy Creek PP\OPERATIONS\CELL 2 OPERATIONS (TXL0208.07.01)\DRAWINGS\TXL020807-OP-F04.dwg PLOTTED: Dec 12, 2014

			7				8		
		/							
-	N.			600 -	- x	END EXISTING GROU (FT, MSL) (NOT EXISTING SURF EXISTING SURF EXISTING SURF EXISTING ROAD EXISTING BUILL STATE PLANE (PROPERTY BOI DEED RECORD FINAL COVER L PROPOSED FIN PERIMETER AC PERIMETER AC DIRECTION OF EXISTING LEAC LIMITS OF TURK (NOTE 3)	ES 1, 2) FACE WATE FENCE E LINE D DING COORDINA UNDARY ED LIMITS JIMIT IISHED GR. CESS ROA RAINAGE CI FLOW CHATE DRA	ER LINE TES OF WASTE ADE ELEVAT D HANNEL IN PIPE	B
									с
NO 1.						AS COMPILED USI			
	DESIGN G POND AND TOPOGRA	RADES DEVE CELL 2 DAT PHY SURVE	ELOPED BY G ED APRIL 20 Y CONDUCTE	EOSYNTEC 11 AND APR D BY WALK	CONSULTANT IL 2014, RESP ER PARTNERS	007 FROM BLACK "S, INC. FOR THE ECTIVELY; AND AI S DATED 9 MAY 20	LEACHATE REA 59 EXI 913.	EVAPORATI STING	
2.	GEODETIC STATE PL/ (NAD-83). ACCESS R PORTION LINED WIT TRACTIVE	COAD CHANN OF EXISTING TXDOT CL STRESS OF	DATUM (NGVI INATE SYSTE IEL, PERIMET CELL 2 EAS ASS II, TYPE 6-8 PSF. DO	D) of 1988. M, Texas C Er Channe T Perimete G or H Tur Wnchutes	STATE PLANE ENTRAL ZONE EL, AND DIVER R CHANNEL A R REINFORCE SHALL BE LIN) AS DEFINED BY COORDINATE GR (4203), NORTH A SION BERMS SHA ND ACCESS ROAI MENT MAT WITH ED WITH ARTICUL STANCE TO TRAC	LL BE GRA D CHANNE A MINIMUN A MINIMUN A TED CON	SPONDS TO DATUM OF 19 ASS-LINED. S L SHALL ALS M RESISTANC ICRETE BLO	OUTH O BE CE TO CK (ACB)
									-
			() SCA	120' LE IN FEET	240'			
	12/19/2014				SIGN DRAWINGS			JJV	BG
v	7/25/2014 DATE				0% DRAFT			JJV DRN	BG APP E
	CORPORATION 2161 RATTLESNAKE ROAD RIESEL TEXAS FORB2 PHONE: 25489864314								
CT:		ST	ORMW	ATER N	/ANAGE	MENT PL	AN		
.01:		SOLIE	WASTE	DISPOS	AL FACIL	ITY FINAL C	OVER		
					ENERGY	STATION	1		
FO	AWING MAY NO R PROJECT TEN	DER OR	محججهم	DF TEH	DESIGN BY:	ВК	DATE:	DECEM	BER 2014

12/19/2014 DATE RAWN BY: JJV / KH

CHECKED BY: MZI

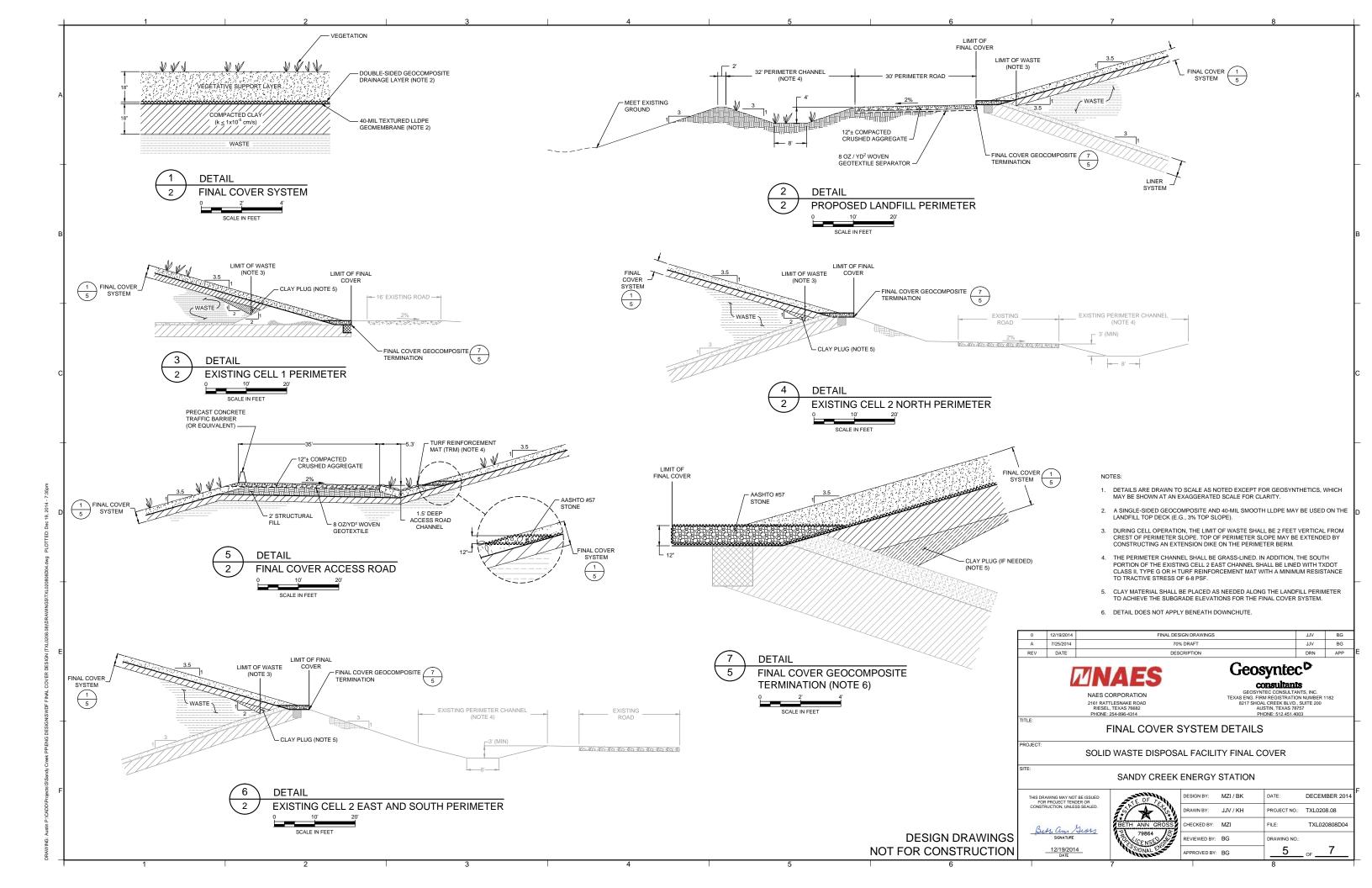
REVIEWED BY: BG

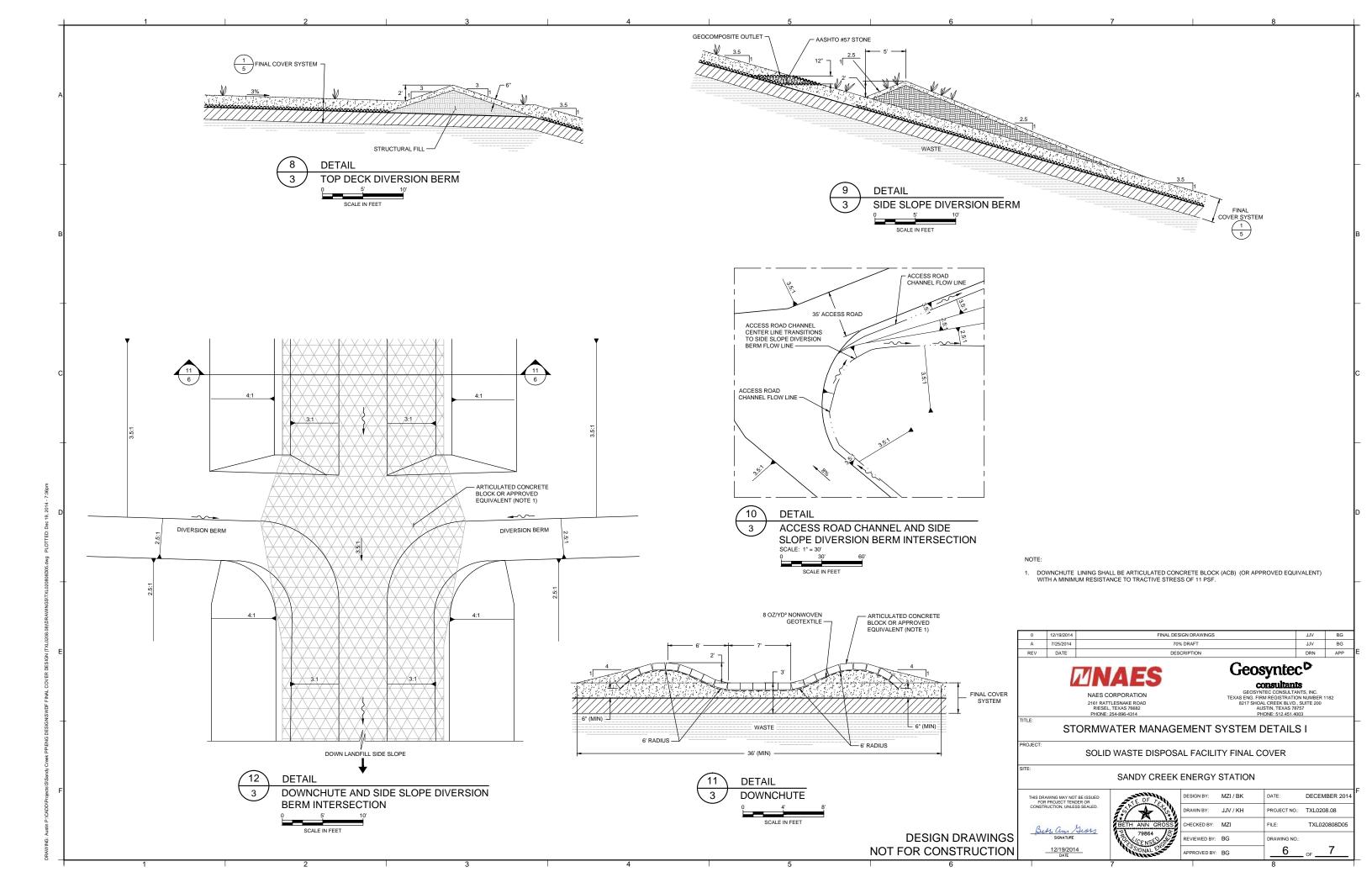
PROJECT NO .: TXL0208.08

TXL020808D02

7

FILE:


DRAWING NO .:


3

TH ANN GRO

79864

(CENSE?

APPENDICES

APPENDIX A

Stormwater Management System Design – Final Conditions

consultants

						Page 1 of 60
	Vinay Krishnan &			Zahirul Islam &		
Written by:	Brandon Klenzendorf	Date: 12/3/2015	Reviewed by:	Beth Gross	Date:	12/4/2015
Client: <u>NA</u>	ES Project:	Sandy Creek Energy S	Station Project/Prop	osal No.: TXL0208	Task 1	No: <u>08</u>

SURFACE WATER MANAGEMENT SYSTEM DESIGN – FINAL CONDITIONS

12/4/2015

SEALED FOR CALCULATION PAGES 1 TO 60

GEOSYNTEC CONSULTANTS TX ENG FIRM REGISTRATION NO. 1182

TABLE OF CONTENTS

1.	PUR	RPOSE	2
2.	PRC	DJECT BACKGROUND	3
3.	CAI	CULATION METHODOLOGY	4
	3.1	Design Storm Return Period	4
	3.2	Rainfall Information	4
	3.3	Hydrology	5
	3.4	Hydraulic Design	5
4.	CO	MPUTATIONS	5
	4.1	Rational Method for Hydrologic Design	5
	4.2	Estimation of Contributing Drainage Areas	6
	4.3	Estimation of Runoff Coefficient for Rational Method	6
	4.4	Estimation of Time of Concentration for Rational Method	7
	4.5	Estimation of Peak Rainfall Intensity for Rational Method	9

consultants

•	Krishnan & Zahirul Islam &	Page 2 of /2015
Client: <u>NAES</u>	Project: Sandy Creek Energy Station Project/Proposal No.: TXL0208 Task No:	08
4.6	Estimation of Peak Design Discharges for Rational Method	9
4.7	SCS Curve Number Method for Hydrologic Design	0
4.8	Estimation of Time of Concentration for SCS Curve Number Method 1	1
4.9	Surface Water Management System Components Hydraulic Design 1	1
4.1	0 Riprap Outlet Apron Design	3
5.	RESULTS14	4
5.1	Conveyance Feature Design 14	4
5.2	Stormwater Detention Pond Hydraulic Design	7
5.3	Riprap Outlet Apron Design	8
6. (CONCLUSIONS	8

1. PURPOSE

The purpose of this calculation package is to present the analysis and design of the surface water management system for the Solid Waste Disposal Facility (SWDF) at the Sandy Creek Energy Station in Riesel, Texas. This package provides calculations of peak design discharges (i.e., hydrology) and design of surface water management system components (i.e., hydraulic design) for the final cover system of the SWDF, including:

- Top deck diversion berms;
- Side slope diversion berms;
- Downchutes;
- Access road channel;
- Perimeter channel;
- Stormwater pond; and
- Culvert outlet riprap aprons.

consultants

				Page 3 of 60
Vinay Krishnan &		Zahirul 1	slam &	
Written by: Brandon Klenzendorf	Date: 12/3/2015 R	eviewed by: Beth Gro	oss Date	2: 12/4/2015
Client: NAES Project:	Sandy Creek Energy Station	Project/Proposal No .	TXL0208	Task No: 08
Cheft. NAES 110ject.	Sandy Creek Energy Station		TAL0208	

2. PROJECT BACKGROUND

The SWDF will be closed with an approximately 62.9-acre final cover system (Drawing 2 of the Engineering Design Drawings for the SWDF Final Cover). The top deck of the final cover will have a surface slope of 3%, and the side slopes will be graded to 3.5 horizontal to 1 vertical (3.5H:1V). The final cover is designed with a surface water management system with permanent drainage features, including top deck diversion berms, side slope diversion berms, downchutes, an access road channel, and a perimeter channel. Except for one top deck diversion berm which routes water to the access road channel, the diversion berms direct water from the top deck and side slopes to the downchutes. The access road channel collect water from the access road, one top deck drainage channel, and the side slopes and primarily routes it to a side slope diversion berm. The downchutes convey water to the perimeter channel. Flow in the perimeter channel is conveyed to the existing stormwater pond. Based on Drawing 149060-SS-01250 (Solid Waste Disposal Facility Sections and Details, dated 9 June 2009) prepared by Black & Veatch as part of the Sandy Creek Energy Station construction project, flow from the stormwater detention pond is discharged through a 4-in. and a 10-in. diameter low flow bleed pipe and three 36-in. overflow culverts to the existing roadside drainage ditch south of the Sandy Creek Energy Station. Geosyntec and site personnel could only find the outlet of the 10-in. diameter pipe on the exterior slope of the stormwater detection pond. Therefore, only the 10-in. diameter pipe was considered in the analysis of the stormwater pond capacity presented herein.

The vegetative support layer of the final cover will be permanently stabilized with perennial grasses to resist erosion and sediment transport. Diversion berms will be grass-lined, and the access road channel will be lined with grass and long-term turf reinforcement mat (TRM). The downchutes will be lined with articulated concrete block (ACB) or an approved equivalent, and the downchute outlets into the perimeter channel will be concrete-lined. The perimeter channel will be grass-lined, except from the east downchute to the east perimeter channel outlet where it will be lined with long-term TRM. Calculations that support the selection of the lining for the stormwater management features are presented herein.

consultants

						Page 4 of 60
	Vinay Krishnan &			Zahirul Islam &		
Written by:	Brandon Klenzendorf	Date: 12/3/2015	Reviewed by:	Beth Gross	Date: 12/4	4/2015
Client: <u>NA</u>	ES Project:	Sandy Creek Energ	gy Station Project/Prop	osal No.: <u>TXL0208</u>	Task No:	08

3. CALCULATION METHODOLOGY

3.1 Design Storm Return Period

The Texas Commission on Environmental Quality (TCEQ) Technical Guideline Number 3 (TG-3) (TCEQ, 2009) addresses the design of hazardous and industrial waste landfills and indicates that stormwater runoff should be diverted around the landfill area using dikes, ditches, or other structures. Such diversion structures should be capable of handling at least a 100-year, 24-hour rainfall event. However, TG-3 does not provide guidance on sizing of permanent stormwater detention ponds. The TCEQ also provides guidelines for surface water drainage design under the municipal solid waste rules (TCEQ, 2006). Geosyntec considers these guidelines to be relevant to coal combustion waste landfills, such as the SWDF. Under these guidelines, the design storm event for peak flow and volume sizing of stormwater ponds is the 25-year, 24-hour storm (TCEQ, 2006). Therefore, all stormwater diversion structures will be designed for a 100-year, 24-hour rainfall event, and all pond structures will be designed to detain water from a 25-year, 24-hour rainfall event. Riprap aprons will be designed for a 25-year, 24-hour rainfall event.

3.2 <u>Rainfall Information</u>

The design rainfall distribution of the site is selected from the rainfall distribution map of the United States in Figure 1 (USDA, 1986). The site is located in an area categorized by the Soil Conservation Service (SCS) Type III Rainfall Distribution. This rainfall distribution is used as input to the hydrologic model and is converted into a runoff hydrograph.

The 2-year, 25-year, and 100-year rainfall depths for a 24-hour storm event utilized for analyses were obtained from the USGS *Atlas of Depth-Duration Frequency of Precipitation Annual Maxima for Texas* (USDA, 2004) as specified in the Texas Department of Transportation (TxDOT) *Hydraulic Design Manual* (TxDOT, 2011). A 2-year, 24-hour rainfall depth of 3.4 in. is used in the hydrologic model to estimate travel times for sheet flow conditions in order to calculate the times of concentration for each subarea (Figure 2). Similarly, rainfall depths of 7.3 in. and 9.5 in. were selected for 25-year, 24-hour and 100-year, 24-hour rainfall events, respectively (Figures 3 and Figure 4).

consultants

			Page 5 of 60
Vinay Krishnan &		Zahirul Islam &	
Written by: Brandon Klenzendorf	Date: 12/3/2015 Revie	ewed by: Beth Gross	Date: 12/4/2015
Client: <u>NAES</u> Project:	Sandy Creek Energy Station	Project/Proposal No.: <u>TXL0208</u>	Task No: 08

3.3 <u>Hydrology</u>

Intensity of rainfall for design is based on calculations for times of concentration and design rainfall depths using the procedures outlined by the TxDOT *Hydraulic Design Manual* (TxDOT, 2011). Peak design discharges are calculated based on the Rational Method recommended for small basins for either undeveloped or developed lands. The Rational Method is appropriate for estimating peak discharges for drainage areas less than 200 acres (TxDOT, 2011), but does not estimate runoff volumes. Therefore, the SCS Curve Number method outlined by TR-55 (USDA, 1986) is used to estimate runoff volumes as recommended by TCEQ (2006) and to check the design of the existing stormwater detention pond.

3.4 <u>Hydraulic Design</u>

Hydraulic design of the diversion berms, access road channel, downchutes, and perimeter channel are performed using Manning's equation (Chow, 1959). The existing stormwater detention pond was modeled in the hydrologic model HEC-HMS version 4.0 (USACE, 2000). Average tractive shear stresses are calculated for each hydraulic feature. The channel lining was selected such that the calculated tractive stress for 100-year design storm event is less than the permissible tractive stress for the lining material. In addition, the depth of the hydraulic feature is selected to convey the calculated 100-year design storm depth.

4. COMPUTATIONS

4.1 <u>Rational Method for Hydrologic Design</u>

The Rational Method was applied to estimate peak discharge rates for each drainage area to design the stormwater conveyance features. The Rational Method is expressed as follows:

$$Q = C \times I \times A$$

Q

Ι

where:

- = peak discharge for a given frequency (cfs);
- C = runoff coefficient dependent on land cover and frequency;
 - = intensity for the given frequency (in./hr); and
- A = contributing drainage area (acres).

consultants

						Page 6 of 60
	Vinay Krishnan &			Zahirul Islam &		
Written by:	Brandon Klenzendorf	Date: 12/3/2015	Reviewed by:	Beth Gross	Date: 12	/4/2015
Client: NAE	ES Project:	Sandy Creek Energy S	Station Project/Prop	osal No.: TXL0208	Task No:	08

4.2 Estimation of Contributing Drainage Areas

Figure 5 delineates the contributing drainage areas for each of the surface water management system components. Table 1 provides the calculated area, in acres, for each of the drainage areas (subcatchments) labeled on Figure 5. The area of each subcatchment is calculated from the design drawings using computer-aided design (CAD) software.

4.3 Estimation of Runoff Coefficient for Rational Method

The runoff coefficient is estimated from the TxDOT *Hydraulic Design Manual* (TxDOT, 2011) for rural watersheds as presented in Table 2. The total runoff coefficient is estimated based on the following equation:

$$C = C_r + C_i + C_v + C_s$$

where:

C =total runoff coefficient;

- C_r = relief runoff coefficient (values in Table 2 interpolated based on slope);
- C_i = soil infiltration runoff coefficient (no effective soil cover conservatively assumed);
- C_v = vegetal cover runoff coefficient (good cover); and
- C_s = surface storage runoff coefficient (negligible surface storage conservatively assumed).

The total runoff coefficient equation above applies to design storm events of less than or equal to a 10-year frequency. For higher frequency events, the runoff coefficient is modified due to infiltration and other abstractions having a proportionally smaller effect on runoff. Adjustment factors for the Rational Method, C_f , are given by TxDOT (2011) as 1.10 and 1.25 for 25-year and 100-year recurrence intervals, respectively. The adjusted runoff coefficient for a 25-year design storm C_{25} is $1.10 \times C$, and the adjusted runoff coefficient for a 100-year design storm C_{100} is $1.25 \times C$. The runoff coefficients for each of the drainage areas are presented in Table 1.

consultants

						Page 7 of 60
	Vinay Krishnan &			Zahirul Islam &		
Written by:	Brandon Klenzendorf	Date: 12/3/2015	Reviewed by:	Beth Gross	Date: 12/	4/2015
Client: NA	ES Project:	Sandy Creek Energy S	Station Project/Prop	osal No.: TXL0208	Task No:	08

4.4 Estimation of Time of Concentration for Rational Method

The time of concentration is the time for runoff to flow from the most hydraulically remote point of the drainage area to the point under investigation. The time of concentration (T_c) is a summation of overland sheet flow travel time, shallow concentrated flow travel time, and open channel flow travel time.

The method to estimate the overland sheet flow travel time was obtained from the U.S. Department of Agriculture (USDA) document *Urban Hydrology for Small Watersheds, Technical Release 55 (TR-55)* (USDA, 1986). Manning's kinematic solution is used for estimating travel time for sheet flow for flow distances less than 300 ft (USDA, 1986):

$$T_t = \frac{0.007(nL)^{0.8}}{P_{2-24}^{0.5}S^{0.4}}$$

where: $T_t =$ travel time for overland sheet flow (hr); n = Manning's roughness coefficient; L = flow length (ft); $P_{2-24} =$ 2-year, 24-hour rainfall (in.); and S = slope of hydraulic grade line (land slope, ft/ft).

To estimate sheet flow travel time (T_t) , a Manning's roughness coefficient (n) of 0.15 was selected for short grass prairie surfaces as shown in Table 3 (USDA, 1986). Maximum flow lengths (L) were measured for each subcatchment area of the final cover system and are provided in Table 1. The rainfall depth for the 2-year, 24-hour frequency (P_{2-24}) is 3.4 in. (USGS, 2004). The slope of the hydraulic grade line, or land slope (S), for all subcatchment areas of the final cover system is shown in Table 1.

The method selected to estimate the open channel flow travel time is based on guidance provided in TR-55 (USDA, 1986). Travel time for open channel flow is estimated by dividing the longest drainage path by the velocity of runoff:

$$T_t = \frac{L}{V} \left(\frac{1}{60}\right)$$

where: T_t = travel time (min);

consultants

					F	Page 8 of 60
Vinay	Krishnan &			Zahirul Islam &		
Written by: Brando	on Klenzendorf	Date: 12/3/2015	Reviewed by:	Beth Gross	Date: 12/4/	/2015
Client: NAES	Project:	Sandy Creek Energy	Station Project/Prop	osal No.: <u>TXL0208</u>	Task No:	08

L =flow length (ft); and

V = average velocity (ft/sec).

The open channel flow velocities were estimated using Manning's equation based on guidance provided in TR-55 (USDA, 1986). The average flow velocities were determined for bank-full elevation as:

$$V = \frac{1.49}{n} R_h^{2/3} S^{1/2}$$

where:

V = average velocity (ft/s);

n = Manning's roughness coefficient;

 R_h = hydraulic radius (ft) = A/P;

A =cross sectional area of flow (ft²);

P = wetted perimeter (ft); and

S = slope of hydraulic grade line (channel slope, ft/ft).

To estimate open channel flow travel time (T_t) for the grass-lined (with and without TRM) diversion berms, access road channel and perimeter channel, a Manning's roughness coefficient (n) of 0.027 was selected for clean and straight earthen open channels with short grass and few weeds as shown in Table 4 (Chow, 1959). The top deck diversion berms are designed with a slope of 0.15%, the side slope diversion berms are designed with a typical slope of 2% (actual slopes range from 1.9% to 2.5%), and the perimeter channel is designed with slopes ranging from 0.5% to 1.8%. The Manning's roughness coefficient of 0.036 was selected for the downchute ACB (Ayres, 2001).

The velocities and times of concentration used in the design are presented in Table 1. A minimum time of concentration of 10 minutes was used to calculate the rainfall intensity as recommended by the TxDOT Hydraulic Design Manual (TxDOT, 2011) and TCEQ RG-417 (TCEQ, 2006) because small areas with exceedingly short times of concentration could result in design rainfall intensities that are unrealistically high.

consultants

								Р	age 9 of 60
	Vinay Krishnan &				Zahirul I	slam &			
Written by:	Brandon Klenzendorf	Date:	12/3/2015	Reviewed by:	Beth Gro	DSS	Date:	12/4/2	2015
Client: NAE	ES Project:	Sand	y Creek Energy Stati	on Project/Prop	osal No.:	TXL0208	Tasl	c No:	08

4.5 Estimation of Peak Rainfall Intensity for Rational Method

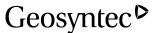
Rainfall intensity was estimated based on guidance provided in the TxDOT Hydraulic Design Manual (TxDOT, 2011). The design rainfall intensity was calculated from the following equation:

$$I = \frac{P_d}{T_c}$$

where:

I = design rainfall intensity (in./hr);

 T_c = computed time of concentration (hr); and


 P_d = depth of rainfall (in.) for design storm of duration T_c .

The values of P_d for each design storm event were obtained from the USGS (2004) for both the 25-year and the 100-year rainfall events for various storm durations. The storm durations represented are 15 and 30 minutes for both the 25-year and 100-year storm events as shown in Figure 6 through Figure 9, respectively. The depth for the desired duration is calculated by performing an interpolation between depth-duration pairs provided in the figures. For times of concentration less than 15 minutes, the depth of rainfall is taken as a fraction of the 15 minute rainfall depth.

4.6 <u>Estimation of Peak Design Discharges for Rational Method</u>

The Rational Method was used to estimate peak discharge rates for each drainage area as described above. The runoff coefficients for each drainage area on the final cover system and the calculated peak discharges for the 25-year, 24-hour and 100-year, 24-hour rainfall events for each drainage area are shown in Table 1.

To obtain the design discharge for a specific point in the surface water management system, the peak discharges for each drainage area upstream of the point were added at the point of interest. This technique slightly overestimates peak discharge because peak flows from upstream drainage areas will likely combine downstream at different times. However, this technique is conservative and appropriate for design given the small drainage areas and short times of concentration. The drainage areas upstream of each surface water management system component area are shown in Table 5. The

consultants

	Vinay Krishnan &				Zahirul Is	lam &		Pa	age 10 of 60
Written by:	Brandon Klenzendorf	Date:	12/3/2015	Reviewed by:	Beth Gros		Date:	12/4/2	2015
Client: <u>NA</u>	ES Project:	Sand	y Creek Energy Statio	n Project/Propo	osal No.:	TXL0208	Task	: No:	08

calculated design discharges for the downstream end of each surface water management system component are provided in Table 6.

4.7 <u>SCS Curve Number Method for Hydrologic Design</u>

The TCEQ RG-417 (TCEQ, 2006) indicates that the Rational Method is insufficient in modeling the volume of stormwater runoff and hydrograph development. Therefore, it is recommended (TCEQ, 2006) to use TR-55 SCS Curve Number Method to compute runoff volumes for detention pond sizing. Stormwater discharges for the landfill expansion are estimated using the computer program HEC-HMS (USACE, 2000). HEC-HMS applies hydrology design methods, such as the SCS Curve Number Method, as presented in TR-55 (USDA, 1986). Hydrographs generated within the computer program are routed through a user-specified network of reaches and ponds using documented hydraulic routing techniques.

HEC-HMS simulations were conducted to calculate surface water runoff volumes, peak flow rates, and flow characteristics for the surface water management features. Modeling performed using HEC-HMS included the following procedures included in the program.

- Runoff volumes were calculated within HEC-HMS using the SCS Curve Number Method as required by TR-55.
- Time-response of runoff (i.e., the process of converting a volume of runoff into a runoff hydrograph) was calculated within HEC-HMS using time of concentration, lag time, and unit hydrograph methods as required by TR-55 using a Type III rainfall distribution (see Figure 1).
- Runoff hydrographs generated within HEC-HMS were routed through a user specified network of reaches using industry standard hydraulic routing techniques such as: Kinematic Wave method for reach routing and an Outflow Structures method for routing through ponds. The Outflow Structures method was used for the detention pond as a combination of culverts.

The design storm event for peak flow and volume sizing of stormwater ponds is the 25year, 24-hour storm (TCEQ, 2006). In addition, the pond outflow structure designed by Black & Veatch was evaluated to verify that it could convey the calculated peak flow rate from a 100-year, 24-hour event without overtopping the pond berm. Analyses of

consultants

]	Page 11 of 60
	Vinay Krishnan &			Zahirul Islam &		
Written by:	Brandon Klenzendorf	Date: 12/3/2015	Reviewed by:	Beth Gross	Date: 12/4	/2015
Client: <u>NA</u>	ES Project:	Sandy Creek Energy	Station Project/Prop	osal No.: <u>TXL0208</u>	Task No:	08

the post-development conditions for both a 25-year and 100-year design storm event are presented below.

For post-development conditions, the contributing drainage area to the detention pond outfall is approximately 82.8 acres as shown in Figure 5 based on the design contours developed by Geosyntec.

4.8 <u>Estimation of Time of Concentration for SCS Curve Number Method</u>

The equations used to estimate the time of concentration described above for the Rational Method apply to the SCS Curve Number Method. The lag times calculated for each drainage area are presented in Table 8 for use in the SCS Curve Number Method and HEC-HMS software. The lag time is estimated as 0.6 times the time of concentration (USDA, 2010).

4.9 Surface Water Management System Components Hydraulic Design

Manning's equation was used to estimate the average velocity for the diversion berms, access road channel, downchutes, and perimeter channels. Manning's equation for velocity (Chow, 1959) is presented earlier. Average discharge is equal to the average velocity times the area of cross-section of flow (i.e., Q = VA). The diversion berms, access road channel, downchutes, and perimeter channels were designed to accommodate the peak discharge from the 100-year, 24-hour design storm without overtopping consistent with TCEQ TG-3 (TCEQ, 2009).

The tractive stresses in the diversion berms, access road channel, downchutes, perimeter channels, and drainage channel outlets for various depths of flow are estimated using the following equation (Chow, 1959):

$$\tau_0 = \gamma_w R_h S$$

where:

 τ_o = average tractive stress (lb/ft²);

 γ_w = unit weight of water (lb/ft³);

 R_h = hydraulic radius of flow (ft); and

S = channel slope (ft/ft).

consultants

				Page 12 of 60
Vinay Krishnan &		Zahirul 1	slam &	
Written by: Brandon Klenzendorf	Date: 12/3/2015	Reviewed by: Beth Gro	oss Date	: 12/4/2015
Client: <u>NAES</u> Project:	Sandy Creek Energy Statio	n Project/Proposal No.:	TXL0208	Task No: 08

The tractive stress at the 25-year and 100-year design discharges for the diversion berms, access road channel, downchutes, perimeter channel, and perimeter channel outlets were calculated using the tractive stress equation with the hydraulic radius corresponding to the design discharge.

The diversion berms, access road channel, and perimeter channel are grass lined. Permissible tractive stresses for grass-lined channels range from 0.35 psf to 3.70 psf depending on the retardation class of vegetation. Retardation Class C (which includes Bermuda and Crab grasses among others) is selected for the design of grass-lined channels (Table 9) and has a maximum permissible tractive stress of 1.0 psf (Table 10) according to TxDOT (2011). Where the calculated tractive stress was greater than 1.0 psf, TRM was used. In the TxDOT (2011) reference (see Table 10), the maximum permissible tractive stress of synthetic mat is 2.00 psf. However, there are TRMs available that provide resistance against higher tractive stresses. TxDOT Class 2, Type G TRMs have maximum permissible stresses up to 8 psf.

The allowable tractive stress for the ACB-lined downchutes is documented in published research data (e.g., Ayres, 2001) and selected for design. The ACB-lined downchute is designed to accommodate the design storm event without shifting of the blocks or any loss of embankment soil beneath the ACB system. For the purpose of this calculation package, it is assumed that Channel Lock brand ACB will be used. However, these blocks may not be available, and conversely, new types of blocks may be available, when the downchutes are constructed. Therefore, other erosion control product with equivalent performance may be used.

Two Channel Lock ACBs with different thicknesses are considered for the downchute design: Channel Lock 450 and Channel Lock 550 ACB. The maximum allowable tractive stress, or shear stress, for this ACB can be estimated from the permissible tractive stress on the ACB when the block is horizontal, with a performance adjustment for slope:

$$\tau_0 = \frac{\tau_\theta \chi_2}{\chi_2 \cos\theta - \chi_1 \sin\theta}$$

consultants

Page	13	of	6(
1 age	15	01	υu

	Vinay Krishnan &				Zahirul Is	lam &		1 a	ige 15 01 00
Written by:	Brandon Klenzendorf	Date:	12/3/2015	Reviewed by:	Beth Gro	SS	Date:	12/4/2	015
Client: <u>NA</u>	ES Project:	Sand	y Creek Energy Static	on Project/Propo	osal No.:	TXL0208	Task	No:	08

where: $\tau_0 =$ maximum allowable tractive stress at 0° (psf) from Table 11 (Ayres, 2001);

 τ_{θ} = maximum allowable tractive stress at θ° (psf); and

 χ_2 and χ_1 = extrapolation variables (in.) from Table 11.

Using the above equation and the values in Table 4, the maximum permissible tractive stresses on the ACB for the 3.5H:1V (15.9°) downchutes are calculated as 10.2 psf for Channel Lock 450 and 11.4 psf for Channel Lock 550 ACB. For the purpose of this calculation package, it is assumed that the maximum permissible tractive stress for the downchute lining is 11.4 psf.

4.10 <u>Riprap Outlet Apron Design</u>

The riprap aprons at the inflow culverts to the pond are designed to protect against erosion and scour from the perimeter channel flows. The riprap aprons were sized from the flow based on the 25-year, 24-hour rainfall event. The design guidance from the FHWA provides a methodology for calculating the required length of apron (L_a) and d_{50} of the riprap based on the culvert diameter and flow rate. The d_{50} is the stone size of the riprap for which to 50% of the riprap stones are smaller than d_{50} by mass. The riprap size is calculated using the following equation (FHWA, 2006):

$$d_{50} = 0.2D \left(\frac{Q}{D^{2.5}\sqrt{g}}\right)^{4/3} \frac{D}{TW}$$

where:

 d_{50} = riprap size (ft); Q = design discharge (cfs); D = pipe diameter (ft); TW = tailwater depth (ft); and g = gravitational constant.

The tailwater depth should be limited to between 0.4D and D. FHWA (2006) recommends the use of a tailwater depth equal to 0.4D if the tailwater is unknown.

The required length and depth of the riprap apron can be estimated based on the pond outlet pipe rise and riprap size as provided in Table 12. The width of the riprap apron at the outlet is recommended as 3D by the FHWA (2006) detail for riprap aprons. The

consultants

						Page 14 of 60
	Vinay Krishnan &			Zahirul Islam &		
Written by:	Brandon Klenzendorf	Date: 12/3/2015	Reviewed by:	Beth Gross	Date: 12/	4/2015
Client: NA	ES Project:	Sandy Creek Energy S	Station Project/Prop	osal No.: TXL0208	Task No:	08

apron width will also widen from the outlet along the required length at a rate of 1 ft width per 3 ft length on each side. Figure 10 provides the standard geometry for the riprap aprons.

5. **RESULTS**

5.1 <u>Conveyance Feature Design</u>

Hydraulic design calculations for diversion berms, access road channel, downchutes, and perimeter channel were performed using spreadsheets for the hydraulic elements with the largest design flow rates. The design parameters and results of the hydraulic design of each component of the surface water management system are summarized below. Additionally, dimensions of these components are summarized in Table 13 and Table 14 at the end of this document. The Reach ID corresponds with the drainage area contributing to the adjacent surface water management component.

Top Deck Diversion Berms (Table 13)

- 100-year Rainfall Design Discharge = 2.86 to 14.37 cfs
- Top Width = 72 ft
- Channel Slope = 0.15%
- Channel Lining = grass
- Manning's n = 0.027 (Table 4)
- Side Slopes = 3H:1V and 3%*
- Bottom Width = 0 ft
- Available Depth of Flow = 2.0 ft
- **100-year Calculated Depth of Flow** = 0.45 to 0.82 ft
- Calculated Depth of Flow < Available Depth of Flow
- Allowable Tractive Stress = 1.0 psf (Table 10) for grass lining
- **100-year Calculated Average Tractive Stress** = 0.02 to 0.04 psf
- Calculated Average Tractive Stress < Allowable Tractive Stress

* Note: The top deck diversion berms are 2.0 ft deep (minimum) channels with 3H:1V slopes as the outer slope of the channel. The 3% slope of the landfill top deck provides the inner slope of the channel.

consultants

Page 15 of 60

Written by:	Vinay Krishnan & Brandon Klenzendorf	Date:	12/3/2015	Reviewed by:	Zahirul Is Beth Gros		Date:	12/4/	2015
Client: NA	ES Project:	Sand	y Creek Energy Static	on Project/Propo	osal No.:	TXL0208	Task	No:	08

Side Slope Diversion Berms (Table 13)

- 100-year Rainfall Design Discharge = 9.40 to 59.46 cfs
- Top Width = 12 ft
- Channel Slope = 2.0% for design purposes (varies from 1.9 to 2.5%)
- Channel Lining = grass
- Manning's n = 0.027 (Table 4)
- Side Slopes = 3.5H:1V and 2.5H:1V*
- Bottom Width = 0 ft
- Available Depth of Flow = 2.0 ft
- **100-year Calculated Depth of Flow** = 0.86 to 1.73 ft
- Calculated Depth of Flow < Available Depth of Flow
- Allowable Tractive Stress = 1.0 psf (Table 10) for grass lining
- **100-year Calculated Average Tractive Stress** = 0.59 to 0.97 psf
- Calculated Average Tractive Stress < Allowable Tractive Stress

* Note: The side slope diversion berms are 2.0 ft deep (minimum) channels with 2.5H:1V slopes as the outer slope of the channel. The 3.5H:1V slope of the landfill provides the inner slope of the channel.

Access Road Channel (Table 13)

- 100-year Rainfall Design Discharge = 14.37 to 22.68 cfs
- Top Width = 9.75 ft
- Channel Slope = 8.0% (Table 14)
- Channel Lining = grass with TRM
- Manning's n = 0.027 (Table 4)
- Side Slopes = 3.5H:1V and 3H:1V*
- Bottom Width = 0 ft
- Available Depth of Flow = 1.5 ft
- **100-year Calculated Depth of Flow** = 0.75 to 0.89 ft
- Calculated Depth of Flow < Available Depth of Flow
- Allowable Tractive Stress = 2.0 psf (Table 10) or 6 to 8 psf for TxDOT Class 2, Type G or H TRM with grass
- **100-year Calculated Average Tractive Stress** = 1.79 to 2.12 psf
- Calculated Average Tractive Stress < Allowable Tractive Stress

consultants

Page 16 of 60

Written by:	Vinay Krishnan & Brandon Klenzendorf	Date:	12/3/2015	Reviewed by:	Zahirul Is Beth Gros		Date:	12/4/2	2015
Client: NA	ES Project:	Sand	y Creek Energy Static	on Project/Prop	osal No.:	TXL0208	Task	: No:	08

Downchutes (Table 13)

- 100-year Rainfall Design Discharge = 37.49 to 121.15 cfs
- Top Width = 19 ft
- Channel Slope = 28.6%
- Channel Lining = ACB
- Manning's n = 0.036
- Side Slopes = 6 ft radius*
- Bottom Width = 7.0 ft
- Available Depth of Flow = 2.0 ft
- **100-year Calculated Depth of Flow** = 0.41 to 0.80 ft
- Calculated Depth of Flow < Available Depth of Flow
- Allowable Tractive Stress = 11.4 psf
- **25-year Calculated Average Tractive Stress** = 5.05 to 9.10 psf
- **100-year Calculated Average Tractive Stress** = 6.30 to 11.11 psf
- Calculated Average Tractive Stress < Allowable Tractive Stress

** Note: Downchutes will be lined with ACB and constructed with a 6 ft radius of curvature. The downchutes were modeled as trapezoidal channels with a 7 ft bottom width and 3H:1V side slopes.

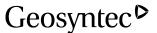
Eastern Perimeter Channel (Table 14)

- 100-year Rainfall Design Discharge = 179.66 cfs
- Top Width = 26 ft
- Channel Slope = 1.8% (Table 14)
- Channel Lining = grass, with TRM for south portion of channel
- Manning's n = 0.027 (Table 4)
- Side Slopes = 3H:1V
- Bottom Width = 8 ft
- Available Depth of Flow = 3.0 ft
- **100-year Calculated Depth of Flow** = 1.67 ft
- Calculated Depth of Flow < Available Depth of Flow
- Allowable Tractive Stress = 2.0 psf (Table 10) or 6 to 8 psf for TxDOT Class 2, Type G or H TRM with grass
- **100-year Calculated Average Tractive Stress** = 1.32 psf
- Calculated Average Tractive Stress < Allowable Tractive Stress

consultants

Page 17 of 60

								Pa	ge 17 01 00
	Vinay Krishnan &				Zahirul Islam &				
Written by:	Brandon Klenzendorf	Date:	12/3/2015	Reviewed by:	Beth Gross		Date:	12/4/2	015
Client: <u>NA</u>	ES Project:	Sand	y Creek Energy Stati	ion Project/Prop	osal No.: TXLO	0208	Task	No:	08


Western Perimeter Channel

- 100-year Rainfall Design Discharge = 250.02 cfs
- Top Width = 32 ft
- Channel Slope = 0.5 to 1.0% (Table 14)
- Channel Lining = Grass
- Manning's n = 0.027 (Table 4)
- Side Slopes = 3H:1V
- Bottom Width = 8 ft
- Available Depth of Flow = 4.0 ft
- 100-year Calculated Depth of Flow = 2.30 ft
- Calculated Depth of Flow < Available Depth of Flow
- Allowable Tractive Stress = 1.0 psf (grass-lined) (Table 10)
- **100-year Calculated Average Tractive Stress** = 0.95 psf
- Calculated Average Tractive Stress < Allowable Tractive Stress

5.2 <u>Stormwater Detention Pond Hydraulic Design</u>

The SCS Curve Number method is used for hydrologic design of the existing stormwater detention pond. This method is evaluated with HEC-HMS software and is used as input for the hydraulic design of the stormwater detention pond. Stormwater runoff is routed through the detention pond, and the size of the pond outlet structure was evaluated with respect to its ability to discharge the peak flow rate for the 100-year, 24-hour storm event without overtopping the pond berm. The primary pond outlet structure consists of a 10-inch diameter bleed pipe with an invert elevation of 339-ft and three 36 inch diameter outlet pipes with an invert elevation of 450-ft.

The existing stormwater detention pond design was designed by Black & Veatch. Based on the results of the HEC-HMS analysis conducted for this calculation package, the pond is designed to convey the peak flow rate for the 100-year, 24-hour storm event. Under the 25-year, 24-hour storm, the pond detains runoff without discharging flow from the outlet pipes as the water level in the pond does not reach the invert elevation of these pipes. Under the 100-year, 24-hour storm, water is discharged from the outlet pipes, but the pipes do not flow full, and more than two feet of freeboard is maintained between the water in the pond and the pond crest. Modeling results for the peak flow rates and maximum water surface elevations are presented in Table 15 of this calculation package.

consultants

							Page 18 of 60
	Vinay Krishnan &				Zahirul Islam &		
Written by:	Brandon Klenzendorf	Date:	12/3/2015	Reviewed by:	Beth Gross	Date:	12/4/2015
Client: <u>NA</u>	ES Project:	Sand	y Creek Energy Statio	on Project/Prop	osal No.: <u>TXL0208</u>	Task	: No: <u>08</u>

5.3 <u>Riprap Outlet Apron Design</u>

Riprap aprons were designed for the culverts from both the eastern perimeter channel and western perimeter channel into the stormwater detection pond. Flow from the 25-year, 24-hour storm event was considered.

For the east perimeter channel, the calculations were performed based on three 36-inch diameter pipes (i.e., D = 3.0 feet) and a design flow rate of Q = 117.2 cfs. The flow was assumed to be split equally between each pipe, resulting in a pipe flow of 39.1 cfs. The tailwater depth was computed as TW = 0.4D = 1.2 feet using the FHWA recommendation. A minimum d_{50} size for the riprap of 0.51 feet (approximately 6 inches) was calculated. The minimum apron length was selected based on Table 12. The riprap size corresponds to an FHWA class 2 riprap, resulting in an apron length of 4D = 12 feet and an apron depth of $3.3d_{50} = 1.6$ feet. FHWA (2006) recommends an apron width of 3D at the upgradient end of the apron near the pond outlet pipe and a 3:1 rate of apron width expansion with apron length. Therefore, the upstream apron width is 29 feet, including a 1 ft separation between pipes for bedding. The apron extends to the bottom of the 3H:1V pond slope.

For the west perimeter channel, the calculations were performed based on three 48-inch diameter pipes (i.e., D = 4.0 feet), a design flow rate of Q = 228.2 cfs. The flow was assumed to be split between each pipe, resulting in a pipe flow of 76.1 cfs. The tailwater depth was computed as TW = 0.4D = 1.6 feet using the FHWA recommendation. A minimum d₅₀ size for the riprap of 0.63 feet (rounded up to 8 inches) was calculated. The minimum apron length was selected based on Table 12. The riprap size falls between FHWA class 2 and class 3 riprap, resulting in an apron length of 4D to 5D = 16 to 20 feet and an apron depth of $2.4d_{50}$ to $3.3d_{50} = 1.5$ to 2.1 feet. FHWA (2006) recommends an apron width of 3D at the up gradient end of the apron near the pond outlet pipe and a 3:1 rate of expansion. Therefore, the upstream apron width is 38 ft, including a 1 ft separation between pipes for bedding. The apron extends to the bottom of the 3H:1V pond slope.

6. CONCLUSIONS

Results from calculations presented in this calculation package indicate that the surface water management system for the proposed SWDF at the Sandy Creek Power Project site in Riesel, Texas will collect and control the runoff resulting from a 100-year, 24-

Geosyntec[▷]

consultants

	Vinay Krishnan &				Zahirul	Islam &		Р	age 19 of 60
Written by:	Brandon Klenzendorf	Date:	12/3/2015	Reviewed by:	Beth Gr	oss	Date:	12/4/	2015
Client: <u>NA</u>	ES Projec	t: <u>Sanc</u>	ly Creek Energy	Station Project/Pr	roposal No.:	TXL0208	Tasl	k No:	08

hour design storm event. The proposed surface water management system includes diversion berms, an access road channel, a perimeter channel, downchutes, and an existing stormwater detention pond which will collect runoff from the landfill final cover system and adjacent up gradient undeveloped areas. Stormwater runoff will be routed to the facility's site outfall point.

7. **REFERENCES**

- Ayres (2001). *Hydraulic Stability of the Channel-Lock 450 Concrete Block Revetment System*, Ayres Associates, test program conducted August 2001, test data summary obtained from Southern Construction Supply, Jennings, LA in June 2009.
- Chow, V.T. (1959). *Open-Channel Hydraulics*, McGraw-Hill Book Company, Inc., New York, NY.
- FHWA (2006). *Hydraulic Design of Energy Dissipators for Culverts and Channels*, Federal Highway Administration, US Department of Transportation, Hydraulic Engineering Circular No. 14, Third Edition.
- TCEQ (2006). Guidelines for Preparing a Surface Water Drainage Report for a *Municipal Solid Waste Facility*, Waste Permits Division, Texas Commission on Environmental Quality, Publication RG-417.
- TCEQ (2009). *Technical Guideline No. 3: Landfills*, Industrial Solid Waste Management, Texas Commission on Environmental Quality, June.
- TxDOT (2011). *Hydraulic Design Manual*, Texas Department of Transportation, Austin, Texas, revised October.
- USACE (2000). *Hydraulic Modeling System HEC-HMS Technical Reference Manual*, US Army Corps of Engineers, Hydrologic Engineering Center, CPD-74B, March.
- USDA (1986). Urban Hydrology for Small Watersheds, Technical Release 55, Natural Resources Conservation Service, United States Department of Agriculture, Washington, D.C.
- USDA (2010). *National Engineering Handbook Part 630 Hydrology*, Natural Resources Conservation Service, United States Department of Agriculture, Chapter 15 Time of Concentration, Washington, D.C., May.
- USGS (2004). Atlas of Depth-Duration Frequency of Precipitation Annual Maxima for Texas, Scientific Investigations Report 2004-5041, United States Geological Survey, authors William H. Asquith and Meghan C. Roussel.

TABLES

- Table 1 Subcatchment Areas, Time of Concentration, and Peak Discharge Calculations
- Table 2 Runoff Coefficients (C) for Rural Watersheds (from TxDOT, 2011)
- Table 3 Manning's Roughness Coefficients for Sheet Flow
- Table 4 Manning's Roughness Coefficients for Open Channel Flow
- Table 5 Contributing Areas to Each Stormwater Management System Component
- Table 6 Calculated Design Discharges for Each Stormwater Management System Component
- Table 7 Runoff Curve Numbers for Other Agricultural Lands
- Table 8 SCS Method Lag Time Calculations
- Table 9 Retardation Class for Lining Materials (from TxDOT, 2011)
- Table 10 Permissible Shear Stresses for Various Linings (from TxDOT, 2011)
- Table 11 Performance Extrapolation Variables for ACB (from Ayres, 2001)
- Table 12 Riprap Classes and Apron Dimensions (from FHWA, 2006)
- Table 13 Diversion Berm, Access Road Channel, and Downchute Geometry and Results
- Table 14 Perimeter Channel Geometry and Results
- Table 15 HEC-HMS Model Results

Table 9 - Retardation Class for Lining Materials (from TxDOT, 2011)

100-year Return Interval

			She	eet Flow					Op	en Channel	Flow				Tc
SUBCATCHMENT DESIGNATION	Area Acres	Length	^	Manning's n	Time T _t (min)	Length	Flow Depth	Area A (ft ²)	Wetted	Hydraulic Radius R (ft)	Manning's n	Slope	Velocity	Time	Design T _c (min)
	(ac)	L(ft)	S (ft/ft)		• • • • •	L(ft)	d (ft)	()	P(ft)	()		S (ft/ft)	V(ft/s)	Tt (min)	
E-1	1.22	145	0.030	0.15	10.88	335	1.0	18.0	36.2	0.50	0.027	0.0015	1.34	4.16	15.04
E-2	3.34	150	0.030	0.15	11.18	560	1.5	7.3	10.2	0.72	0.027	0.080	12.50	0.75	19.63
E-3	4.92	225	0.286	0.15	6.28	290	2.0	12.0	12.7	0.95	0.027	0.020	7.53	0.64	10.00
E-4	1.33	240	0.286	0.15	6.61	120	2.0	12.0	12.7	0.95	0.027	0.020	7.53	0.27	10.00
E-5	3.21	205	0.286	0.15	5.83										10.00
E-6	1.94	205	0.286	0.15	5.83	490	2.0	12.0	12.7	0.95	0.027	0.020	7.53	1.08	10.00
E-7	2.80	225	0.286	0.15	6.28	360	2.0	12.0	12.7	0.95	0.027	0.020	7.53	0.80	10.00
E-8	1.36	70	0.286	0.15	2.47	280	3.0	51.0	27.0	1.89	0.027	0.018	11.32	0.41	10.00
E-9	6.93	180	0.286	0.15	5.25	200	3.0	51.0	27.0	1.89	0.027	0.018	11.32	0.29	10.00
S-1	2.22	250	0.030	0.15	16.82	10	1.0	18.0	36.2	0.50	0.027	0.0015	1.34	0.12	16.95
S-2	2.38	250	0.286	0.15	6.83	280	2.0	12.0	12.7	0.95	0.027	0.020	7.53	0.62	10.00
S-3	2.93	240	0.286	0.15	6.61	410	2.0	12.0	12.7	0.95	0.027	0.020	7.53	0.91	10.00
S-4	3.29	240	0.286	0.15	6.61	490	2.0	12.0	12.7	0.95	0.027	0.020	7.53	1.08	10.00
S-5	4.13	230	0.286	0.15	6.39	650	2.0	12.0	12.7	0.95	0.027	0.025	8.42	1.29	10.00
W-1	0.54	190	0.030	0.15	13.51	55	1.0	18.0	36.2	0.50	0.027	0.0015	1.34	0.68	14.19
W-2	2.60	270	0.286	0.15	7.26	30	2.0	12.0	12.7	0.95	0.027	0.020	7.53	0.07	10.00
W-3	2.30	250	0.286	0.15	6.83	275	2.0	12.0	12.7	0.95	0.027	0.025	8.42	0.54	10.00
W-4	8.41	260	0.286	0.15	7.05	1600	2.0	12.0	12.7	0.95	0.027	0.019	7.34	3.63	10.68
W-5	3.20	240	0.286	0.15	6.61	500	2.0	12.0	12.7	0.95	0.027	0.022	7.90	1.06	10.00
W-6	11.51	260	0.253	0.15	7.40	2350	4.0	80.0	33.3	2.40	0.027	0.005	7.00	5.60	13.00
W-7	6.95	140	0.224	0.15	4.73	1100	4.0	80.0	33.3	2.40	0.027	0.010	9.90	1.85	10.00
E-5 ARC			1			10	1.5	7.3	10.2	0.72	0.027	0.080	12.50	0.01	
PondDA	5.31				0.00									0.00	10.00
E-2 TDDT						620	1.0	18.0	36.2	0.50	0.027	0.0015	1.34	7.70	
2-yea	ır, 24-hr D	Design Ra	infall De	epth, P2-24 =	3.4	inches	R	ight Side	e Slope =	3.5	H:V for Side	e Slope E	Berm		

	unon coefficient for Rural Watersheu			20 30	a Return b	ater tar	100-year Return Inter fai			
Relief	Soil Infiltration	Vegetal Cover	Surface	Intensity	Runoff Coefficient	Peak Flow Rate	Intensity	Runoff Coefficient	Peak Flow Rate	
Cr	Ci	Cv	Cs	I25 (in./hr)	C25	Q25 (cfs)	I100 (in./hr)	C100	Q100 (cfs)	
0.12	0.16	0.06	0.12	6.79	0.506	4.19	9.18	0.575	6.44	
0.12	0.16	0.06	0.12	5.74	0.506	9.71	7.48	0.575	14.37	
0.27	0.16	0.06	0.12	6.80	0.676	22.61	9.20	0.768	34.76	
0.27	0.16	0.06	0.12	6.80	0.676	6.11	9.20	0.768	9.40	
0.27	0.16	0.06	0.12	6.80	0.676	14.75	9.20	0.768	22.68	
0.27	0.16	0.06	0.12	6.80	0.676	8.92	9.20	0.768	13.71	
0.27	0.16	0.06	0.12	6.80	0.676	12.87	9.20	0.768	19.79	
0.27	0.16	0.06	0.12	6.80	0.676	6.23	9.20	0.768	9.58	
0.27	0.16	0.06	0.12	6.80	0.676	31.83	9.20	0.768	48.93	
0.12	0.16	0.06	0.12	6.30	0.506	7.08	8.38	0.575	10.69	
0.27	0.16	0.06	0.12	6.80	0.676	10.94	9.20	0.768	16.82	
0.27	0.16	0.06	0.12	6.80	0.676	13.47	9.20	0.768	20.70	
0.27	0.16	0.06	0.12	6.80	0.676	15.12	9.20	0.768	23.24	
0.27	0.16	0.06	0.12	6.80	0.676	18.97	9.20	0.768	29.17	
0.12	0.16	0.06	0.12	6.80	0.506	1.86	9.20	0.575	2.86	
0.27	0.16	0.06	0.12	6.80	0.676	11.96	9.20	0.768	18.38	
0.27	0.16	0.06	0.12	6.80	0.676	10.57	9.20	0.768	16.25	
0.27	0.16	0.06	0.12	6.80	0.676	38.67	9.20	0.768	59.46	
0.27	0.16	0.06	0.12	6.80	0.676	14.71	9.20	0.768	22.61	
0.27	0.16	0.06	0.12	6.80	0.676	52.91	9.20	0.768	81.34	
0.27	0.16	0.06	0.12	6.80	0.676	31.95	9.20	0.768	49.12	

25-year Return Interval

Runoff Coefficient for Rural Watersheds

2-year, 24-hr Design Rainfall Depth, P2-24 3.4 inches 25-year, 15-min Design Rainfall Depth = 1.7 inches 25-year, 30-min Design Rainfall Depth = 2.2 inches 100-year, 15-min Design Rainfall Depth = 2.3 inches

100-year, 15-min Design Rainfall Depth = 2.3 inches 100-year, 30-min Design Rainfall Depth = 2.7 inches Left Side Slope = 2.5 H:V for Side Slope Berm

Notes:

1) Manning's roughness coefficient: n = 0.15 represents grass (short grass prairie) for sheet flow (USDA, 1986).

2) Manning's roughness coefficient: n = 0.027 excavated open channel of earth that is straight and uniform with short grass and few weeds (Chow, 1959).

3) Travel Time (T_i) for sheet flow is calculated using Manning's kinematic solutions for sheet flow (USDA, 1986).

 $T_t = 0.007(nL)^{0.8} / [(P_{2.24})^{0.5}S^{0.4}]$

4) Travel time (T_t) for open channel flow under bank full condition is calculated using Manning's equation (USDA, 1986).

 $T_t = L/V = Ln/(1.49R^{2/3}S^{1/2})$ with flow depth = 1 ft for top deck berms, 2 ft for side slope berms, 1.5 ft for access road channel, and 3 or 4 ft for perimter channel

5) Design rainfall depths taken from USGS (2004) report for McLennan County based on guidance provided by TxDOT (2011).

6) Intensity was calculated using the 25-year or 100-year design rainfall depth for a storm of duration equal to time of concentration based on guidance provided by TxDOT (2011).

7) The runoff coefficient is based on rural watersheds using guidance provided by TxDOT (2011).

8) The Rational Method was used to estimate peak discharge rates (Q) for each subcatchment area.

9) Travel time for Subcatchment Area E-2 includes travel time in top deck diversion berm channel.

Table 2 – Runoff Coefficients (C) for Rural Watersheds (from TxDOT, 2011)

Watershed characteristic	Extreme	High	Normal	Low
Relief - C _r	0.28-0.35 Steep, rugged ter- rain with average slopes above 30%	0.20-0.28 Hilly, with average slopes of 10-30%	0.14-0.20 Rolling, with aver- age slopes of 5- 10%	0.08-0.14 Relatively flat land, with average slopes of 0-5%
Soil infiltration - C _i	0.12.0.16 No effective soil cover; either rock or thin soil mantle of negligible infil- tration capacity	0.08-0.12 Slow to take up water, clay or shal- low loam soils of low infiltration capacity or poorly drained	0.06-0.08 Normal; well drained light or medium textured soils, sandy loams	0.04-0.06 Deep sand or other soil that takes up water readily; very light, well-drained soils
Vegetal cover - C _v	0.12-0.16 No effective plant cover, bare or very sparse cover	0.08-0.12 Poor to fair; clean cultivation, crops or poor natural cover, less than 20% of drainage area has good cover	0.06-0.08 Fair to good; about 50% of area in good grassland or wood- land, not more than 50% of area in cul- tivated crops	0.04-0.06 Good to excellent; about 90% of drain- age area in good grassland, wood- land, or equivalent cover
Surface Storage - C _s	0.10 0.12 Negligible; surface depressions few and shallow, drain- ageways steep and small, no marshes	0.08-0.10 Well-defined sys- tem of small drainageways, no ponds or marshes	0.06-0.08 Normal; consider- able surface depression, e.g., storage lakes and ponds and marshes	0.04-0.06 Much surface stor- age, drainage system not sharply defined; large floodplain stor- age, large number of ponds or marshes
Table 4-11 note: The total	runoff coefficient base	ed on the 4 runoff compo	becomes the content of the content	$C_v + C_s$

Table 3 – Manning's Roughness Coefficients for Sheet Flow (from USDA, 1986)

Surface description	n 1⁄
Smooth surfaces (concrete, asphalt,	
gravel, or bare soil)	0.011
Fallow (no residue)	0.05
Cultivated soils:	
Residue cover ≤20%	0.06
Residue cover >20%	0.17
Grass:	
Short grass prairie	0.15
Dense grasses ⅔′	0.24
Bermudagrass	0.41
Range (natural)	0.13
Woods:≌∕	
Light underbrush	0.40
Dense underbrush	0.80

¹ The n values are a composite of information compiled by Engman (1986).

² Includes species such as weeping lovegrass, bluegrass, buffalo grass, blue grama grass, and native grass mixtures.

 $^3~$ When selecting n , consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow.

Table 4 – Manning's Roughness Coefficients for Open Channel Flow

Type of channel and description	Minimum	Normal	Maximum
C. EXCAVATED OR DREDGED			
a. Earth, straight and uniform			
1. Clean, recently completed	0.016	0.018	0.020
2. Clean, after weathering	0.018	0.022	0.025
3. Gravel, uniform section, clean	0.022	0.025	0.030
4. With short grass, few weeds	0.022	0.027	0.033
b. Earth, winding and sluggish		r	
1. No vegetation	0.023	0.025	0.030
2. Grass, some weeds	0.025	0.030	0.033
3. Dense weeds or aquatic plants in deep channels	0.030	0.035	0.040
4. Earth bottom and rubble sides	0.028	0.030	0.035
5. Stony bottom and weedy banks	0.025	0.035	0.040
6. Cobble bottom and clean sides	0.030	0.040	0.050
c. Dragline-excavated or dredged			- A
1. No vegetation	0.025	0.028	0.033
2. Light brush on banks	0.035	0.050	0.060
d. Rock cuts			
1. Smooth and uniform	0.025	0.035	0.040
2. Jagged and irregular	0.035	0.040	0.050
e. Channels not maintained, weeds and			
brush uncut			1
1. Dense weeds, high as flow depth	0.050	0.080	0.120
2. Clean bottom, brush on sides	0.040	0.050	0.080
3. Same, highest stage of flow	0.045	0.070	0.110
4. Dense brush, high stage	0.080	0.100	0.140

(from Chow, 1959)

System Component	Contr	Contributing Areas Upstream of Stormwater Management System Component							
East Perimeter Channel (N)	E-8								
East Perimeter Channel (S)	E-1	E-2	E-3	E-4	E-5	E-6	E-7	E-8	E-9
West Perimeter Channel (N)	W-6								
West Perimeter Channel (S)	W-1	W-2	W-3	W-4	W-5	W-6	W-7		
East Downchute Upper	E-1	E-2	E-3	E-4					
East Downchute Lower	E-1	E-2	E-3	E-4	E-5	E-6	E-7		
South Downchute Upper	S-1	S-2	S-3						
South Downchute Lower	S-1	S-2	S-3	S-4	S-5				
West Downchute Upper	W-1	W-2	W-3						
West Downchute Lower	W-1	W-2	W-3	W-4	W-5				

 Table 5 – Contributing Areas to Each Stormwater Management System Component

										100-year	25-year
System Component	Flow	Rates fro		-	-		tormwate	r Manage	ement	Total Flow	Total Flow
System Component				Compone	nt (100-y	ear event)			(cfs)	(cfs)
East Perimeter Channel (N)	9.58									9.58	6.23
East Perimeter Channel (S)	6.44	14.37	34.76	9.40	22.68	13.71	19.79	9.58	48.93	179.66	117.22
West Perimeter Channel (N)	81.34									81.34	52.91
West Perimeter Channel (S)	2.86	18.38	16.25	59.46	22.61	81.34	49.12			250.02	162.62
East Downchute Upper	6.44	14.37	34.76	9.40						64.97	42.62
East Downchute Lower	6.44	14.37	34.76	9.40	22.68	13.71	19.79			121.15	79.16
South Downchute Upper	10.69	16.82	20.70							48.21	31.48
South Downchute Lower	10.69	16.82	20.70	23.24	29.17					100.62	65.57
West Downchute Upper	2.86	18.38	16.25							37.49	24.39
West Downchute Lower	2.86	18.38	16.25	59.46	22.61					119.56	77.77
Top Deck Diversion Berm E-1	6.44									6.44	4.19
Top Deck Diversion Berm E-2	14.37									14.37	9.71
Access Road Channel E-2	14.37									14.37	9.71
Side Slope Diversion Berm E-3	34.76	14.37								49.13	32.32
Side Slope Diversion Berm E-4	9.40									9.40	6.11
Access Road Channel E-5	22.68									22.68	14.75
Side Slope Diversion Berm E-6	13.71	22.68								36.39	23.67
Side Slope Diversion Berm E-7	19.79									19.79	12.87
Top Deck Diversion Berm S-1	10.69									10.69	7.08
Side Slope Diversion Berm S-2	16.82									16.82	10.94
Side Slope Diversion Berm S-3	20.70									20.70	13.47
Side Slope Diversion Berm S-4	23.24									23.24	15.12
Side Slope Diversion Berm S-5	29.17									29.17	18.97
Top Deck Diversion Berm W-1	2.86									2.86	1.86
Side Slope Diversion Berm W-2	18.38									18.38	11.96
Side Slope Diversion Berm W-3	16.25									16.25	10.57
Side Slope Diversion Berm W-4	59.46									59.46	38.67
Side Slope Diversion Berm W-5	22.61									22.61	14.71

Table 6 – Calculated Design Discharges for Each Stormwater Management System Component

Table 7 – Runoff Curve Numbers for Other Agricultural Lands

(from USDA, 1986)

Cover description		Curve numbers for hydrologic soil group					
Cover type	Hydrologic condition	А	В	С	D		
Pasture, grassland, or range—continuous	Poor	68	79	86	89		
forage for grazing. 2/	Fair Good	49 39	$\frac{69}{61}$	79 74	84 80		
Meadow—continuous grass, protected from grazing and generally mowed for hay.	_	30	58	71	78		
Brush—brush-weed-grass mixture with brush the major element. $\underline{\mathscr{Y}}$	Poor Fair Good	48 35 30 4⁄	$ \begin{array}{r} 67 \\ 56 \\ 48 \end{array} $	77 70 65	83 77 73		
Woods—grass combination (orchard or tree farm). [™]	Poor Fair Good	57 43 32	73 65 58	82 76 72	86 82 79		
Woods. 1/	Poor Fair Good	45 36 30 4⁄	66 60 55	77 73 70	83 79 77		
Farmsteads—buildings, lanes, driveways, and surrounding lots.	—	59	74	82	86		

¹ Average runoff condition, and I_a = 0.2S.

² Poor: <50%) ground cover or heavily grazed with no mulch.

Fair: 50 to 75% ground cover and not heavily grazed.

Good: > 75% ground cover and lightly or only occasionally grazed.

³ *Poor*: <50% ground cover.

Fair: 50 to 75% ground cover.

Good: >75% ground cover.

- ⁴ Actual curve number is less than 30; use CN = 30 for runoff computations.
- ⁵ CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.
- 6 Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. Fair: Woods are grazed but not burned, and some forest litter covers the soil.

Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

	Area	Тс		t	
SUBCATCHMENT	Acres	Design	Area	Curve	SCS Lag
DESIGNATION	(ac)	Tc (min)	(mi2)	Number	Time (min)
E-1	1.22	15.04	0.00191	80	9.02
E-2	3.34	19.63	0.00522	80	11.78
E-3	4.92	10.00	0.00769	80	6.00
E-4	1.33	10.00	0.00208	80	6.00
E-5	3.21	10.00	0.00502	80	6.00
E-6	1.94	10.00	0.00303	80	6.00
E-7	2.80	10.00	0.00438	80	6.00
E-8	1.36	10.00	0.00212	80	6.00
E-9	6.93	10.00	0.01082	80	6.00
S-1	2.22	16.95	0.00347	80	10.17
S-2	2.38	10.00	0.00372	80	6.00
S-3	2.93	10.00	0.00458	80	6.00
S-4	3.29	10.00	0.00514	80	6.00
S-5	4.13	10.00	0.00645	80	6.00
W-1	0.54	14.19	0.00084	80	8.51
W-2	2.60	10.00	0.00407	80	6.00
W-3	2.30	10.00	0.00359	80	6.00
W-4	8.41	10.68	0.01315	80	6.41
W-5	3.20	10.00	0.00500	80	6.00
W-6	11.51	13.00	0.01799	80	7.80
W-7	6.95	10.00	0.01086	80	6.00

 Table 8 – SCS Method Lag Time Calculations

Retardance Class	Cover	Condition				
А	Weeping Lovegrass	Excellent stand, tall (average 30 in. or 760 mm)				
	Yellow Bluestem Ischaemum	Excellent stand, tall (average 36 in. or 915 mm)				
В	Kudzu	Very dense growth, uncut				
	Bermuda grass	Good stand, tall (average 12 in. or 305 mm)				
	Native grass mixture little bluestem, bluestem, blue gamma, other short and long stem medwest grasses	Good stand, unmowed				
	Weeping lovegrass	Good Stand, tall (average 24 in. or 610 mm)				
	Lespedeza sericea	Good stand, not woody, tall (average 19 in. or 480 mm)				
	Alfalfa	Good stand, uncut (average 11 in or 280 mm)				
	Weeping lovegrass	Good stand, unmowed (average 13 in. or 330 mm)				
	Kudzu	Dense growth, uncut				
	Blue gamma	Good stand, uncut (average 13 in. or 330 mm)				
С	Crabgrass	Fair stand, uncut (10-to-48 in. or 55-to-1220 mm)				
	Bermuda grass	Good stand, mowed (average 6 in. or 150 mm)				
	Common lespedeza	Good stand, uncut (average 11 in. or 280 mm)				
	Grass-legume mixture: summer (orchard grass redtop, Italian ryegrass, and common lespedeza)	Good stand, uncut (6-8 in. or 150-200 mm)				
	Centipedegrass	Very dense cover (average 6 in. or 150 mm)				
	Kentucky bluegrass	Good stand, headed (6-12 in. or 150-305 mm)				
D	Bermuda grass	Good stand, cut to 2.5 in. or 65 mm				
	Common lespedeza	Excellent stand, uncut (average 4.5 in. or 115 mm)				
	Buffalo grass	Good stand, uncut (3-6 in. or 75-150 mm)				
	Grass-legume mixture: fall, spring (orchard grass Italian ryegrass, and common lespedeza	Good Stand, uncut (4-5 in. or 100-125 mm)				
	Lespedeza sericea	After cutting to 2 in. or 50 mm (very good before cutting)				
E	Bermuda grass	Good stand, cut to 1.5 in. or 40 mm				
	Bermuda grass	Burned stubble				

Table 9 – Retardation Class for Lining Materials (from TxDOT, 2011)

Protective Cover	(lb./sq.ft.)	t _p (N/m ²)
Retardance Class A Vegetation (See the "Retardation Class for Lining Materials" table above)	3.70	177
Retardance Class B Vegetation (See the "Retardation Class for Lining Materials" table above)	2.10	101
Retardance Class C Vegetation (See the "Retardation Class for Lining Materials" table above)	1.00	48
Retardance Class D Vegetation (See the "Retardation Class for Lining Materials" table above)	0.60	29
Retardance Class E Vegetation (See the "Retardation Class for Lining Materials" table above)	0.35	17
Woven Paper	0.15	7
Jute Net	0.45	22
Single Fiberglass	0.60	29
Double Fiberglass	0.85	41
Straw W/Net	1.45	69
Curled Wood Mat	1.55	74
Synthetic Mat	2.00	96
Gravel, D ₅₀ = 1 in. or 25 mm	0.40	19
Gravel, D ₅₀ = 2 in. or 50 mm	0.80	38
Rock, D ₅₀ = 6 in. or 150 mm	2.50	120
Rock, D ₅₀ = 12 in. or 300 mm	5.00	239
6-in. or 50-mm Gabions	35.00	1675
4-in. or 100-mm Geoweb	10.00	479
Soil Cement (8% cement)	>45	>2154
Dycel w/out Grass	>7	>335
Petraflex w/out Grass	>32	>1532
Armorflex w/out Grass	12-20	574-957
Erikamat w/3-in or 75-mm Asphalt	13-16	622-766
Erikamat w/1-in. or 25 mm Asphalt	<5	<239
Armorflex Class 30 with longitudinal and lateral cables, no grass	>34	>1628
Dycel 100, longitudinal cables, cells filled with mortar	<12	<574
Concrete construction blocks, granular filter underlayer	>20	>957
Wedge-shaped blocks with drainage slot	>25	>1197

Table 10 – Permissible Shear Stresses for Various Linings (from TxDOT, 2011)

Table 11 – Performance Extrapolation Variables for ACB

Block Type	Weight in Air (typ.) ² (lbs.)	Buoyant Weight W _s (lbs.)	χ^1 (in) χ^2 (in)		χ^3 (in)	χ ⁴ (in)	b (in)	7 _c at 0° (lb/ft ²)		
450^{1}	52	27.0	2.25	7.25	3.60	7.25	14.5	11.6		
	64	33.3	2.75	7.25	4.40	7.25	14.5	13.3		
800	93	48.4	4.00	7.25	6.40	7.25	14.5	16.5		
Notes: 1. Tested block										
2. H	Based on bloc	ek volume an	d assuming o	concrete den	sity of 130 lb	/ft ³				

(from Ayres, 2001)

Table 12 – Riprap	Classes and Apro	on Dimensions
-------------------	-------------------------	---------------

D ₅₀ (mm)	D ₅₀ (in)	Apron Length ¹	Apron Depth
125	5	4D	3.5D ₅₀
150	6	4D	3.3D ₅₀
250	10	5D	2.4D ₅₀
350	14	6D	2.2D ₅₀
500	20	7D	2.0D ₅₀
550	22	8D	2.0D ₅₀
	125 150 250 350 500	125 5 150 6 250 10 350 14 500 20	D ₅₀ (mm) D ₅₀ (in) Length ¹ 125 5 4D 150 6 4D 250 10 5D 350 14 6D 500 20 7D

(from FHWA, 2006)

¹D is the culvert rise.

			Cha	nnel Dimensi	ons			25-	year			100	-year		
Contributing	Channel	Bottom		Left	Right	Тор	Peak	Peak	Peak	Tractive	Peak	Peak	Peak	Tractive	Channel
Drainage	Slope	Width	Depth	Side Slope	Side Slope	Width	Flow	Depth	Velocity	Stress	Flow	Depth	Velocity	Stress	Lining
Area	(ft/ft)	(ft)	(ft)	(H:V)	(H:V)	(ft)	(cfs)	(ft)	(ft/s)	(psf)	(cfs)	(ft)	(ft/s)	(psf)	
TDDB E-1	0.0015	0.0	2.0	3:1	33:1	72	4.19	0.52	0.87	0.02	6.44	0.61	0.96	0.03	Grass
TDDB E-2	0.0015	0.0	2.0	3:1	33:1	72	9.71	0.71	1.07	0.03	14.37	0.82	1.18	0.04	Grass
ARC E-2	0.080	0.0	1.5	3:1	3.5:1	9.75	9.71	0.65	7.13	1.54	14.37	0.75	7.87	1.79	TRM
SSDB E-3	0.020	0.0	2.0	3.5:1	2.5:1	12	32.32	1.36	5.82	0.80	49.13	1.59	6.46	0.94	Grass
SSDB E-4	0.020	0.0	2.0	3.5:1	2.5:1	12	6.11	0.73	3.84	0.43	9.40	0.86	4.27	0.59	Grass
ARC E-5	0.080	0.0	1.5	3:1	3.5:1	9.75	14.75	0.76	7.92	1.81	22.68	0.89	8.82	2.12	TRM
SSDB E-5	0.020	0.0	2.0	3.5:1	2.5:1	12	14.75	1.01	4.78	0.60	22.68	1.19	5.33	0.70	Grass
SSDB E-6	0.020	0.0	2.0	3.5:1	2.5:1	12	23.67	1.21	5.39	0.72	36.39	1.42	6.00	0.84	Grass
SSDB E-7	0.020	0.0	2.0	3.5:1	2.5:1	12	12.87	0.96	4.62	0.57	19.79	1.13	5.15	0.67	Grass
TDDB S-1	0.0015	0.0	2.0	3:1	33:1	72	7.08	0.63	0.99	0.03	10.69	0.74	1.09	0.03	Grass
SSDB S-2	0.020	0.0	2.0	3.5:1	2.5:1	12	10.94	0.91	4.44	0.54	16.82	1.06	4.94	0.63	Grass
SSDB S-3	0.020	0.0	2.0	3.5:1	2.5:1	12	13.47	0.98	4.68	0.58	20.70	1.15	5.21	0.68	Grass
SSDB S-4	0.020	0.0	2.0	3.5:1	2.5:1	12	15.12	1.02	4.81	0.60	23.24	1.20	5.36	0.71	Grass
SSDB S-5	0.025	0.0	2.0	3.5:1	2.5:1	12	18.97	1.07	5.54	0.79	29.17	1.26	6.17	0.93	Grass
TDDB W-1	0.0015	0.0	2.0	3:1	33:1	72	1.86	0.38	0.71	0.02	2.86	0.45	0.79	0.02	Grass
SSDB W-2	0.020	0.0	2.0	3.5:1	2.5:1	12	11.96	0.94	4.54	0.55	18.38	1.10	5.06	0.65	Grass
SSDB W-3	0.025	0.0	2.0	3.5:1	2.5:1	12	10.57	0.86	4.79	0.63	16.25	1.01	5.33	0.75	Grass
SSDB W-4	0.019	0.0	2.0	3.5:1	2.5:1	12	38.67	1.47	5.97	0.83	59.46	1.73	6.65	0.97	Grass
SSDB W-5	0.022	0.0	2.0	3.5:1	2.5:1	12	14.71	0.99	4.96	0.65	22.61	1.17	5.52	0.76	Grass
East Downchute Upper	0.286	7.0	2.0	3:1	3:1	19	42.62	0.44	11.54	6.72	64.97	0.56	13.25	8.27	ACB
East Downchute Lower	0.286	7.0	2.0	3:1	3:1	19	79.16	0.63	14.12	9.10	121.15	0.80	16.13	11.11	ACB
South Downchute Upper	0.286	7.0	2.0	3:1	3:1	19	31.48	0.37	10.41	5.76	48.21	0.48	12.02	7.14	ACB
South Downchute Lower	0.286	7.0	2.0	3:1	3:1	19	65.57	0.57	13.29	8.31	100.62	0.72	15.23	10.19	ACB
West Downchute Upper	0.286	7.0	2.0	3:1	3:1	19	24.39	0.32	9.54	5.05	37.49	0.41	11.05	6.30	ACB
West Downchute Lower	0.286	7.0	2.0	3:1	3:1	19	77.77	0.62	14.04	9.02	119.56	0.79	16.07	11.04	ACB

Table 13 – Diversion Berm, Access Road Channel, and Downchute Geometry and Results

		Channel Dimensions (minimum)			25-year			100-year						
Perimeter Channel Segment	Channel	Bottom	Depth	Side	Top Width	Peak	Peak	Peak	Tractive	Peak	Peak	Peak	Tractive	Channel
r enineter Channel Segment	Slope (ft/ft)	Width	(ft)	Slopes	1	Flow	Depth	Velocity	Stress	Flow	Depth	Velocity	Stress	Lining
		(ft)	(11)	(H:V)	(ff)	(cfs)	(ft)	(ft/s)	(psf)	(cfs)	(ft)	(ft/s)	(psf)	
East Channel (N)	0.018	8.0	3.0	3:1	26	6.23	0.25	2.79	0.26	9.58	0.33	3.26	0.33	Grass
East Channel (S)	0.018	8.0	3.0	3:1	26	117.22	1.34	7.29	1.10	179.66	1.67	8.24	1.32	TRM
West Channel (N)	0.005	8.0	4.0	3:1	32	52.91	1.23	3.67	0.28	81.34	1.55	4.16	0.34	Grass
West Channel (S)	0.010	8.0	4.0	3:1	32	162.62	1.85	6.48	0.79	250.02	2.30	7.30	0.95	Grass

 Table 14 – Perimeter Channel Geometry and Results

	25-year, 24-hour Design	100-year, 24-hour Design		
	Storm Event	Storm Event		
Peak Discharge to	344.1	528.0		
Detention Pond (cfs)	544.1	528.0		
Peak Outflow from	6.5	27.0		
Detention Pond (cfs)	0.5	27.0		
Peak Pond Water	449.8	451.5		
Surface Elevation (ft)	449.8	431.5		
Peak Storage in	33.0	30.6		
Detention Pond (ac-ft)	55.0	39.6		

Table 15 – HEC-HMS Model Results

FIGURES

- Figure 1 Rainfall Distribution Map of the United States (from USDA, 1986)
- Figure 2 Depth of Precipitation for 2-year Storm of 24-hour Duration in Texas (from USGS, 2004)
- Figure 3 Depth of Precipitation for 25-year Storm of 24-hour Duration in Texas (from USGS, 2004)
- Figure 4 Depth of Precipitation for 100-year Storm of 24-hour Duration in Texas (from USGS, 2004)
- Figure 5 Contributing Drainage Areas for Surface Water Management Components
- Figure 6 Depth of Precipitation for 25-year Storm of 15-minute Duration in Texas (from USGS, 2004)
- Figure 7 Depth of Precipitation for 25-year Storm of 30-minute Duration in Texas (from USGS, 2004)
- Figure 8 Depth of Precipitation for 100-year Storm of 15-minute Duration in Texas (from USGS, 2004)
- Figure 9 Depth of Precipitation for 100-year Storm of 30-minute Duration in Texas (from USGS, 2004)
- Figure 10 Placed Riprap Apron Standard Detail (from FHWA, 2006)

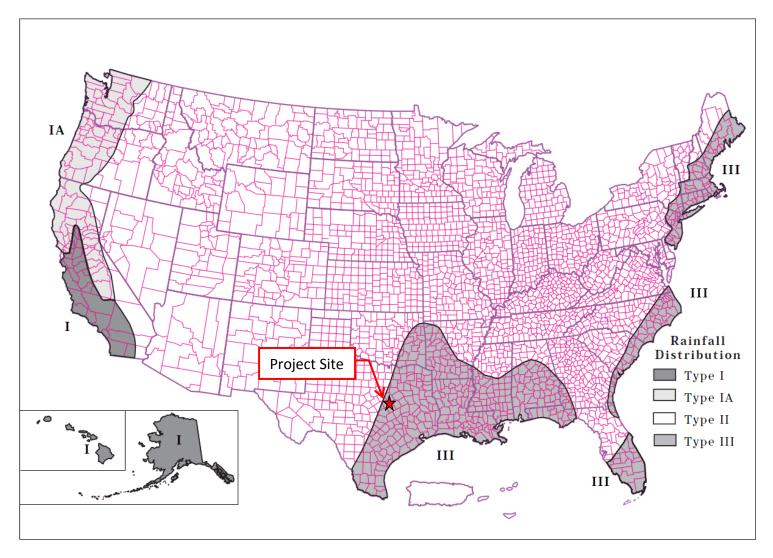


Figure 1 – Rainfall Distribution Map of the United States (from USDA, 1986)

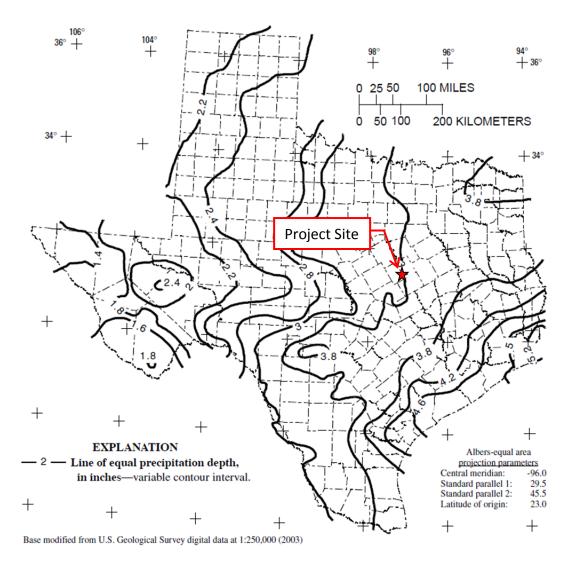


Figure 2 – Depth of Precipitation for 2-year Storm of 24-hour Duration in Texas (from USGS, 2004)

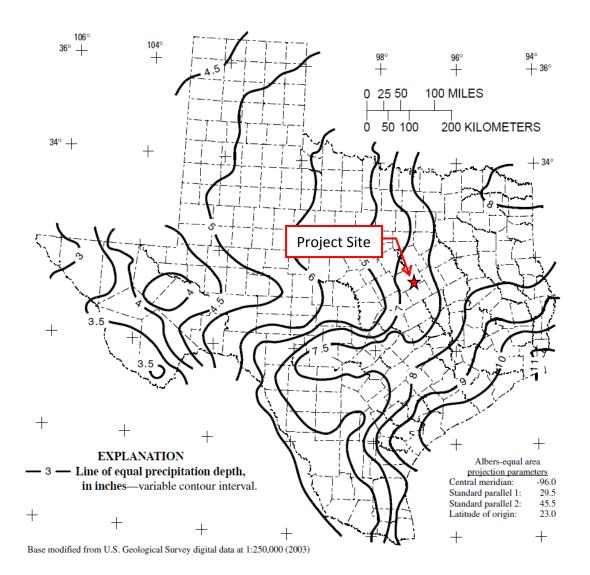


Figure 3 – Depth of Precipitation for 25-year Storm of 24-hour Duration in Texas (from USGS, 2004)

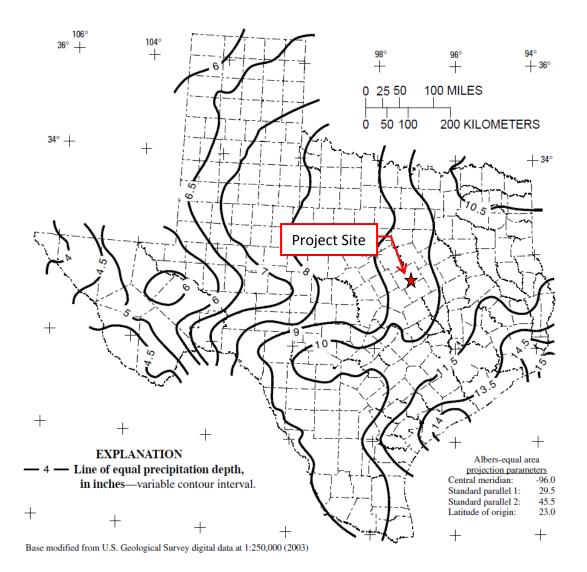


Figure 4 – Depth of Precipitation for 100-year Storm of 24-hour Duration in Texas (from USGS, 2004)

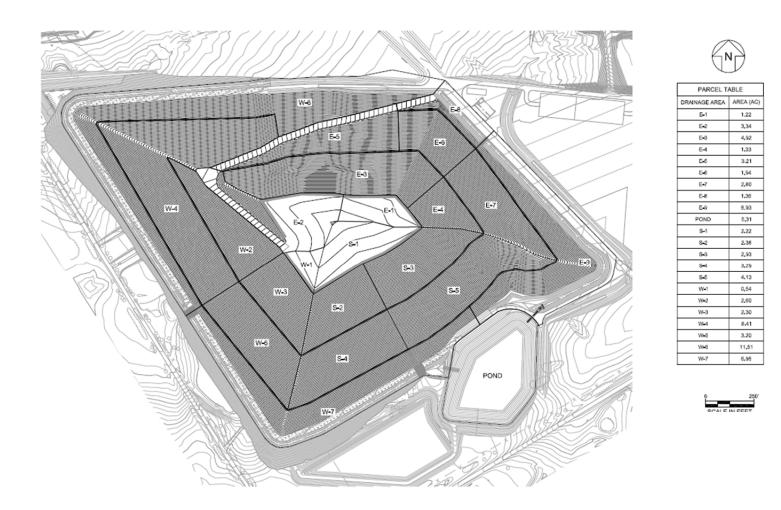


Figure 5 – Contributing Drainage Areas for Surface Water Management Components

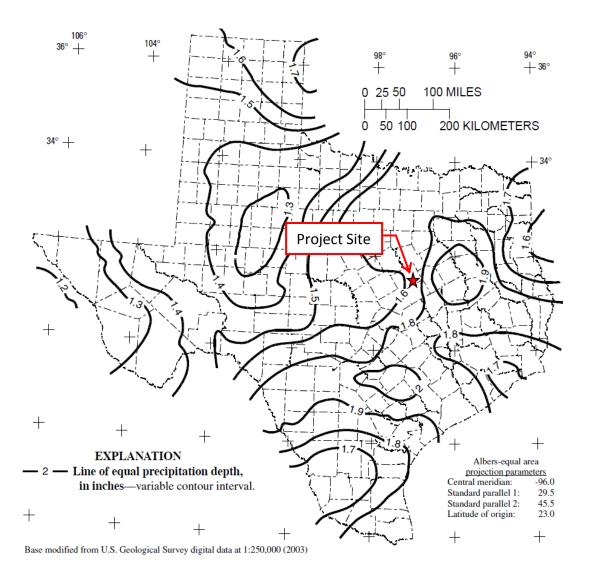


Figure 6 – Depth of Precipitation for 25-year Storm of 15-minute Duration in Texas (from USGS, 2004)

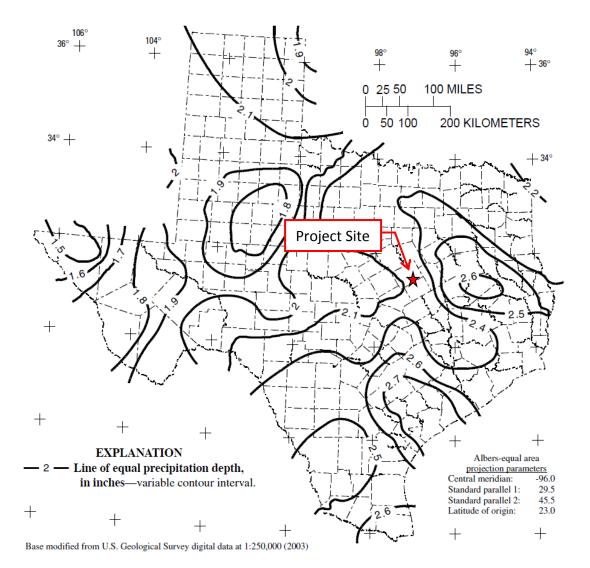


Figure 7 – Depth of Precipitation for 25-year Storm of 30-minute Duration in Texas (from USGS, 2004)

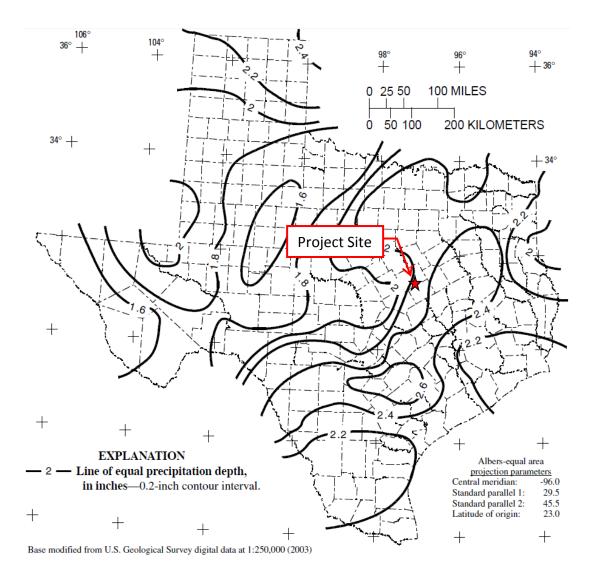


Figure 8 – Depth of Precipitation for 100-year Storm of 15-minute Duration in Texas (from USGS, 2004)

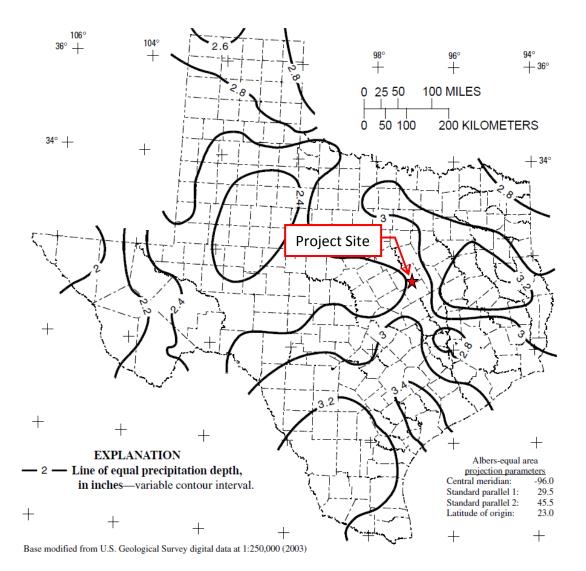


Figure 9 – Depth of Precipitation for 100-year Storm of 30-minute Duration in Texas (from USGS, 2004)

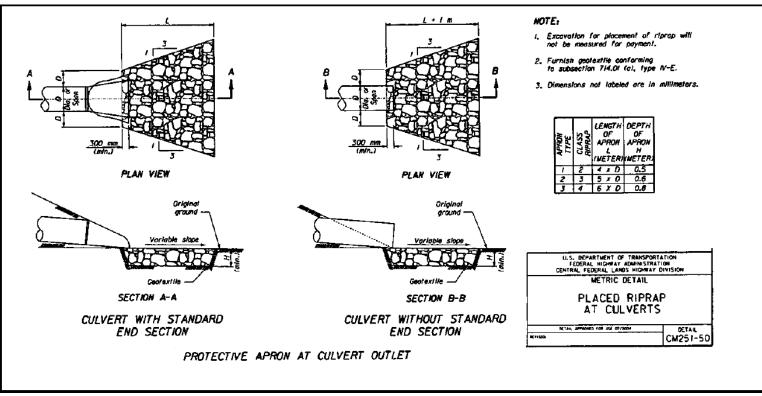
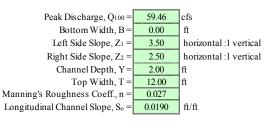
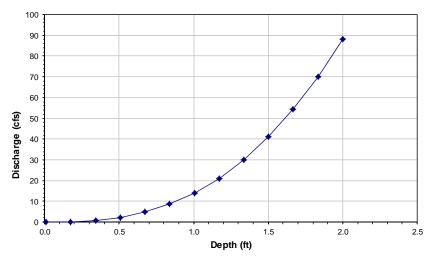


Figure 10 – Placed Riprap Apron Standard Detail (from FHWA, 2006)

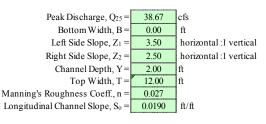

ATTACHMENT A HYDRAULIC DESIGN CALCULATIONS FOR LARGEST FLOW RATE

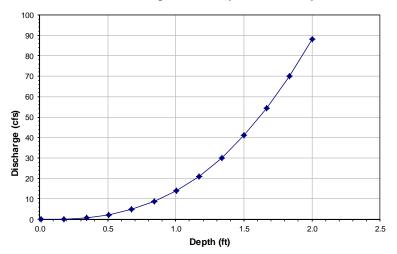
Design/Check: Trapezoidal/Triangular Channel


Methodology: Manning's Equation

Project: Sandy Creek Power Partners, Riesel, TX

Ditch ID: Mid-Slope Drainage Bench W-4 - 100-yr Flow

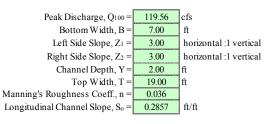

ft ²	P ft	R=A/P ft	V ft/s	(Flow Rate) Q=AV ft ³ /s	Stress $ au_0$ $ ext{lb/ft}^2$	
0.00	0.06	0.00	0.21	0.0	0.01	
0.09	1.11	0.08	1.45	0.1	0.10	
0.35	2.16	0.16	2.26	0.8	0.19	
0.77	3.21	0.24	2.94	2.3	0.29	
1.36	4.26	0.32	3.55	4.8	0.38	
2.11	5.31	0.40	4.11	8.7	0.47	
3.03	6.36	0.48	4.64	14.1	0.56	
4.11	7.41	0.55	5.13	21.1	0.66	
5.36	8.46	0.63	5.61	30.1	0.75	
6.77	9.51	0.71	6.06	41.1	0.84	
8.35	10.56	0.79	6.50	54.3	0.94	
10.09	11.62	0.87	6.93	69.9	1.03	
12.00	12.67	0.95	7.34	88.1	1.12	
8.94	10.93	0.82	6.65	59.46	0.97	DESIGN Q
	0.00 0.09 0.35 0.77 1.36 2.11 3.03 4.11 5.36 6.77 8.35 10.09 12.00	0.00 0.06 0.09 1.11 0.35 2.16 0.77 3.21 1.36 4.26 2.11 5.31 3.03 6.36 4.11 7.41 5.36 8.46 6.77 9.51 8.35 10.56 10.09 11.62 12.00 12.67	0.00 0.06 0.00 0.09 1.11 0.08 0.35 2.16 0.16 0.77 3.21 0.24 1.36 4.26 0.32 2.11 5.31 0.40 3.03 6.36 0.48 4.11 7.41 0.55 5.36 8.46 0.63 6.77 9.51 0.71 8.35 10.56 0.79 10.09 11.62 0.87 12.00 12.67 0.95	0.00 0.06 0.00 0.21 0.09 1.11 0.08 1.45 0.35 2.16 0.16 2.26 0.77 3.21 0.24 2.94 1.36 4.26 0.32 3.55 2.11 5.31 0.40 4.11 3.03 6.36 0.48 4.64 4.11 7.41 0.55 5.13 5.36 8.46 0.63 5.61 6.77 9.51 0.71 6.06 8.35 10.56 0.79 6.50 10.09 11.62 0.87 6.93 12.00 12.67 0.95 7.34	0.00 0.06 0.00 0.21 0.0 0.09 1.11 0.08 1.45 0.1 0.35 2.16 0.16 2.26 0.8 0.77 3.21 0.24 2.94 2.3 1.36 4.26 0.32 3.55 4.8 2.11 5.31 0.40 4.11 8.7 3.03 6.36 0.48 4.64 14.1 4.11 7.41 0.55 5.13 21.1 5.36 8.46 0.63 5.61 30.1 6.77 9.51 0.71 6.06 41.1 8.35 10.56 0.79 6.50 54.3 10.09 11.62 0.87 6.93 69.9 12.00 12.67 0.95 7.34 88.1	0.00 0.06 0.00 0.21 0.0 0.01 0.09 1.11 0.08 1.45 0.1 0.10 0.35 2.16 0.16 2.26 0.8 0.19 0.77 3.21 0.24 2.94 2.3 0.29 1.36 4.26 0.32 3.55 4.8 0.38 2.11 5.31 0.40 4.11 8.7 0.47 3.03 6.36 0.48 4.64 14.1 0.56 4.11 7.41 0.55 5.13 21.1 0.66 5.36 8.46 0.63 5.61 30.1 0.75 6.77 9.51 0.71 6.06 41.1 0.84 8.35 10.56 0.79 6.50 54.3 0.94 10.09 11.62 0.87 6.93 69.9 1.03 12.00 12.67 0.95 7.34 88.1 1.12


Design/Check: Trapezoidal/Triangular Channel Methodology: Manning's Equation

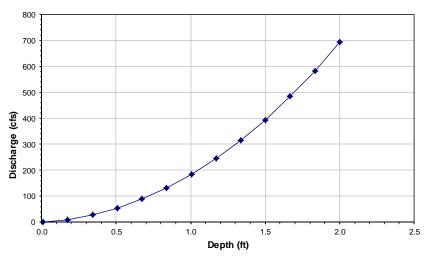
Project: Sandy Creek Power Partners, Riesel, TX

Ditch ID: Mid-Slope Drainage Bench W-4 - 25-yr Flow

Depth of Flow Y ft	Area of Flow A ft ²	Wetted Perimeter P ft	Hydraulic Radius R=A/P ft	Average Velocity V ft/s	Discharge (Flow Rate) Q=AV ft ³ /s	Avg. Tractive Stress $ au_0$ Ib/ft ²	Comments
0.01	0.00	0.00	0.00	0.21	0.0	0.01	
0.01	0.00	0.06	0.00	0.21	0.0	0.01	
0.18	0.09	1.11	0.08	1.45	0.1	0.10	
0.34	0.35	2.16	0.16	2.26	0.8	0.19	
0.51	0.77	3.21	0.24	2.94	2.3	0.29	
0.67	1.36	4.26	0.32	3.55	4.8	0.38	
0.84	2.11	5.31	0.40	4.11	8.7	0.47	
1.01	3.03	6.36	0.48	4.64	14.1	0.56	
1.17	4.11	7.41	0.55	5.13	21.1	0.66	
1.34	5.36	8.46	0.63	5.61	30.1	0.75	
1.50	6.77	9.51	0.71	6.06	41.1	0.84	
1.67	8.35	10.56	0.79	6.50	54.3	0.94	
1.83	10.09	11.62	0.87	6.93	69.9	1.03	
2.00	12.00	12.67	0.95	7.34	88.1	1.12	
1.47	6.47	9.30	0.70	5.97	38.67	0.83	DESIGN Q

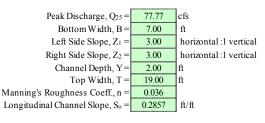


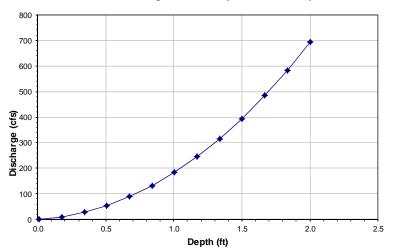
Design/Check: Trapezoidal/Triangular Channel


Methodology: Manning's Equation

Project: Sandy Creek Power Partners, Riesel, TX

Ditch ID: West Downchute Lower - 100-yr Flow

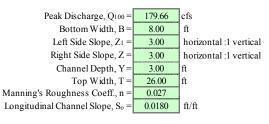

Depth of Flow Y ft	Area of Flow A ft ²	Wetted Perimeter P ft	Hydraulic Radius R=A/P ft	Average Velocity V ft/s	Discharge (Flow Rate) Q=AV ft ³ /s	Avg. Tractive Stress τ_0 lb/ft^2	Comments
0.01	0.07	7.06	0.01	1.02	0.1	0.18	
0.18	1.32	8.11	0.16	6.60	8.7	2.91	
0.34	2.74	9.16	0.30	9.89	27.1	5.34	
0.51	4.33	10.21	0.42	12.48	54.0	7.55	
0.67	6.07	11.26	0.54	14.66	89.0	9.62	
0.84	7.99	12.31	0.65	16.58	132.4	11.57	
1.01	10.07	13.36	0.75	18.32	184.4	13.44	
1.17	12.31	14.41	0.85	19.92	245.2	15.23	
1.34	14.72	15.45	0.95	21.41	315.1	16.98	
1.50	17.29	16.50	1.05	22.82	394.6	18.68	
1.67	20.03	17.55	1.14	24.16	483.9	20.34	
1.83	22.93	18.60	1.23	25.44	583.3	21.98	
2.00	26.00	19.65	1.32	26.67	693.3	23.59	
0.79	7.44	12.02	0.62	16.07	119.56	11.04	DESIGN Q


Design/Check: Trapezoidal/Triangular Channel Methodology: Manning's Equation

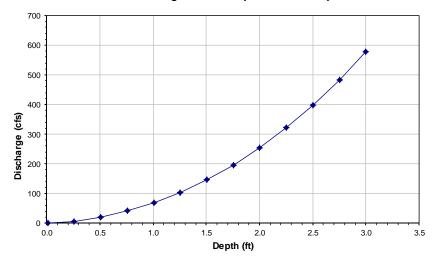
Project: Sandy Creek Power Partners, Riesel, TX

Ditch ID: West Downchute Lower - 25-yr Flow

Depth of Flow Y ft	Area of Flow A ft ²	Wetted Perimeter P ft	Hydraulic Radius R=A/P ft	Average Velocity V ft/s	Discharge (Flow Rate) Q=AV ft ³ /s	Avg. Tractive Stress T ₀ Ib/ft ²	Comments
			0.04			0.40	
0.01	0.07	7.06	0.01	1.02	0.1	0.18	
0.18	1.32	8.11	0.16	6.60	8.7	2.91	
0.34	2.74	9.16	0.30	9.89	27.1	5.34	
0.51	4.33	10.21	0.42	12.48	54.0	7.55	
0.67	6.07	11.26	0.54	14.66	89.0	9.62	
0.84	7.99	12.31	0.65	16.58	132.4	11.57	
1.01	10.07	13.36	0.75	18.32	184.4	13.44	
1.17	12.31	14.41	0.85	19.92	245.2	15.23	
1.34	14.72	15.45	0.95	21.41	315.1	16.98	
1.50	17.29	16.50	1.05	22.82	394.6	18.68	
1.67	20.03	17.55	1.14	24.16	483.9	20.34	
1.83	22.93	18.60	1.23	25.44	583.3	21.98	
2.00	26.00	19.65	1.32	26.67	693.3	23.59	
0.62	5.54	10.95	0.51	14.04	77.77	9.02	DESIGN Q

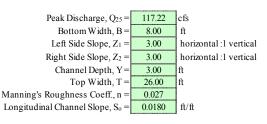


Design/Check: Trapezoidal/Triangular Channel

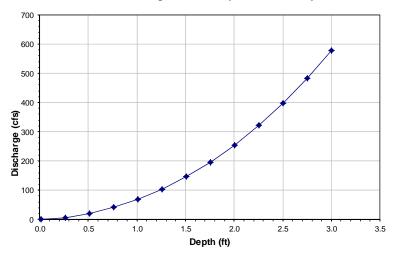

Methodology: Manning's Equation

Project: Sandy Creek Power Partners, Riesel, TX

Ditch ID: East Perimeter Channel - South - 100-yr Flow



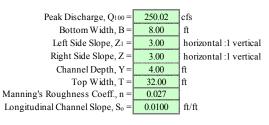
Depth of Flow Y ft	Area of Flow A ft ²	Wetted Perimeter P ft	Hydraulic Radius R=A/P ft	Average Velocity V ft/s	Discharge (Flow Rate) Q=AV ft ³ /s	Avg. Tractive Stress τ_0 lb/ft^2	Comments
0.01	0.08	8.06	0.01	0.34	0.0	0.01	
0.26	2.27	9.64	0.24	2.83	6.4	0.27	
0.51	4.84	11.21	0.43	4.23	20.5	0.48	
0.76	7.78	12.79	0.61	5.31	41.4	0.68	
1.01	11.09	14.37	0.77	6.23	69.1	0.87	
1.26	14.78	15.94	0.93	7.04	104.0	1.04	
1.51	18.84	17.52	1.08	7.77	146.4	1.21	
1.75	23.26	19.09	1.22	8.45	196.5	1.37	
2.00	28.07	20.67	1.36	9.08	254.8	1.53	
2.25	33.24	22.25	1.49	9.68	321.7	1.68	
2.50	38.79	23.82	1.63	10.25	397.5	1.83	
2.75	44.71	25.40	1.76	10.80	482.7	1.98	
3.00	51.00	26.97	1.89	11.32	577.5	2.12	
1.67	21.81	18.59	1.17	8.24	179.66	1.32	DESIGN Q


Design/Check: Trapezoidal/Triangular Channel Methodology: Manning's Equation Project: Sandy Creek Power Partners, Riesel, TX

Ditch ID: East Perimeter Channel - South - 25-yr Flow

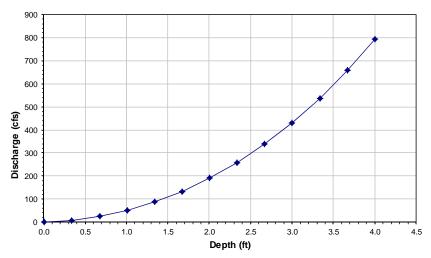
Depth of Flow Y ft	Area of Flow A ft ²	Wetted Perimeter P ft	Hydraulic Radius R=A/P ft	Average Velocity V ft/s	Discharge (Flow Rate) Q=AV ft ³ /s	Avg. Tractive Stress T ₀ Ib/ft ²	Comments
0.01	0.08	8.06	0.01	0.34	0.0	0.01	
0.26	2.27	9.64	0.24	2.83	6.4	0.27	
0.51	4.84	11.21	0.43	4.23	20.5	0.48	
0.76	7.78	12.79	0.61	5.31	41.4	0.68	
1.01	11.09	14.37	0.77	6.23	69.1	0.87	
1.26	14.78	15.94	0.93	7.04	104.0	1.04	
1.51	18.84	17.52	1.08	7.77	146.4	1.21	
1.75	23.26	19.09	1.22	8.45	196.5	1.37	
2.00	28.07	20.67	1.36	9.08	254.8	1.53	
2.25	33.24	22.25	1.49	9.68	321.7	1.68	
2.50	38.79	23.82	1.63	10.25	397.5	1.83	
2.75	44.71	25.40	1.76	10.80	482.7	1.98	
3.00	51.00	26.97	1.89	11.32	577.5	2.12	
1.34	16.08	16.47	0.98	7.29	117.22	1.10	DESIGN Q

Discharge versus Depth Relationship



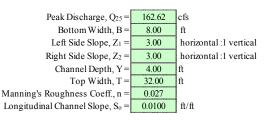
Design/Check: Trapezoidal/Triangular Channel

Methodology: Manning's Equation

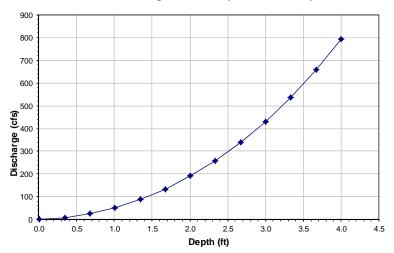

Project: Sandy Creek Power Partners, Riesel, TX

Ditch ID: West Perimeter Channel - South - 100-yr Flow

Depth of Flow Y ft	Area of Flow A ft ²	Wetted Perimeter P ft	Hydraulic Radius R=A/P ft	Average Velocity V ft/s	Discharge (Flow Rate) Q=AV ft ³ /s	Avg. Tractive Stress T ₀ Ib/ft ²	Comments
0.01	0.08	8.06	0.01	0.26	0.0	0.01	
0.34	3.09	10.17	0.30	2.49	7.7	0.19	
0.68	6.77	12.27	0.55	3.71	25.1	0.34	
1.01	11.11	14.37	0.77	4.65	51.6	0.48	
1.34	16.11	16.47	0.98	5.44	87.6	0.61	
1.67	21.77	18.58	1.17	6.13	133.6	0.73	
2.01	28.10	20.68	1.36	6.77	190.3	0.85	
2.34	35.09	22.78	1.54	7.36	258.3	0.96	
2.67	42.75	24.89	1.72	7.92	338.4	1.07	
3.00	51.07	26.99	1.89	8.44	431.2	1.18	
3.34	60.05	29.09	2.06	8.95	537.3	1.29	
3.67	69.69	31.20	2.23	9.43	657.4	1.39	
4.00	80.00	33.30	2.40	9.90	792.2	1.50	
2.30	34.27	22.55	1.52	7.30	250.02	0.95	DESIGN Q
						•	


Discharge versus Depth Relationship

Design/Check: Trapezoidal/Triangular Channel Methodology: Manning's Equation


Project: Sandy Creek Power Partners, Riesel, TX

Ditch ID: West Perimeter Channel - South - 25-yr Flow

Depth of Flow Y ft	Area of Flow A ft ²	Wetted Perimeter P ft	Hydraulic Radius R=A/P ft	Average Velocity V ft/s	Discharge (Flow Rate) Q=AV ft ³ /s	Avg. Tractive Stress T ₀ Ib/ft ²	Comments
0.01	0.08	8.06	0.01	0.26	0.0	0.01	
0.34	3.09	10.17	0.30	2.49	7.7	0.19	
0.68	6.77	12.27	0.55	3.71	25.1	0.34	
1.01	11.11	14.37	0.77	4.65	51.6	0.48	
1.34	16.11	16.47	0.98	5.44	87.6	0.61	
1.67	21.77	18.58	1.17	6.13	133.6	0.73	
2.01	28.10	20.68	1.36	6.77	190.3	0.85	
2.34	35.09	22.78	1.54	7.36	258.3	0.96	
2.67	42.75	24.89	1.72	7.92	338.4	1.07	
3.00	51.07	26.99	1.89	8.44	431.2	1.18	
3.34	60.05	29.09	2.06	8.95	537.3	1.29	
3.67	69.69	31.20	2.23	9.43	657.4	1.39	
4.00	80.00	33.30	2.40	9.90	792.2	1.50	
1.85	25.09	19.71	1.27	6.48	162.62	0.79	DESIGN Q

Discharge versus Depth Relationship

Page 57 of 60 12/3/2015

ATTACHMENT B HEC-HMS OUTPUT RESULTS

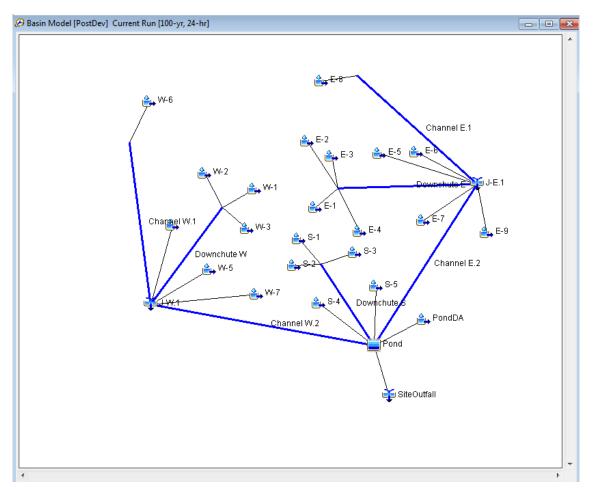


Figure B.1 – HEC-HMS Nodal Network

ilobal Summary Result	(STOLINUL 25-91,	24-111							
Project: Sa	andy_Creek_Final_	Cover_141 S	imulation Run: 25-yr, 24	4-hr					
Start of Run:									
End of Run: 04Jan2014, 00:00 Meteorologic Model: 25-yr, 24-hr									
Compute Tim	e: 03Dec2014, 08:	54:30 Contro	l Specifications: Contro	l_3day					
Show Elements: Initial	Selection 👻 Vo	lume Units: 🔘 Il	N 💿 AC-FT Sorting:	Alphabetic 👻					
Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume					
Element	(MI2)	(CFS)		(AC-FT)					
Channel E. 1	0.00212	6.6	01Jan2014, 12:09	0.6					
Channel E.2	0.04197	122.1	01Jan2014, 12:11	11.1					
Channel W.1	0.01799	51.7	01Jan2014, 12:20	4.8					
Channel W.2	0.05604	134.9	01Jan2014, 12:13	14.8					
Downchute E	0.01662	44.4	01Jan2014, 12:10	4.4					
Downchute S	0.01151	34.3	01Jan2014, 12:09	3.1					
Downchute W	0.00904	27.1	01Jan2014, 12:09	2.4					
E-1	0.00231	6.0	01Jan2014, 12:13	0.6					
E-2	0.00466	11.4	01Jan2014, 12:15	1.2					
E-3	0.00760	23.6	01Jan2014, 12:08	2.0					
E-4	0.00205	6.4	01Jan2014, 12:08	0.5					
E-5	0.00615	19.1	01Jan2014, 12:08	1.6					
E-6	0.00188	5.8	01Jan2014, 12:08	0.5					
E-7	0.00438	13.6	01Jan2014, 12:08	1.2					
E-8	0.00212	6.6	01Jan2014, 12:08	0.6					
E-9	0.01082	33.7	01Jan2014, 12:08	2.9					
J-E.1	0.04197	122.6	01Jan2014, 12:08	11.1					
J-W.1	0.05604	135.4	01Jan2014, 12:09	14.9					
Pond	0.12940	6.5	01Jan2014, 21:53	27.0					
PondDA	0.00829	32.2	01Jan2014, 12:07	3.2					
S-1	0.00328	9.2	01Jan2014, 12:11	0.9					
S-2	0.00368	11.4	01Jan2014, 12:08	1.0					
S-3	0.00455	14.2	01Jan2014, 12:08	1.2					
S-4	0.00514	16.0	01Jan2014, 12:08	1.4					
S-5	0.00645	20.1	01Jan2014, 12:08	1.7					
SiteOutfall	0.12940	6.5	01Jan2014, 21:53	27.0					
W-1	0.00140	3.8	01Jan2014, 12:12	0.4					
W-2	0.00407	12.7	01Jan2014, 12:08	1.1					
W-3	0.00357	11.1	01Jan2014, 12:08	0.9					
W-4	0.01315	40.4	01Jan2014, 12:08	3.5					
W-5	0.00500	15.6	01Jan2014, 12:08	1.3					
W-6	0.01799	52.0	01Jan2014, 12:10	4.8					
W-7	0.01086	33.8	01Jan2014, 12:08	2.9					

Table B.1 – 25-Year HEC-HMS Results

Project: Sa	ndy_Creek_Final_	Cover_141 Si	mulation Run: 100-yr, 2	24-hr						
Start of Run: 01Jan2014, 00:00 Basin Model: PostDev										
End of Run: 04Jan2014, 00:00 Meteorologic Model: 100-yr, 24-hr										
Compute Tim	e: 03Dec2014, 09	:21:14 Contro	l Specifications: Contro	l_3day						
Show Elements: Initial Selection Volume Units: N AC-FT Sorting: Alphabetic										
Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume						
Element	(MI2)	(CFS)		(AC-FT)						
Channel E. 1	0.00212	9.2	01Jan2014, 12:09	0.8						
Channel E.2	0.04197	170.8	01Jan2014, 12:11	15.8						
Channel W.1	0.01799	72.5	01Jan2014, 12:19	6.7						
Channel W.2	0.05604	192.2	01Jan2014, 12:13	21.0						
Downchute E	0.01662	62.2	01Jan2014, 12:09	6.2						
Downchute S	0.01151	47.9	01Jan2014, 12:09	4.3						
Downchute W	0.00904	37.9	01Jan2014, 12:08	3.4						
E-1	0.00231	8.4	01Jan2014, 12:13	0.9						
E-2	0.00466	15.9	01Jan2014, 12:15	1.8						
E-3	0.00760	33.0	01Jan2014, 12:07	2.9						
E-4	0.00205	8.9	01Jan2014, 12:07	0.8						
E-5	0.00615	26.7	01Jan2014, 12:07	2.3						
E-6	0.00188	8.2	01Jan2014, 12:07	0.7						
E-7	0.00438	19.0	01Jan2014, 12:07	1.6						
E-8	0.00212	9.2	01Jan2014, 12:07	0.8						
E-9	0.01082	47.0	01Jan2014, 12:07	4.1						
J-E.1	0.04197	171.5	01Jan2014, 12:08	15.8						
J-W.1	0.05604	192.9	01Jan2014, 12:09	21.0						
Pond	0.12940	27.0	01Jan2014, 15:26	39.6						
PondDA	0.00829	41.9	01Jan2014, 12:07	4.1						
S-1	0.00328	12.9	01Jan2014, 12:11	1.2						
S-2	0.00368	16.0	01Jan2014, 12:07	1.4						
S-3	0.00455	19.8	01Jan2014, 12:07	1.7						
S-4	0.00514	22.3	01Jan2014, 12:07	1.9						
S-5	0.00645	28.0	01Jan2014, 12:07	2.4						
SiteOutfall	0.12940	27.0	01Jan2014, 15:26	39.6						
W-1	0.00140	5.3	01Jan2014, 12:12	0.5						
W-2	0.00407	17.7	01Jan2014, 12:07	1.5						
W-3	0.00357	15.5	01Jan2014, 12:07	1.3						
W-4	0.01315	56.5	01Jan2014, 12:08	4.9						
W-5	0.00500	21.7	01Jan2014, 12:07	1.9						
W-6	0.01799	72.7	01Jan2014, 12:10	6.8						
W-7	0.01086	47.2	01Jan2014, 12:07	4.1						

Table B.2 – 100-Year HEC-HMS Results

APPENDIX B

Final Cover Soil Erosion Loss Calculation

	Geosyntec ^D consultants
	Page 1 of 12
Written by: Brandon Klenzendorf Date: 11/19/2014 Reviewed by: Beth Gross	Date: <u>12/4/2014</u>
Client: NAES Project: Sandy Creek Energy Station Project/Proposal No.: TXL0208	Task No: 08

FINAL COVER EROSION ANALYSIS

PURPOSE

The purpose of this calculation package is to present the final cover soil loss analysis for the proposed expansion of the Solid Waste Disposal Facility (SWDF) at the Sandy Creek Energy Station in Riesel, Texas. This package provides calculations for the annual soil loss from the vegetative support layer of the final cover system on the top deck and side slope of the SWDF.

PROJECT BACKGROUND

The SWDF will be closed with an approximately 64.9-acre final cover system (Drawing 2 of the Engineering Design Drawings for the SWDF Final Cover). The top deck of the final cover will have a surface slope of 3%, and the side slopes will be graded to 3.5 horizontal to 1 vertical (3.5H:1V). The final cover is designed with a surface water management system with permanent drainage features, including top deck diversion berms, side slope diversion berms, downchutes, and a perimeter channel. The diversion berms direct water from the top deck and side slopes to the downchutes, and the downchutes convey water to the perimeter channel.

The vegetative support layer of the final cover will be permanently stabilized with perennial grasses to resist erosion and sediment transport.

Geosyntec[>]

consultants

							Р	age 2 of 12
Written by:	Brandon Kle	enzendorf	Date:	11/19/2014	Reviewed by:	Beth Gross	Date: 12/	/4/2014
Client: <u>N</u>	AES	Project:	Sand	ly Creek Energy	Station Project/Proj	posal No.: TXL0208	B Task N	lo: <u>08</u>

For municipal solid waste landfills, the Texas Commission on Environmental Quality (TCEQ) recommends a permissible soil loss for the final cover of less than 2 to 3 tons/acre/year (TCEQ, 2007). Geosyntec considers this recommendation to be relevant to coal combustion waste landfills, such as the SWDF.

CALCULATION METHODOLOGY

Revised Universal Soil Loss Equation (RUSLE)

Soil erosion loss from the final cover was calculated using the methodology presented in the U.S. Department of Agriculture (USDA) handbook *Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE)* (Renard et al., 1997) along with information previously published by USDA. This calculation package presents the RUSLE and rationale for selecting each of the equation's parameters. The RUSLE is written as follows:

$$\mathbf{A} = \mathbf{R} \times \mathbf{K} \times \mathbf{L}\mathbf{S} \times \mathbf{C} \times \mathbf{P}$$

where: A = computed spatial average annual soil loss (tons/acre/year);

R = average annual rainfall-runoff erosivity factor;

K = soil erodibility factor;

LS = topographic factor;

C = cover-management factor; and

P = erosion control practice factor.

INPUT PARAMETERS

<u>RUSLE Parameters</u>

Rainfall Runoff Erosivity Factor (R)

The rainfall-runoff erosivity factor is defined as the average annual rainfall erosion index specific for the project area. Based on Renard et al. (1997), the value for Riesel, McLennan County, Texas is approximately 300, as shown in Figure 1.

	Geosyntec consultants
	Page 3 of 12
Written by: Brandon Klenzendorf Date: 11/19/2014 Reviewed by: Beth Gross	Date: <u>12/4/2014</u>
Client: NAES Project: Sandy Creek Energy Station Project/Proposal No.: TXL0208	Task No: 08

Soil Erodibility Factor (K)

The soil erodibility factor is a function of the physical and chemical properties of the soil and is specific to the source of the vegetative support layer material for the final cover system. The soil erodibility factor can be thought of as the ease with which soil is displaced by splash during rainfall or by surface flow.

The soils proposed for the final cover system of the SWDF are the native soils in the vicinity of the SWDF. Using the Web Soil Survey tool operated by the USDA Natural Resources Conservation Service (NRCS, 2014), the soils in this area are primarily classified as Heiden clays (HeB and HeD), although Riesel gravelly fine sandy loam (RgB) is also present. Based on the McLennan County soil survey (USDA, 2001), the Heiden clays were formed in residuum derived from shale and marl, while the Riesel sandy loam was formed in alluvium.

The K values obtained from NRCS (2014) for the fine-earth fraction (Kf), or material finer than 2 mm in size, of the HeB, HeD, and RgB soils are presented in Table 1. The maximum K value for the soils of 0.32 was selected for use in the RUSLE.

Topographic Factor (LS)

The slope length factor and slope steepness factor are typically combined into one topographic factor, LS, to facilitate field application of these equation components. Renard et al. (1997) presents values of the LS factor for slope lengths in feet up to 1,000 feet and percent slopes up to 60% for moderately consolidated soils with little to moderate cover (Table 2).

To manage stormwater runoff from the surface slopes, permanent stormwater drainage features will be installed on the final cover system. The stormwater drainage features will be spaced to limit soil erosion. The maximum horizontal distance between side slope diversion berms (i.e., 270 feet) on the final cover system was used to select the LS factor for the exterior side slopes. The maximum horizontal distance between the high point on the top deck to the top deck diversion berms (i.e., 250 feet) was selected to evaluate the soil loss on the top deck. Values in Table 2 were interpolated to compute the LS factor for the side slopes and top deck.

• Side Slopes -3.5H:1V (28.6%) slope over a length of 270 feet, LS = 9.70

	Page 4 of 12
Written by: Brandon Klenzendorf Date: 11/19/2014 Reviewed by: Beth Gross	Date: <u>12/4/2014</u>
Client: NAES Project: Sandy Creek Energy Station Project/Proposal No.: TXL0208	Task No: 08

5

• Top Deck -3% slope over a length of 250 feet, LS = 0.58

Cover-Management Factor (C)

The cover-management factor is a function of the type of land cover, based on three factors: (i) the vegetative cover in direct contact with the soil surface, (ii) the canopy cover, and (iii) the effects at and beneath the surface. The final cover for the SWDF will be planted with grasses that are periodically mowed. Between mowings, a canopy of tall weeds or short brush may develop. From Table 3, the cover-management factor for this cover condition (95-100% grass cover with up to 25% canopy cover) is 0.003.

Erosion Control Practice Factor (P)

The erosion control practice factor considers topographical practices that will reduce erosion by altering runoff drainage patterns. This factor generally applies to agricultural cropping practices, which are not anticipated for the SWDF. Therefore, the P factor of 1 was selected.

RESULTS

RUSLE

Applying the RUSLE with the input parameters defined above, the computed soil loss in tons/acre/year for the longest slopes on the side slopes and top deck is as follows:

 $\mathbf{A} = \mathbf{R} \times \mathbf{K} \times \mathbf{L}\mathbf{S} \times \mathbf{C} \times \mathbf{P}$

Side Slopes: A = $300 \times 0.32 \times 9.70 \times 0.003 \times 1 = 2.79$ tons/acre/year

Top Deck: A = $300 \times 0.32 \times 0.52 \times 0.003 \times 1 = 0.15$ tons/acre/year

The calculated annual soil loss (0.15 and 2.79 tons/acre/year) on the longest slopes of the final cover meets TCEQ's recommended permissible soil loss of less than 2 to 3 tons/acre/year. The calculated average annual soil loss for the side slopes or top deck of the SWDF final cover would be less than the calculated maximum average value.

CONCLUSIONS

Based on the calculations presented herein, the following conclusions can be drawn:

Geosyntec[▷]

consultants

					Page 5	of 12
Written by:	Brandon Klenzendorf	Date: <u>11/19/2014</u>	Reviewed by:	Beth Gross	Date: 12/4/2014	
Client: <u>NA</u>	AES Project	Sandy Creek Energy	Station Project/Prop	posal No.: TXL0208	Task No:	08

- The calculated soil loss quantities for the longest slopes on the top deck and side slopes of the SWDF final cover meet TCEQ's recommended permissible soil loss of less than 2 to 3 tons/acre/year.
- For effective erosional stability, the soil stabilization practice should provide a maximum cover management factor (C) of 0.003. This C value corresponds to 95-100% grass cover with up to 25% canopy cover (USDA, 1977). Grass cover is defined by USDA (1977) as "cover at surface is grass, grasslike plants, decaying compacted duff, or litter at least 2 inches deep."

Geosyntec[>]

consultants

					Page 6 of 12
Written by:	Brandon Klenzendorf	Date: <u>11/19/2014</u>	Reviewed by:	Beth Gross	Date: <u>12/4/2014</u>
Client: NA	ES Project:	Sandy Creek Energy	Station Project/Prop	bosal No.: <u>TXL0208</u>	Task No: 08

REFERENCES

- NRCS (2014). Web Soil Survey, Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture, available online at http://websoilsurvey.nrcs.usda.gov, accessed April 2014.
- Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., and Yoder, D.C. (1997). Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE), United States Department of Agriculture, Agricultural Research Service, Agriculture Handbook Number 703.
- TCEQ (2007). Guidance for Addressing Erosional Stability During All Phases of Landfill Operation (Draft), Texas Commission on Environmental Quality, 14 February 2007.
- USDA (1977). Procedure for Computing Sheet and Rill Erosion on Project Areas, United States Department of Agriculture, Soil Conservation Services, Engineering Division and Ecological Sciences and Technology Division, Technical Release No. 51, Revision 2, September.
- USDA (2001). Soil Survey of McLennan County, Texas, United States Department of Agriculture and Natural Resources Conservation Service, with Texas Agricultural Experiment Station and Texas State Soil and Water Conservation Board.

TABLES

- Table 1. Soil Erodibility Factor (K) for Heiden and Riesel Soils (from NRCS, 2014)
- Table 2. Topographic Factor (LS) for Moderate Ratio of Rill to Interrill Erosion (from Renard et al., 1997)
- Table 3. Cover Management Factor (C) for Permanent Pasture, Rangeland, Idle Land, and Grazed Woodland (from USDA, 1977)

Table 1. Soil Erodibility Factor (K) for Heiden and Riesel Soils(from NRCS, 2014)

McLennan County, Texas

[Entries under "Erosion Factors--T" apply to the entire profile. Entries under "Wind Erodibility Group" and "Wind Erodibility Index" apply only to the surface layer. Absence of an entry indicates that data were not estimated. This report shows only the major soils in each map unit]

Map symbol					Moist	Saturated	Available	Linear	Organic	Eros	sion fac	tors	Wind erodi-	Wind erodi-
and soil name	Depth	Sand	Silt	Clay	bulk density	hydraulic conductivity	water capacity	extensi- bility	matter	Kw	Kf	Т	bility group	bility index
	In	Pct	Pct	Pct	g/cc	micro m/sec	In/In	Pct	Pct					·
HeB:											_			
Heiden	0-6			40-60	1.30-1.50	0.01-0.42	0.12-0.18	9.0-25.0	1.0-4.0	.32	.32	5	4	86
	6-35			40-60	1.35-1.55	0.01-0.42	0.12-0.18	9.0-25.0	0.1-0.5	.32	.32			
	35-55			40-60	1.40-1.60	0.01-0.42	0.12-0.18	9.0-25.0	0.1-0.5	.32	.32			
	55-80			40-60	1.45-1.65	0.01-0.42	0.11-0.15	9.0-25.0	0.1-0.5	.32	.32			
HeD:														
Heiden	0-6			40-60	1.30-1.50	0.01-0.42	0.12-0.18	9.0-25.0	1.0-4.0	.32	.32	5	4	86
	6-14			40-60	1.35-1.55	0.01-0.42	0.12-0.18	9.0-25.0	0.1-0.5	.32	.32			
	14-50			40-60	1.40-1.60	0.01-0.42	0.12-0.18	9.0-25.0	0.1-0.5	.32	.32			
	50-80			40-60	1.45-1.65	0.01-0.42	0.11-0.15	9.0-25.0	0.1-0.5	.32	.32			
RgB:														
Riesel	0-16			5-15	1.40-1.60	14.00-42.00	0.04-0.10	0.0-2.9	0.5-2.0	.10	.28	4	5	56
	16-48			35-55	1.35-1.50	0.42-1.40	0.05-0.12	3.0-5.9	0.5-1.0	.17	.32			
	48-55			35-55	1.40-1.55	0.42-1.40	0.05-0.16	3.0-5.9	0.5-1.0	.17	.32			
	55-80			3-12	1.45-1.65	42.00-141.00	0.03-0.05	0.0-2.9	0.5-1.0	.10	.17			

"Erosion factor Kw" indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments.

"Erosion factor Kf" indicates the erodibility of the fine-earth fraction, or the material less than 2 millimeters in size.

"Erosion factor T" is an estimate of the maximum average annual rate of soil erosion by wind and/or water that can occur without affecting crop productivity over a sustained period. The rate is in tons per acre per year.

.

Table 2. Topographic Factor (LS) for Moderate Ratio of Rill to Interrill Erosion (from Renard et al., 1997)

Values for topographic factor, LS, for moderate ratio of rill to interrill erosion.¹

	Horizontal slope length (ft)																
Slope (%)	3	6	9	12	15	25	50	75	100	150	200	250	300	400	600	800	1000
0.2	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.06	0.06	0.06
0.5	0.07	0.07	0.07	0.07	0.07	0.08	0.08	0.08	0.09	0.09	0.09	0.09	0.09	0.10	0.10	0.10	0.10
1.0	0.11	0.11	0.11	0.11	0.11	0.12	0.13	0.14	0.14	0.15	0.16	0.17	0.17	0.18	0.19	0.20	0.20
2.0	0.17	0.17	0.17	0.17	0.17	0.19	0.22	0.25	0.27	0.29	0.31	0.33	0.35	0.37	0.41	0.44	0.47
3.0	0.22	0.22	0.22	0.22	0.22	0.25	0.32	0.36	0.39	0.44	0.48	0.52	0.55	0.60	0.68	0.75	0.80
4.0	0.26	0.26	0.26	0.26	0.26	0.31	0.40	0.47	0.52	0.60	0.67	0.72	0.77	0.86	0.99	1.10	1.19
5.0	0.30	0.30	0.30	0.30	0.30	0.37	0.49	0.58	0.65	0.76	0.85	0.93	1.01	1.13	1.33	1.49	1.63
6.0	0.34	0.34	0.34	0.34	0.34	0.43	0.58	0.69	0.78	0.93	1.05	1.16	1.25	1.42	1.69	1.91	2.11
8.0	0.42	0.42	0.42	0.42	0.42	0.53	0.74	0.91	1.04	1.26	1.45	1.62	1.77	2.03	2.47	2.83	3.15
10.0	0.46	0.48	0.50	0.51	0.52	0.67	0.97	1.19	1.38	1.71	1.98	2.22	2.44	2.84	3.50	4.06	4.56
12.0	0.47	0.53	0.58	0.61	0.64	0.84	1.23	1.53	1.79	2.23	2.61	2.95	3.26	3.81	4.75	5.56	6.28
14.0	0.48	0.58	0.65	0.70	0.75	1.00	1.48	1.86	2.19	2.76	3.25	3.69	4.09	4.82	6.07	7.15	8.11
16.0	0.49	0.63	0.72	0.79	0.85	1.15	1.73	2.20	2.60	3.30	3.90	4.45	4.95	5.86	7.43	8.79	10.02
20.0	0.52	0.71	0.85	0.96	1.06	1.45	2.22	2.85	3.40	4.36	5.21	5.97	6.68	7.97	10.23	12.20	13.99
25.0	0.56	0.80	1.00	1.16	1.30	1.81	2.82	3.65	4.39	5.69	6.83	7.88	8.86	10.65	13.80	16.58	19.13
30.0	0.59	0.89	1.13	1.34	1.53	2.15	3.39	4.42	5.34	6.98	8.43	9.76	11.01	13.30	17.37	20.99	24.31
40.0	0.65	1.05	1.38	1.68	1.95	2.77	4.45	5.87	7.14	9.43	11.47	13.37	15.14	18.43	24.32	29.60	34.48
50.0	0.71	1.18	1.59	1.97	2.32	3.32	5.40	7.17	8.78	11.66	14.26	16.67	18.94	23.17	30.78	37.65	44.02
60.0	0.76	1.30	1.78	2.23	2.65	3.81	6.24	8.33	10.23	13.65	16.76	19.64	22.36	27.45	36.63	44.96	52.70

¹Such as for row-cropped agricultural and other moderately consolidated soil conditions with little-to-moderate cover (not applicable to thawing soil)

Table 3. Cover Management Factor (C) for Permanent Pasture, Rangeland, Idle Land, and Grazed Woodland¹ (from USDA, 1977)

Vegetal Canopy	Cover That Contacts the Surface							
Type and Height of Raised Canopy	Type4/	Percent Ground Cover						
	%		0	20	40	60	80	95-100
No appreciable canopy		G	.45	.20	.10	.042	.013	.003
and approximate tempty		Ŵ	.45	.24	.15	.090	.043	.011
Canopy of tall weeds	25	G	.36	.17	.09	.038	.012	003
or short brush		W	. 36	.20	.13	.082	.041	.011
(0.5 m fall ht.)	50	G	.26	.13	.07	.035	.012	.003
		W	.26	.16	.11	.075	.039	.011
	75	G	.17	.10	.06	.031	.011	.003
		W	.17	.12	.09	.067	.038	.011
Appreciable brush	25	G	.40	.18	.09	.040	.013	.003
or bushes		W	.40	.22	.14	.085	.042	.011
(2 m fall ht.)	50	G	.34	.16	.085	.038	.012	.003
		W	.34	.19	.13	.081	.041	.011
	75	G	.28	.14	.08	.036	.012	.003
		W	.28	.17	.12	.077	.040	.011
Trees but no appre-	25	G	.42	.19	.10	.041	.013	.003
ciable low brush		W	.42	.23	.14	.087	.042	.011
(4 m fall ht.)	50	G	.39	.18	.09	.040	.013	.003
		W	. 39	.21	.14	.085	042	.011
	75	G	.36	.17	.09	.039	.012	.003
		W	.36	.20	.13	.083	.041	.011

 $\frac{1}{All}$ values shown assume: (1) random distribution of mulch or vegetation, and (2) mulch of appreciable depth where it exists. Idle land refers to land with undisturbed profiles for at least a period of three consecutive years. Also to be used for burned forest land and forest land that has been harvested less than three years ago. $\frac{2}{\text{Average fall height of waterdrops from canopy to soil surface: m = meters.}$

 $\frac{3}{2}$ Portion of total-area surface that would be hidden from view by canopy in a vertical projection, (a bird's-eye view).

 $\frac{4}{G}$: Cover at surface is grass, grasslike plants, decaying compacted duff, or litter at least 2 inches deep.

W:Cover at surface is mostly broadleaf herbaceous plants (as weeds with little lateral-root network near the surface), and/or undecayed residue.

FIGURES

• Figure 1. Average Annual Rainfall-Runoff Erosivity Factor (R) Isoerodent Map (from Renard et al., 1997)

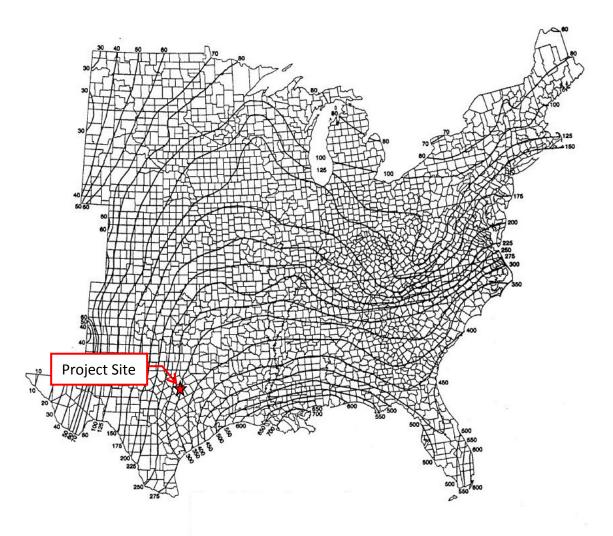


Figure 1. Average Annual Rainfall-Runoff Erosivity Factor (R) Isoerodent Map (from Renard et al., 1997)