Sandy Creek Energy Station Coal Combustion Residual Waste Management Facility Registration Application TCEQ Registration No. _____ McLennan County, Texas

Volume 2 of 2

Prepared for Sandy Creek Services, LLC 2161 Rattlesnake Road Riesel, Texas 76682

SCS Project No. 162210590.00 | Revision 0 – January 2022

1901 Central Drive, Suite 550 Bedford, Texas 76021 817.571.2288 Sandy Creek Energy Station Coal Combustion Residual Waste Management Facility Registration Application TCEQ Registration No. _____ McLennan County, Texas

Table of Contents

<u>Volume 1 of 2</u>

PART I - General Registration Application Requirements

- Appendix I.A Application Forms
- Appendix I.B General Layout Drawings
- Appendix I.C Legal Authority

PART II - Location Restriction Demonstration

Appendix II.A	Cell 3 Compliance Demonstration and Notification Letter
Appendix II.B1	Unstable Areas Compliance Demonstration for Cells 1 and 2
Appendix II.B2	Geologic Cross-Section Location Plan, Geologic Cross Sections, and Boring Logs
Appendix II.B3	Settlement Calculations
Appendix II.C	Protected Species Habitat Assessment

PART III - Fugitive Dust Control Plan

Appendix III.A 2020 Annual Fugitive Dust Control Report

PART IV - Landfill Criteria and Design Drawings

- Appendix IV.A Leachate Collection and Removal System Plan
- Appendix IV.B Liner Construction Quality Assurance Plan
- Appendix IV.C Run-on and Run-off Control Plan

Volume 2 of 2

PART V - Site Operation Plan

Appendix V.A	Weekly Inspections Form
Appendix V.B	Annual Inspection Form
Appendix V.C	2020 Annual Inspection Report

PART VI - Groundwater Monitoring and Correction Action Plan

- Appendix VI.A Groundwater Monitoring Sampling and Analysis Program
- Appendix VI.B Geology and Groundwater Supplemental Information
- Appendix VI.C Historical Groundwater Reports and Data

PART VII - Closure and Post-Closure Care Plan

<u>Part VIII – Post-Closure Care Cost Estimate and Financial</u> <u>Assurance</u>

Appendix VIII.A	Post-Closure Care Cost Estimates Calculations
Appendix VIII.B	Financial Assurance Mechanism

SANDY CREEK ENERGY STATION COAL COMBUSTION RESIDUAL WASTE MANAGEMENT FACILITY REGISTRATION APPLICATION TCEQ REGISTRATION NO. -----McLENNAN COUNTY, TEXAS

PART V SITE OPERATING PLAN

Prepared for:

SANDY CREEK SERVICES, LLC 2161 Rattlesnake Road Riesel, Texas 76682

Prepared by:

SCS ENGINEERS

Texas Board of Professional Engineers, Reg. No. F-3407 Dallas/Fort Worth Office 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

> Revision 0 – January 2022 SCS Project No. 16221059.00

TABLE OF CONTENTS

SECTION

<u>PAGE</u>

LIST C	OF ACRO	NYMS	iv
1	INTROD	UCTION	1-1
2	OPERAT	IONAL PROCEDURES	2-1
	2.1	ACCESS CONTROL	2-1
	2.2	WASTE STREAMS ACCEPTED	2-2
	2.3	UNLOADING WASTES	2-2
	2.4	LANDFILL OPERATION HOURS	2-3
	2.5	AIR QUALITY CONTROL	2-3
	2.6	SOIL MANAGEMENT: PLACEMENT OF INTERMEDIATE AND FINAL COVER	2-4
	2.7	PREVENTION OF PONDED WATER	2-6
	2.8	STORMWATER AND CONTACT WATER MANAGEMENT	2-6
	2.9	GROUNDWATER MONITORING	2-8
3	INSPEC	IION PROCEDURES	3-1
4	RECORE	DKEEPING, NOTIFICATION, AND POSTING OF INFORMATION TO THE INTERNET.	4-1
	4.1	RECORDKEEPING REQUIREMENTS (§352.1301)	4-1
	4.2	NOTIFICATION REQUIREMENTS (§352.1311)	4-2
	4.3	PUBLICLY ACCESSIBLE INTERNET SITE REQUIREMENTS (§352.1321)	4-2

<u>Tables</u>

- 3.1 Site Inspection and Maintenance Schedule
- 4.1 Recordkeeping Requirements

Appendices

- V.A Weekly Inspection Checklist
- V.B Annual Inspection Checklist
- V.C 2020 Annual Inspection Report

SCS Engineers TBPE Reg. # F-3407

LIST OF ACRONYMS

AASHTO - American Association of State Highway and Transportation Officials ANSI - American National Standards Institute ASTM - American Society for Testing and Materials CCR - Coal Combustion Residuals CDR - Chemical Data Reporting CFR - Code of Federal Regulations DOT - Department of Transportation EPA - U.S. Environmental Protection Agency FWS - U.S. Fish and Wildlife Service GWSAP - Ground Sampling and Analysis Plan HAP - Hazardous Air Pollutant LCRS - leachate Collection and Removal System Landfill - CCR Waste Management Facility MSDS - Material Safety Data Sheets MSL - mean sea level NIOSH - National Institute for Occupational Safety and Health NOR - Notice of Registration NRR - Noise Reduction Rating Operator - Sandy Creek Services, LLCOwner - Sandy Creek Services, LLC OSHA - Occupational Safety and Health Administration PAC - Powdered Activated Carbon Plant - Sandy Creek Energy Station PRB - Powder River Basin PSD - Prevention of Significant Deterioration RCRA - Resource Conservation and Recovery Act SCR - Selective Catalytic Reduction SDA - Spray Dry Absorber SDS - Safety Data Sheet SHSP - Site Health and Safety Plan SPCC - Spill Prevention, Control, and Countermeasure Plan SOP - Site Operating Plan SWPPP - Storm Water Pollution Prevention Plan TAC - Texas Administrative Code TCEQ - Texas Commission on Environmental Quality **TPDES - Texas Pollution Discharge Elimination System** TRI - Toxic Release Inventory TSCA - Toxic Substances Control Act TxDOT - Texas Department of Transportation

WWTP - Wastewater treatment plant

1 INTRODUCTION

This Site Operating Plan (SOP) has been prepared for the prepared for Sandy Creek Services, LLC (Owner and Operator) of the Sandy Creek Energy Station (Plant) Coal Combustion Residual Waste Management Facility (Landfill), located in McLennan County. The SOP has been prepared consistent with Title 30 of the Texas Administrative Code (30 TAC), Chapter 352, Subchapter G and relevant provisions of Title 40 of the Code of Federal Regulations (40 CFR), Part 257, Subpart D adopted by reference.

The purpose of this SOP is to provide general guidance to the Landfill Owner/Operator for the day-to-day operation of the Landfill . This document also provides an operating guide for the Landfill Owner/Operator to maintain the Landfill in compliance with the engineering design and applicable regulatory requirements of the Texas Commission on Environmental Quality (TCEQ). This document may also serves as a reference source and assist in personnel training. This SOP, the registration and Registration Application will be retained on site throughout the Landfill's operating life.

The Landfill and associated support facilities are located on the southwest corner of the Plant property boundary. As currently designed, the Landfill is one unit (Unit 002) that will ultimately occupy approximately 40.7 acres and consist of three cells referred to as Cells 1 to 3 (Drawing I.B-4). Cells 1 and 2 are existing active cells that were constructed in 2010 and 2014, respectively, with ongoing waste placement operations. A portion of Cell 3 (inclusive of Subcells 3A through 3D encompassing approximately 10.3 acres) was constructed in 2021 prior to and during the time of preparing this SOP. Future subcells within Cell 3 will be constructed and operated consistent with this SOP. The approximate areas of Cells 1, 2, and 3 are 8.1, 15.6, and 17.0 acres, respectively. Other facilities associated with the Landfill include a stormwater pond and associated ditches and culverts, a leachate evaporation pond and associated piping, and the Landfill equipment maintenance building.

The primary wastes disposed of in the Landfill are fly ash and bottom ash generated during the coal combustion process at the Plant. Additionally, other Class 2 and Class 3 waste generated at the facility are disposed of at the Landfill.

2 OPERATIONAL PROCEDURES

2.1 ACCESS CONTROL

Security measures in place at the Landfill are designed to prevent unauthorized persons from entering the site, to protect the Landfill and its equipment from possible damage caused by trespassers, and to prevent disruption of Landfill operations caused any unauthorized site entry. The Plant is secured by a chain-link fence along the perimeter. The Landfill is accessed from Farm-to-Market [FM] 1860 via Rattlesnake Road, through a gated entrance located west of the Plant (Drawing I.B-4). Entrance through this gate is restricted at the guardhouse, where a gate attendant controls access and monitors vehicles entering and exiting the site during regular business hours. After business hours, entrance through this gate is controlled by Plant personnel. A gate, located south of Cell 2, normally remains locked but may be utilized to access the Landfill, as needed, by the Landfill Owner/Operator, visitors and/or contractors authorized for entry by the Landfill Owner/Operator. Other gates may be installed in the future, which will be accessible to authorized persons only.

2.1.1 Traffic Control and Access Roads

The Landfill is accessed via a road from the Plant to the Landfill perimeter road (Drawing I.B-4). The perimeter Landfill road is an all-weather road that is capable of supporting loads from vehicles accessing the Landfill. Temporary haul roads may be constructed as needed to access the Landfill and active working face. The perimeter road and temporary internal haul roads may be constructed of crushed stone, concrete rubble, masonry demolition debris, gravel, caliche, concrete paving, asphalt paving, or other suitable material and provide access from the Plant to the active Landfill area(s). Temporary internal access roads within the Landfill disposal areas (lined areas) may be constructed of CCR waste materials or other all-weather materials described above.

Roads used to transport waste materials from the Plant to the Landfill will be inspected for waste spilled en route to the Landfill on a daily basis with any spillage and removed if discovered prior to the end of the operation day. The access roads extending from the asphalt surface roads at the Plant to the Landfill area and the access roads (perimeter and internal haul roads) within the Landfill Registration Boundary are maintained by the Landfill Owner/Operator. The perimeter road and interior haul roads are maintained in an all-weather condition to drain freely and kept free of excessive ruts and potholes, as described in Section 3 of this SOP. Access road maintenance includes adding gravel (or other acceptable road construction material), grading, cleaning, and other actions required to provide continuous access during wet and dry weather conditions. The frequency of road regrading is on an as-needed basis, and is dependent on the inspections and if depressions, ruts, potholes, or soft spots of sufficient severity are detected.

Landfill Owner/Operator will maintain a sign adjacent to the Landfill near the intersection of the access road from the main power plant area to the Landfill and the Landfill perimeter road. The sign will be readable from the access road and at a minimum, will state the following:

"COAL COMBUSTION RESIDUAL WASTE MANAGEMENT FACILITY TCEQ REGISTRATION NO. 88448 APPROVED WASTES ONLY"

2.2 WASTE STREAMS ACCEPTED

The primary wastes streams disposed in the Landfill are fly ash and bottom ash generated during the coal combustion process at the Plant. Other Class 2 and Class 3 nonhazardous industrial waste generated at the Plant will be disposed of at the Landfill. As of the writing of this SOP, the following wastes may be disposed of in the Landfill:

- Fly ash (Texas waste code: 00713032);
- Bottom ash (Texas waste code: 00703032);
- Filter cake from the water treatment building (Texas waste code: 00093192);
- Spent SCR catalyst (Texas waste code: 00523932);
- Class 2 spent demineralizer resin (Texas waste code: 00564032);
- Cooling tower sediments and cooling water screenings (Texas waste code: 00731142);
- Spent resin (Texas waste code: 00574032);
- Ancillary wastes, including coal mill rejects, waste coal, cooling tower sediments, cooling water screenings, sump pit sediments, nonhazardous sand-blast media, fire brick and refractory materials, sediments from the dredging of Plant's stormwater ditches and Plant's TPDES units, and construction debris, as described in a January 29, 2004 notification letter from the Owner to the TCEQ.

The general process diagram for waste generation at the Plant is shown on Part I, Appendix I.B, Drawing I.B-5 The Landfill Owner/Operator will obtain waste classification (including description, character, waste code, and analytical testing) prior to disposal of waste within the Landfill and following a process change that results in the generation of waste that changes the waste classification.

Under Toxic Substances Control Act (TSCA), fly ash and bottom ash generated at the Plant are considered chemical byproducts of the coal combustion process. Fly ash and bottom ash may be beneficially used for commercial purposes and are subject to the Chemical Data Reporting (CDR) requirements of TSCA (40 CFR §711). The fly ash and bottom ash are not subject to the CDR requirements if it is used by public or private organizations for enriching soil (40 CFR §720.30 (g)). As part of the Owner's TSCA report, the Landfill Owner/Operator tracks the beneficial reuse of fly ash and bottom ash generated at the site. These records will be maintained in the Site Operating Record for the Landfill consistent with Section 4 of this SOP.

2.3 UNLOADING WASTES

Dump trucks (on or off-road), roll-off containers, or similar waste hauling equipment (referred herein as "Hauling Equipment") will be used to haul waste material from the Plant or other locations within the Plant property boundary to the Landfill for disposal. Dump trucks hauling ash

from the Plant to the Landfill have tailgates to prevent spillage of waste along haul roads. Hauling Equipment will be loaded to prevent waste spills over the sidewalls of the equipment or in such a way that waste accumulates on the wheel wells or bumpers. If waste is too wet prior to placement, the Landfill Owner/Operator will spread it out at the working face to dry before incorporating into normal disposal operations. Compaction of incoming waste provides more efficient use of available space and reduces the amount of settling after disposal of waste in the Landfill. The incoming waste is spread in layers and compacted by a Landfill compactor or similar equipment. Adequate compaction is accomplished to minimize future consolidation and settlement and provide for a proper foundation for application of intermediate and final cover.

Dust control during waste placement within the Landfill will be conducted in accordance with Section 2.5 of this SOP.

Heavy Equipment will not be used on any portion of the liner or leachate collection and removal system (LCRS) until at least three (3) feet of soil or select waste (bottom ash) is placed between Hauling Equipment and LCRS piping or liner geosynthetics.

In accordance with the Plant's air permit (TCEQ Permit No. 70861, Special Condition 25), the maximum working face size (active area) will not exceed one (1) acre and the maximum area of exposed waste will not exceed five (5) acres total. Inactive areas will be covered with intermediate cover (12-inch soil layer or alternate intermediate cover) to limit dust emissions consistent with the Fugitive Dust Control Plan (see Part III).

2.4 LANDFILL OPERATION HOURS

The hours of operation for the Landfill typically conforms to waste production and other Landfill activities. Normal hours of operation are 7 AM to 4 PM, Monday through Friday. The Landfill Owner/Operator may perform Landfill operations 24 hours per day, 7 days per week, or as needed, to accommodate ash unloading from the Plant and waste disposal at the Landfill.

2.5 FUGITIVE DUST CONTROL

The Landfill and associated ancillary facilities will be operated under a Fugitive Dust Control Plan (see Part III) that complies with 40 CFR §257.80, 30 TAC §352.801, and the Plant's air permit (TCEQ Permit No. 70861, Special Condition 25). The purpose of the plan is to present measures to be implemented at the Landfill to effectively minimize waste from becoming airborne during waste management activities.

Fugitive dust will be controlled on the onsite access roads or exposed waste areas and during waste placement by the periodic spraying from a water truck or other appropriate equipment as-needed during periods of significantly dry weather. Dust controls will be implemented by the Landfill Owner/Operator, as needed, to prevent dust from becoming a nuisance to surrounding areas. Care will be taken to utilize only the minimum amount of water needed for dust suppression within the lined area of the Landfill to avoid saturating the waste.

Water for dust control within the active area of the Landfill (i.e., within the lined area without intermediate cover) is pumped by the Landfill Owner/Operator from the leachate evaporation pond

as needed. If there is insufficient water available in the leachate evaporation pond, a water truck or other appropriate equipment may be filled with Plant service water, raw water, cooling tower blowdown, or onsite stormwater pond, and used for dust control within the active area of the Landfill.

Water for dust control for areas outside the lined area of the Landfill or areas of the Landfill within in-place intermediate cover will not be obtained from the leachate evaporation pond, but from the water service line located at the Landfill equipment maintenance building, cooling tower blowdown, or onsite stormwater pond.

2.6 SOIL MANAGEMENT: PLACEMENT OF INTERMEDIATE AND FINAL COVER

2.6.1 Intermediate Cover

To minimize the generation of contact water (water that has come in contact with waste or leachate), the Landfill Owner/Operator places intermediate cover (12-inch thick soil layer or approved alternate intermediate cover) over areas in the Landfill as needed to maintain compliance with the Plant's air permit and Fugitive Dust Control Plan. Consistent with the air permit, the exposed waste area will be limited to 5 acres or less to minimize the generation of contact water and leachate, and minimize discharge to the leachate evaporation pond during periods of wet weather. In the event areas with intermediate soil cover become active, the Landfill Owner/Operator may strip off the cover prior to placement of additional waste. The top 6 inches of intermediate soil cover will be capable of sustaining vegetation and will be seeded or sodded by the Landfill Owner/Operator following installation. Lime precipitate or lime grit generated at the Plant may be beneficially used as a soil amendment to promote vegetation growth on intermediate cover.

Inactive areas of the Landfill with intermediate cover are graded and maintained to prevent ponding consistent with Section 2.7 of this SOP. Runoff from areas that have intact intermediate cover are not considered as having come into contact with waste or leachate (i.e., considered non-contact water) and is directed to the stormwater pond.

Posi-shell (or similar material) may be used by the Landfill Owner/Operator as an alternative to the 12-inch thick intermediate cover soil layer. The Posi-shell will be applied with an initial thickness of 1/4-inch to 3/8-inch and touched up if waste/soil becomes visible during weekly inspections, consistent with the manufacturer's recommendations, to maintain compliance with the air permit and Fugitive Dust Control Plan, and to minimize contact water.

The Landfill Owner/Operator inspects soil intermediate cover, or approved alternative intermediate cover, weekly and annually for erosion, ponded water, seeps, protruding waste, or other detrimental conditions that may cause contaminated runoff as described in Section 3. Erosion gullies or washed-out areas are repaired as described in Section 2.6.3.

2.6.2 Final Cover

Consistent with the Final Closure and Post-Closure Care Plan, final cover will be placed in a manner compatible with ongoing fill activities and Landfill development. Surface water will be

managed throughout the active life of the Landfill to minimize infiltration into the filled areas and to minimize contact with waste materials. Erosion of final cover will be repaired by restoring the cover material, grading, compacting, and seeding, as necessary. Monthly inspections and restorations will be implemented during the entire active and post-closure period. Post-closure care inspection procedures are outlined in the Final Closure and Post-Closure Care Plan and Section 3 of this SOP. Refer to Table 3.1 of this SOP for a site inspection and maintenance schedule.

Final cover placement over completed portions of the site will consist of the following steps:

- Survey controls will be implemented during waste placement to control the filling of waste to the bottom of intermediate cover layer elevations.
- No later than the date of closure initiation, a notice of intent to close the Landfill or portion thereof will be prepared, submitted to the TCEQ, and placed in the Site Operating Record. The notification will include a certification by a qualified professional engineer that the design of the final cover system meets the requirements of §257.102(d)(3).
- The final cover system layers will be constructed at the appropriate time following placement of the final lift of waste. Installation and testing of the various components of the final cover system will be performed in accordance with Section 3.3 of this Plan.
- A Final Cover System Evaluation Report (FCSER) will be prepared by an independent registered professional engineer, as described in Section 3.4, which will include a closure completion certification. This FCSER will be submitted for TCEQ approval, certifying that the final cover has been constructed in accordance with this Plan and requirements of §257.102(d).
- The FCSER, including closure completion certification, will be placed in the Site Operating Record, and the notification placed on the Landfill's publicly accessible website in accordance with Section 4 of the SOP, and the inspection checklist will be updated to reflect final cover placement.
- Prior to closure completion certification approval by the TCEQ, a financial assurance mechanism must be in place consistent with §352.1101(b).
- Following final closure of the Landfill, the following will be completed:
 - Equipment that has come in contact with CCR during active operations or closure activities will be cleaned prior to demobilizing the equipment from the Landfill or placing it into service for post-closure activities.
 - A notation will be recorded on the deed indicating that: (i) the property has been used for CCR disposal; and (ii) the use of the property is restricted under the postclosure care requirements of §257.104(d)(1)(iii). A notification stating that the notation has been recorded in the McLennan County Deed Records will be placed in the Site Operating Record and submitted to the TCEQ.

2.6.3 Erosion of Cover

Intermediate and final cover will be inspected for erosion on a weekly and monthly basis, respectively, and during the annual inspection. Erosion gullies or washed-out areas deep enough to impact the final or intermediate cover will be repaired following detection by restoring the cover material, grading, compacting, and/or seeding or sodding. An eroded area is considered to be deep enough to impact the final or intermediate cover if it exceeds 6 inches in depth as measured perpendicular to the slope.

The date of detection of erosion and date of completion of repairs will be documented in the inspection checklist. Cover inspections will be conducted throughout the operational life of the Landfill and post-closure care period.

2.7 PREVENTION OF PONDED WATER

The prevention of ponding water is necessary to control infiltration of water into the waste. Additionally, ponded water may be a breeding grounds for mosquitos. This ponding water prevention plan will be implemented at the Landfill, and includes, but is not limited to, the following procedures:

Preventative Actions:

- Inspections of the Landfill cover, consistent with Section 3 of this SOP, and following periods of wet weather, to identify potential ponding locations.
- Routine site grading and maintenance to provide drainage and minimize the ponding of water over areas containing waste.

Corrective Actions:

- Should ponding occur, the water will be removed and the depressions filled as needed.
- If the ponded water has come into contact with waste or contact water, it will be handled as contact water in accordance with Section 2.8 of this SOP.

2.8 STORMWATER AND CONTACT WATER MANAGEMENT

2.8.1 Stormwater Management

Surface water is managed in accordance with the Run-on and Run-off Control Plan (see Part IV, Appendix IV.C) throughout the active life of the Landfill to minimize the amount of contact water, which is the stormwater that comes into contact with waste. Surface water that does not come in contact with waste or contact water is managed separately from leachate and contact water. Cells 2 and 3 utilize subcell divider berms to minimize the amount of contact water generated during the operation of the Landfill. Stormwater collected in subcells that have not come in contact with the waste will be discharged as clean water into the stormwater pond.

The Landfill Owner/Operator conducts inspections of the stormwater management system in accordance with Section 3 of this SOP, which will include inspection of the diversion berms, downchutes, perimeter drainage channels, culverts, and stormwater pond. Based on the inspections, maintenance of the stormwater management system may include the following activities:

- Removing excessive sediments: sediments are not allowed to accumulate deeper than 2 ft in the stormwater pond; and
- Repairing eroded areas; gullies are not allowed to develop to a depth of more than 6 inches.

2.8.2 Leachate and Contact Water Management

The Landfill Owner/Operator limits the generation of contact water and leachate through Landfill operating practices. Specifics on the design and operation of the leachate management system are provided in Part IV, Appendix IV.A – Leachate Collection and Removal System Plan of this Registration Application. Leachate that is generated during operations is collected at the bottom of the Landfill and conveyed to the leachate evaporation pond as follows:

- Leachate from Cell 1 is directed to the leachate evaporation pond via a leachate gravity drain pipe;
- Leachate from Cell 2 is pumped from a leachate sump, located at the low end of the cell (Subcell 2A), to the leachate gravity drain pipe and directed to the leachate evaporation pond; and
- Leachate from Cell 3 is pumped from the leachate sump, located at the low end of the cell (Subcell 3A), to a leachate forcemain and directed to the leachate evaporation pond.

Contact water will be contained within the exposed waste areas, including working face, by using temporary containment berms and directed to the leachate collection and removal system, which discharges into the leachate evaporation pond. Site grading of the exposed waste areas will be regularly conducted to provide drainage, promote run-off, and minimize ponding of water over areas containing waste in accordance with the Site Operating Plan. Additionally, at no time will contact water be allowed to discharge into the stormwater management system, offsite into waters of the United States, or onto adjacent properties. Surface water that infiltrates into the underlying waste will be managed as leachate in accordance with Part IV, Appendix IV.A, related to the Leachate Collection and Removal System Plan and this Plan.

The leachate evaporation pond is designed with a maximum operating depth of 6 feet and maximum storage capacity of 6.2 million gallons. This pond is a no-discharge pond, and has a freeboard of 2 feet which will be maintained at all times. The liquid level indicator in the pond is placed in the southeast corner of the pond. If there is no available storage in the leachate evaporation pond, leachate will be used by the Landfill Owner/Operator for dust control within the Landfill consistent with Section 2.5 of this SOP. Otherwise, the excess leachate will be sent

offsite by the Landfill Owner/Operator for disposal at a permitted wastewater treatment facility or other authorized disposal facility.

A groundwater underdrain system is located beneath the leachate pond liner. The underdrain discharges on the south side of the pond. The Landfill Owner/Operator shall keep the outlet clear of obstacles that could impede drainage. Drainage from perched groundwater in the clay soils beneath the pond is expected to be intermittent and minimal.

The Landfill Owner/Operator conducts inspections of the contact water management system, and maintenance activities in accordance with Section 3 of this SOP. Based on the inspections, maintenance of the leachate and contact water management system may include the following activities:

- Verifying that isolation valves in Cells 2 and 3 are open or closed as appropriate and, if closed, not leaking;
- Managing the Landfill in a manner such that 2 ft of freeboard is maintained in the leachate evaporation pond at all times; and
- Verifying that the underdrain outlet for the leachate evaporation pond is not blocked by sediments, vegetation, or debris.

2.9 GROUNDWATER MONITORING

Groundwater monitoring for the facility will be performed in accordance with the Groundwater Monitoring and Corrective Action Plan (see Part VI) and groundwater wells will be inspected in accordance with Section 3 of this SOP. Recordkeeping, notification, and posting of information to the internet for demonstrations, certifications, findings, monitoring, meetings, testing and analytical data related to groundwater monitoring, assessment monitoring, and corrective action will be completed in accordance with Section 4 of this SOP.

3 INSPECTION PROCEDURES

Plant personnel or other qualified person will perform weekly inspections of the Landfill area for appearances of actual or potential structural weakness and other conditions which are disrupting or have the potential to disrupt the operation or safety of the landfill. A weekly inspection checklist is provided in Appendix V.A of the SOP and summarized in Table IV.D of TCEQ Form 20870, which will be used to document weekly inspections of the Landfill. Following completion of weekly inspections, the completed checklist will be placed and maintained in the Site Operating Record in accordance with Section 4 of this SOP.

The Landfill will be inspected once per calendar year by a qualified professional engineer in the state of Texas, who will verify that the design, construction, operation, and maintenance of the Landfill is consistent with recognized and generally accepted good engineering standards. The inspection will include a review of available information regarding the status and condition of the Landfill, including files available in the Site Operating Record, and a visual inspection of the Landfill to identify signs of distress or malfunction of the Landfill. The professional engineer will prepare a report following each inspection that addresses changes in geometry of the structure since the previous annual inspection, the approximate volume of waste contained in the Landfill at the time of the inspection, any appearances of an actual or potential structural weakness of the Landfill, in additional to any existing conditions that are disrupting or have the potential to disrupt the operation and safety of the Landfill, and any other change(s) which may have affected the stability or operation of the Landfill since the previous annual inspection. An annual inspection checklist, is provided in Appendix V.B of the SOP and summarized in Table IV.D of TCEQ Form 20870, which will be used to document annual inspections of the Landfill. Following completion of annual inspection, the completed annual report and checklist will be placed and maintained in the Site Operating Record and Landfill's publicly accessible website in accordance with Section 4 of this SOP.

The checklists have been developed for the weekly and annual inspections required for an active Landfill, and may be revised as needed throughout the life of the Landfill. After final cover has been installed on the Landfill, a new inspection checklist will be developed for post-closure activities.

A site inspection and maintenance schedule is provided in Table 3.1 of this SOP.

Consistent with 30 TAC §352.841(b), the Landfill Owner/Operator will verbally notify the TCEQ within 24 hours and in writing within five (5) days if a deficiency is observed during a weekly or annual inspection that could result in harm to human health, the environment, or has resulted in a release. Additionally, the TCEQ will be notified in writing within 14 days of all other deficiencies following annual inspections that could have the potential to disrupt operation of the Landfill. If a waste release or deficiency is found, the Landfill Owner/Operator will prepare a written corrective action plan to remedy the release or deficiency as soon as feasible consistent with 40 CFR §257.84(b)(5). Notifications and correction action plans will be placed in the Site Operating Record and on the Landfill's publicly accessible website in accordance with Section 4 of this SOP.

Prior to placing waste in a lateral expansion of the Landfill, (1) a certification letter signed by the Responsible Official for the Plant and a licensed professional engineer in the state of Texas, stating

that the expansion has been constructed in compliance with conditions of this registration, , will be submitted to the TCEQ. If within 15 days of submission of the certification letter to the TCEQ, the TCEQ has not notified the Landfill Owner/Operator of their intent to inspect, then it is understood that the TCEQ has waived the opportunity for this inspection and the Landfill Operator can commence disposal in the lateral expansion.

ITEM	TASK	SCHEDULE
Waste Spilled in route to Landfill	Inspect access roads used for waste delivery to the Landfill. Clean up prior to end of operation day.	Daily
Landfill Structure and Slope	Inspect for sloughing, slumping, sliding, surface cracking, sinkholes, excessive slope, toe of slope movement, and vehicle damage. Remedy deficiencies as needed and notify TCEQ as required in Section 3.	Weekly
Landfill Access Roads	Inspect Landfill access roads for damage from vehicle traffic and erosion. Repair onsite access roads, as needed, based on inspections.	Monthly
Intermediate Cover	Inspect for proper placement, thickness, erosion, vegetation, animal burrows, and for presence of waste or other contamination. Remedy deficiencies as needed.	Weekly
Final Cover	Inspect for proper placement, thickness, slope, settlement, vegetation, animal burrows, and erosion. Maintenance will be ongoing throughout post-closure care period. Remedy deficiencies as needed.	Monthly
Dust Emissions	Inspect for fugitive dust at the Landfill and ash silo, and from haul trucks. If found, remedy deficiencies as needed.	Daily
Erosion Control	Inspect the intermediate and final cover for signs of erosion. Damaged areas will be repaired by restoring cover material, grading, compaction, and/or seeding or sodding.	Weekly (Interim), Monthly (Final)
Ponding Water	Inspect Landfill cover for potential ponding water locations. Fill depressions and regrade potential areas as needed.	Weekly
Run-on and Run-off Control Systems (Uncontaminated and Contact Water)	Inspect diversion berms, downchutes, perimeter drainage channels, culverts, detention basin(s) for damage. Remedy deficiencies as needed.	Weekly

Table 3.1 Site Inspection and Maintenance Schedule

Leachate Collection and Removal System	Inspect leachate riser pipes, sump pump/controls, evaporation pond for damage and height of freeboard in the pond. Inspection isolation valves, protective cover, exposed geosynthetics, and leachate evaporation pond underdrain system for damage or blockage, as applicable. Remedy deficiencies as needed.	Weekly Monthly
Groundwater Monitoring System	Inspect groundwater monitoring wells for damage, excess vegetation, and other deficiencies. Remedy deficiencies as needed.	Monthly

Table 3.1(Continued)

4 RECORDKEEPING, NOTIFICATION, AND POSTING OF INFORMATION TO THE INTERNET

4.1 RECORDKEEPING REQUIREMENTS (§352.1301)

The Landfill Owner/Operator will maintain a copy of the registration, approved Registration Application, and any other required plans or documents in the Site Operating Record. These plans and documents are considered a part of the Site Operating Record for the Landfill. The Site Operating Record for the Landfill is maintained onsite in either a hard copy format, within a digital storage system accessible by a computer, or a combination of both.

The Landfill Owner/Operator is responsible for recording and retaining within the Site Operating Record the information listed below:

- All location restriction demonstrations.
- Liner design and construction certifications.
- Fugitive dust control plan and annual reports.
- Initial and subsequent updates to Run-On And Run-Off Control System Plan.
- Weekly and annual inspection reports, and corrective action reports for deficiencies and releases.
- Demonstrations, certifications, findings, monitoring, public meetings, testing, and analytical data related to groundwater monitoring, assessment monitoring, and corrective action.
- Approximate volume of waste disposed in the Landfill for waste disposed onsite.
 - Current issued effective registration; all applications and revisions; registration public notice(s); TCEQ registration; TCEQ compliance summary; other documents regarding and/or summarizing the TCEQ's review of or initial decision on the Registration Application.
- Closure and Post-Closure Care Plan and modifications, closure time extension certification, intention to close and closure and post-closure completion notifications; and closure notation on the deed.
- Other documents as specified by the approved registration or by the TCEQ.

Table 4.1 summarizes the recordkeeping requirements, described above. Unless otherwise specified, the Landfill Owner/Operator will retain all information contained within the Site Operating Record of the Landfill and all plans required for the Landfill for at least five years

following the date of each occurrence, measurement, maintenance, corrective action, report, record, or study. The Landfill Owner/Operator will maintain the Site Operating Record in an organized format, which allows the information to be easily located and retrieved, and upon request, will make the Site Operating Record available for TCEQ inspection.

4.2 NOTIFICATION REQUIREMENTS (§352.1311)

The Landfill Owner/Operator will provide notification to the TCEQ within 30 days, if not otherwise specified, of placing in the Site Operating Record the information detailed in this section and Table 4.1. If the 30-day deadline requirement falls on a weekend or federal holiday, the notification deadline is extended to the next business day.

The Landfill Owner/Operator is responsible for notifying the TCEQ that the information listed below has been placed in the Site Operating Record:

- All location restriction demonstrations.
- Liner design and construction certifications.
- Fugitive duct control plan and annual reports.
- Initial and run-on and run-off control system plan.
- Groundwater monitoring and corrective action report; monitoring system certification; selection of a statistical method certification; assessment monitoring programs, assessment monitoring program establishment, sampling and results, and returning to detection monitoring.
- New waste stream(s) accepted at the Landfill.
- Closure and Post-Closure Care Plan and modifications closure time extension certification, intention to close and closure completion notifications; and closure notation on the deed.
- Changes to the URL for the Landfill's publicly accessible website (notification to the US EPA).
- Notifications of deficiencies during inspections.
- Other documents as directed by the TCEQ.

Table 4.1 summarizes the notification requirements, described above.

4.3 PUBLICLY ACCESSIBLE INTERNET SITE REQUIREMENTS (§352.1321)

The Landfill Owner/Operator is responsible for maintaining a publicly accessible internet site and placing information detailed in this section and Table 4.1 on the website within 30 days, if not

otherwise specified. The information on the website is and will be identifiable and can be immediately printed and downloaded by anyone accessing the site. If any changes are made to the URL, the Landfill Owner/Operator will notify the TCEQ and EPA within 14 days of the change.

The Landfill Owner/Operator is responsible for placing the same information identified in Section 4.2 on a publicly accessible internet site. Unless otherwise specified, the Landfill Owner/Operator retains all information contained within the Landfill's publicly accessible website for at least five (5) years following the date of each occurrence, measurement, maintenance, corrective action, report, record, or study.

Primary Citation	Description	Site Operating Record Deadline (§352.1301)	TCEQ Notification Deadline (§352.1311)	Publicly Accessible Website Deadline (§352.1321)	
§257.60(a) and §352.601	Documentation of compliance with location restrictions: aquifer	Initial registration, and no later than date of initial receipt of waste in any lateral expansion (e.g. Cell 4)	Within 30 days of placing in SOR	Within 30 days of placing in SOR	
§257.61(a) and §352.611	Documentation of compliance with location restrictions: wetland	Initial registration, and no later than date of initial receipt of waste in any lateral expansion (e.g. Cell 4)	Within 30 days of placing in SOR	Within 30 days of placing in SOR	
§256.62(a) and §352.621	Documentation of compliance with location restrictions: damage zone near fault lines	Initial registration, and no later than date of initial receipt of waste in any lateral expansion (e.g. Cell 4)	Within 30 days of placing in SOR	Within 30 days of placing in SOR	
§256.63(a) and §352.631	Documentation of compliance with location restrictions: damage seismic impact zone	Initial registration, and no later than date of initial receipt of waste in any lateral expansion (e.g. Cell 4)	Within 30 days of placing in SOR	Within 30 days of placing in SOR	
§257.64(a) and §352.641	Documentation of compliance with location restrictions: unstable areas	Initial Registration	Within 30 days of placing in SOR	Within 30 days of placing in SOR	
§257.70(e) and §352.701	Liner Design Certification	60 days prior to construction of any lateral expansion (e.g. Cell 4)	60 days prior to construction of any lateral expansion (e.g. Cell 4)	60 days prior to construction of any lateral expansion (e.g. Cell 4)	
§257.70(f) and §352.701	Liner Construction Certification	No later than date of initial receipt of waste in any new waste unit	15 days prior to the initial receipt of waste in any new unit	No later than date of initial receipt of waste in any new waste unit	
§257.80(b) and §352.801	Fugitive Dust Control Plan	Initial Registration and any subsequent amendment	Within 30 days of placing in SOR	Within 30 days of placing in SOR	
§257.80(c) and §352.801	Fugitive Dust Control Plan Annual Report	Initial annual report is due no later than 14 months after placing the initial CCR fugitive dust control plan. Subsequent reports are due 1 year after previous report completion	Within 30 days of placing in SOR	Within 30 days of placing in SOR	
§257.81(c) and §352.811	Initial and Periodic run-on and run-off control system plan	Initial Registration, and every 5 years after initial plan	Within 30 days of placing in SOR	Within 30 days of placing in SOR	
§257.84(a) and §352.841	Weekly inspection reports	Weekly throughout the life of the Landfill	N/A	N/A	
§257.84(b) and §352.841	Annual Inspections Report	Initial Registration and 1 year after previous report completion	Within 30 days of placing in SOR	Within 30 days of placing in SOR	
§257.84(b)(5) and §352.841(b)	Documentation of corrective measures for deficiency or release (based on annual report)	As soon as feasible	Verbally within 24 hours and in writing within 5 days for deficiencies that could result in harm to human health, the environment, or has resulted in a release. 14 days for all other deficiencies.	Within 30 days of placing in SOR	
§257.90(e) and §352.901	Annual groundwater monitoring and corrective action report	Initial Registration, and Annual Report due 1 year after previous report completion	Within 30 days of placing in SOR	Within 30 days of placing in SOR	
§257.91(e)(1) and §352.911	Documentation of design, installation, development, and decommissioning of GW Wells	Initial Registration and any subsequent amendment	Within 30 days of placing in SOR	Within 30 days of placing in SOR	
§257.91(f) and §352.911	Groundwater Monitoring System certification	Initial Registration and any subsequent amendment	Within 30 days of placing in SOR	Within 30 days of placing in SOR	
§257.93(f) and §352.931	Certification of selected statistical method for evaluating GW monitoring data	Initial Registration and any subsequent amendment	Within 30 days of placing in SOR	Within 30 days of placing in SOR	
§257.94(e)(3) and §352.941	GW Assessment Monitoring Program establishment notification	30 days after plan establishment	Within 30 days of placing in SOR	Within 30 days of placing in SOR	
§257.95(d)(1) and §352.951	GW Assessment monitoring program sampling and results	90 days after results, and on at least semiannual basis thereafter	Within 30 days of placing in SOR	Within 30 days of placing in SOR	

Table 4.1 Recordkeeping, Notification, and Posting of Information to the Internet Requirements

(Continued)
(Continued)

Primary Citation	Description	Site Operating Record Deadline (§257.105 and §352.1301)	TCEQ Notification Deadline (§257.106 and §352.1311)	Publicly Accessible Website Deadline (§257.107 and §352.1321)
§257.95(g) and §352.951(e)	Notification of GW constituent(s) being above protection standards	30 days after detection	Within 30 days of placing in SOR	Within 30 days of placing in SOR
§257.96(d) and §352.961	Assessment of GW corrective measures	90 days after detection	Within 30 days of placing in SOR	Within 30 days of placing in SOR
§257.96(e) and §352.961(c)	Documentation recording public meeting for GW corrective measures assessment	After meeting	Within 30 days of placing in SOR	Within 30 days of placing in SOR
§257.97(a) and §352.971	Progress reports (Semiannually) for selecting and design remedy for GW corrective action	6 months after selection and design completion	Within 30 days of placing in SOR	Within 30 days of placing in SOR
§257.98(e) and §352.981	Notification and certification of GW remedy completion	30 days after of completion	Within 30 days of placing in SOR	Within 30 days of placing in SOR
§257.102(b) and §352.1221	Closure Plan	Initial Registration and any subsequent modification	Within 30 days of placing in SOR	Within 30 days of placing in SOR
§257.102(f)(2) and §352.1221	Closure time extension certification	After 30 days of certification	Within 30 days of placing in SOR	Within 30 days of placing in SOR
§257.102(g) and §352.1221	Initial of closure notification	After 30 days of notification	Within 30 days of placing in SOR	Within 30 days of placing in SOR
§257.102(h) and §352.1221	Closure completion notification	After 30 days of notification	Within 30 days of placing in SOR	Within 30 days of placing in SOR
§257.102(i) and §352.1221	Closure notation on the deed	After 30 days of completion	Within 30 days of placing in SOR	Within 30 days of placing in SOR
§257.104(d) and §352.1241	Post-Closure Plan	Initial Registration and any subsequent modification	Within 30 days of placing in SOR	Within 30 days of placing in SOR
\$257.104(e) and \$352.1241	Post-closure care completion notification	After 30 days of notification	Within 30 days of placing in SOR	Within 30 days of placing in SOR
§335.9(a)	Records of waste disposed onsite or sent offsite	Texas waste code will be recorded prior to disposal in the Landfill, volume of waste disposed in the Landfill will be conducted during the annual inspection in accordance with Section 3 of the SOP, and information for waste sent offsite will be recorded following removal from site.	Prior to disposal of new waste stream(s) in the Landfill	N/A
§257.105(h) and §352.1301(b)	Groundwater monitoring and associated groundwater surface elevations	30 days after of completion ¹	N/A	N/A
§352.1321(c)	Post issued effective registration; all applications and revisions; registration public notice(s); TCEQ draft registration; TCEQ compliance summary; other documents regarding and/or summarizing the TCEQ's review of or initial decision on the Registration Application on publicly accessible website	Initial Registration and any subsequent modification	Within 30 days of placing in SOR ¹	Within 30 days of placing in SOR
§257.95(g) and §352.951(e)	Notification of GW constituent(s) being above protection standards	30 days after detection	Within 30 days of placing in SOR	Within 30 days of placing in SOR
§257.96(d) and §352.961	Assessment of GW corrective measures	90 days after detection	Within 30 days of placing in SOR	Within 30 days of placing in SOR

Notes:

1. Document will be kept in the SOR for the life of site.

APPENDIX V.A

WEEKLY INSPECTION CHECKLIST

Sandy Creek Energy Station

Coal Combustion Residual Waste Management Facility Weekly Inspection Checklist 40 CFR §257.84(a) - Requires inspections once every 7 days by a qualified person.

Date and Time of Inspection:

Inspector's Name:

Weather Summary at time of Inspection:

Precipitation for the previous 7 days:

Slum	ghing, 1ping, ding	Surface Cracking			sively Slope		f Slope ving		equate baction
Yes	No	Yes	No	Yes	No	Yes	No	Yes	No
						Vehicle Damage			
Vege	ropriate etative owth		imal rows		sion nage	_			
Vege	etative					_			

<u>1. Landfill Structure and Slope</u>

Additional Observations:

2. Landfill Cover

Qualifier		nediate Cover	Final Soil Cover		Bottom Ash Cover		Alternative Cover	
	Yes	No	Yes	No	Yes	No	Yes	No
Installed								
Erosion								
Location								

Additional Observations:

3A. Run-on and Run-off Control System

Uncontaminated Surface Water Management System

Qualifier	Diversion Berms		Downchutes		Perimeter Drainage Channels		Culverts		Dete Bas	
	Yes	No	Yes	No	Yes	No	Yes No		Yes	No
Inspection										
Damage										
Туре										
Location										

Additional Observations:

3B. Run-on and Run-off Control System

Oualifier Berms Perimeter Sepa	nage at aration erm No	Cul Yes	lvert No		ing of et Water No	Relea Contac Yes	ase of t Water No
	No	Yes	No	Yes	No	Ves	No
Inspection		105	110	103	INU	105	110
Inspection							
Damage							
Туре	-		-		-		
Location							

Additional Observations:

4. Exposed Liner and Leachate Collection and Removal System

Qualifier	Sacr	ell Berm ificial astic			Su	chate mp Controls		nate Evaj	poration Pond
	Yes	No	Yes	No	Yes	No	Yes	No	Freeboard (ft)
Inspection									
Damage									NA
Туре									NA
Location									NA

5. Fugitive Dust

Lar	ndfill	Haul	Trucks	Ash	Silo
Yes	No	Yes	No	Yes	No

Additional Observations:

<u>6. Exposed Liner, Leachate Collection and Removal System, and Access Roads (monthly)</u> Previous Inspection Date:

V.A-3

Qualifier	LCRS	LCRS Valves		ective ver	Exp Geosyr	osed nthetics	Access	s Roads
	Yes	No	Yes	No	Yes	No	Yes	No
Inspection								
Damage								
Туре								
Location								

Additional Observations:

7. Leachate Evaporation Pond Underdrain System (monthly)

Previous Inspection Date:

ſ	Sedi	ment	Vege	etation	De	bris	Water	Flow
I	Yes	No	Yes	No	Yes	No	Yes	No

Additional Observations:

8. Groundwater Monitoring System (monthly)

Previous Inspection Date:

Dat	2000	Ex	cess	Look W	Lock Working		Lock Working Functional		Inse	cts in	Housing Paint		La	bel
Dal	mage	Vege	etation	LOCK W	orking	Funct	tional	Hou	ising	Pee	ling	Adec	quate	
Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	

Additional Observations:

Additional Comments/Observations/Recommendations:

Improvements completed since last weekly inspection:

Improvements that still need to be completed:

Inspector Signature

Date

Supervisor Signature

Date

APPENDIX V.B

ANNUAL INSPECTION CHECKLIST

Sandy Creek Energy Station

Coal Combustion Residual Waste Management Facility Annual Inspection Checklist 40 CFR §257.84(b) - Requires inspections on an annual basis by a Qualified Professional Engineer

40 CFR §257.84(b) - Requires inspections on an annual basis by a Qualified Professional.

Date and Time of Inspection: Professional Engineer's Name:

Weather Summary at time of Inspection:

2 1

Precipitation for the previous 7 days:

<u>1. Landfill Structure and Slope</u>

Slun	ghing, 1ping, ding	Surface	Cracking	Excessiv	e Slope		f Slope ving		equate baction
Yes	No	Yes	Yes No Yes No Ye		Yes	No	Yes	No	
Inapp	ropriate	Animal Burrows							
Vege	etative owth	Anima	Burrows	Erosion I	Damage	Vehicle	Damage		
Vege	etative	Anima Yes	Burrows	Erosion I Yes	Damage No	Vehicle Yes	Damage		

Additional Observations:

		<u>2. Landfill Cover</u>										
Qualifier		diate Soil over	Final Soi	il Cover		m Ash over		native ver				
	Yes	No	Yes	No	Yes	No	Yes	No				
Installed												
Erosion												
Location				•								

Additional Observations:

<u>3A. Run-on and Run-off Control System</u> Uncontaminated Surface Water Management System

Qualifier	Diversion Berms		Downe	chutes	Dra	meter inage nnels	Cul	verts	Detention Basins	
	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No
Inspection										
Damage										
Туре				-						
Location										

Additional Observations:

3B. Run-on and Run-off Control System

Contact Water Management System

Qualifier	Diversion Berms		Draina Perimete	-		nage at ion Berm	Cul	vert			Release of Contact Water	
	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No
Inspection												
Damage												
Туре				-								
Location												

Additional Observations:

4. Exposed Liner and Leachate Collection and Removal System

Qualifier		ell Berm vial Plastic	LCRS Pip			ite Sump Controls	Leacl	Leachate Evaporation	
	Yes	No	Yes	No	Yes	No	Yes	No	Freeboard (ft)
Inspection									
Damage									
Туре									
Location									

Qualifier	LCRS I	LCRS Ball Valve		ctive ver	Exp Geosy	Exposed Geosynthetics		
	Yes	No	Yes	No	Yes	No		
Inspection								
Damage								
Туре								
Location								

Additional Observations:

5	Fn	gitive	Dust
J.	T U	ZILIVE	Dusi

Lar	ndfill	Haul	Trucks	Ash Silo		
Yes	No	Yes	No	Yes	No	

Additional Observations:

6. Leachate Evaporation Pond Underdrain System

Sediment		Veg	etation	Deb	oris	Water Flow		
Yes	No	Yes No		Yes	No	Yes	No	

Additional Observations:

	7. Groundwater Monitoring System												
Dar	nage	Excess Vegetation		Lock Working			ing Lid tional	Insects in Housing		Housing Paint Peeling		Label Adequate	
Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No
Additio	nal Obse	rvations:											

8. Document Review

Description	Yes	No
Weekly Inspection Checklists Reviewed:		
All Weekly Inspections Completed:		
Site Operating Record Reviewed:		
All necessary documents maintained in Site Operating Record:		
(see attached Site Operating Record Checklist)		

Additional Observations:

Additional Comments/Observations/Recommendations:

Professional Engineer's Signature and Seal

Date

APPENDIX V.C

2020 ANNUAL INSPECTION REPORT

SCS ENGINEERS

January 13, 2021 SCS Project No. 16220101.00

Mr. Darryl Sparks Compliance Manager NAES Corporation 2161 Rattlesnake Road Riesel, Texas 76682

Subject: Sandy Creek Energy Station Coal Combustion Residual (CCR) Landfill 2020 Annual Inspection Report per 40 CFR §257.84(b)(2)

Dear Mr. Sparks:

SCS Engineers (SCS) is pleased to provide this 2020 annual inspection report for compliance Title 40, Code of Federal Regulation (CFR) §257.84(b)(2), related to the annual inspection of a coal combustion residual (CCR) landfill by a qualified engineer. The CCR landfill is located on the Sandy Creek Energy Station (facility) property at 2161 Rattlesnake Road, Riesel, Texas 76682, and is registered with the Texas Commission on Environmental Quality (TCEQ) under Registration No. 88448.

BACKGROUND

The CCR landfill is classified as an existing landfill as defined under §257.53, which was constructed and commenced operation prior to October 14, 2015. The landfill is currently comprised of two CCR disposal cells, Cells 1 and 2, which commenced receiving waste in early 2013 and October 2014, respectively. The approximate area of Cells 1 and 2 are 10.0 and 14.3 acres, respectively.

The primary wastes disposed of in the landfill are dry scrubber ash and bottom ash generated during the facility's coal combustion process. Incidental waste generated during the facility's operation may also be disposed of in the landfill, as described in the initial registration notification to TCEQ and the most recent version of the facility's Operations Plan.

ANNUAL INSPECTION [§257.84(B)(1)]

An annual inspection of the landfill was performed on December 30, 2020, by Brett DeVries, Ph.D., P.E., a Professional Engineer registered in the State of Texas. An annual inspection checklist prepared during the inspection is attached to this report. At the time of the inspection, the facility was operational, and the landfill was receiving waste.

Although the items described below and on the attached checklist were observed during the inspection, there were no existing conditions or changes from the previous annual inspection that appeared to have the potential to disrupt the operation, safety, or stability of the landfill [\S 257.84(b)(2)(iv)]. Additionally, during the inspection, no appearance of actual or potential structural weakness was observed [\S 257.84(b)(2)(iv)].

Sent via email

Mr. Darryl Sparks January 13, 2021 Page 2

During the inspection, as noted in the attached checklist, the following items were observed:

- One (center) of three culverts located at the west side entrance of the stormwater pond (i.e., discharge of perimeter channel into the pond) is blocked and unable to transmit uncontaminated surface water. Based on discussion with operation personnel, this does not result in the ponding of surface water, and it will continue to be monitored by operation personnel.
- Erosion rills were <u>not</u> observed on the intermediate cover of the internal and external slopes of the landfill. As a result, underlying CCR waste was <u>not</u> observed (or exposed) in any location as a result of erosion to intermediate cover. In addition, site personnel have installed temporary sideslope berms in potential high erosion areas in an effort to control erosion.
- Protective cover was removed and geosynthetic was exposed at a temporary downchute on the east slope of inactive Subcell 2E, and a portion of the protective cover on the northwest corner of Subcell 2D was damaged due to erosion, but the geosynthetic was not exposed. Based on discussion with operation personell, the temporary downchute in Subcell 2E and erosion damage in Subcell 2D was repaired shortly after the inspection.
- Minor erosion damage to the contact water diversion berm in Subcell 2D was observed; however, this minor damage was not enough to allow contact water release. Based on discussion with operation personell, the contact water diversion berm damage in Subcell 2D was repaired shortly after the inspection.
- Excessive dust emissions were <u>not</u> observed during the inspection. Leachate evaporation pond, leachate evaporation pond underdrain system, and groundwater monitoring systems were observed to be functioning as designed.

During the inspection, SCS also reviewed the weekly inspection reports prepared by a qualified person in accordance with §257.84(a). All required weekly inspections have been completed for calendar year 2020. Consistent with §257.84(b)(i), SCS reviewed the 2020 weekly inspections and the prior 2019 annual inspection. Items noted during the 2020 weekly inspections were similar to the items noted in this 2019 annual inspection, which were primarily related to ongoing challenges with erosion and stormwater (non-contaminated water) culverts. In addition, items observed during the 2020 annual inspection will be corrected by operation personnel in the near future (weather permitting). Based on a review of these inspections, operation personnel have routinely corrected or maintained the landfill facility, as weather allowed, for items identified in the inspections and during landfill operation.

Lastly, during the inspection, consistent with §257.84(b)(i), SCS also reviewed all other documents in the Site Operation Record. All documents required to be in the Site Operating Record in accordance with §257.105 were present during the inspection.

In summary, based on the above-described inspection and improvement plans (previously noted) and consistent with the previous annual inspection (dated 1/13/2020), in our opinion, the design, construction, operation, and maintenance of the landfill (inclusive of the items inspected in the attached checklist) is being performed consistent with recognized and generally accepted good engineering standards.

^{\\}bed-fs02\shares\Data\Projects\16220101.00\2021.01.13 Sandy Creek 2020 Annual Inspection Report.docx

Mr. Darryl Sparks January 13, 2021 Page 3

VOLUME OF IN-PLACE WASTE [§257.84(B)(2)(ii)]

The approximate volume of CCR contained in the landfill at the time of the inspection was estimated in accordance with $\S257.84(b)(2)(ii)$. The landfill has been operational since early 2013.

Ground surveys of the landfill have been developed since April 2013, with the most recent two surveys being performed on September 23, 2020 and December 14, 2020. The estimated airspace consumed between the two surveys is 28,400 cubic yards (CY) for a period of 82 days (provided by facility personnel). Therefore, the airspace consumed was converted to an average daily volume of approximately 346.3 cy/day. Based on a comparison of the as-built top of liner grades and existing grades at the time of the surveys, the landfill has approximately 1,123,128 cubic yards of CCR waste as of December 14, 2020 (provided by facility personnel). In addition, based on the average daily volume of 346.3 cy/day, it is estimated that an additional 5,540.8 cy of CCR waste was disposed of in the landfill between December 14, 2020 and December 30, 2020. Therefore, as of the date of the annual inspection (December 30, 2020), it is estimated that the landfill contained approximately 1,128,669 cy of CCR waste.

CLOSING

SCS appreciates the opportunity to perform the 2020 annual inspection of Sandy Creek Energy Station, CCR Landfill. Should you have any questions or require additional information on this inspection, please feel free to contact Brett DeVries, Ph.D., P.E. at 817-571-2288.

Sincerely,

Bret Della

Brett DeVries, Ph.D., P.E. Project Engineer **SCS ENGINEERS** TBPE Registration No. F-3407

Ryan Kuntz, P.E. Vice President / Satellite Office Manager SCS ENGINEERS

Attachment: Coal Combustion Residual Landfill Annual Inspection Checklist

Sandy Creek Energy Station

 Coal Combustion Residual Landfill Annual Inspection Checklist

 40 CFR §257.84(b) - Requires inspections on an annual basis by a Qualified Professional Engineer

 Date and Time of Inspection:
 12/30/2020 10:00 a.m.

 Professional Engineer's Name:
 Brett DeVries, Ph.D., P.E.

 Weather Summary at time of Inspection:
 60°F, Rain

Precipitation for the previous 7 days: 0.1-inches

<u>1. Landfill Structure and Slope</u>

Slun	ghing, 1ping, ding	Surface Cracking		Excessive Slope		Toe of Slope Moving		Inadequate Compaction	
Yes	No	Yes	No	Yes	No	Yes	No	Yes	No
	Χ		Х		Χ		Χ		Х
т	Inappropriate Vegetative Growth								
Vege	etative	Animal	Burrows	Eros Dam		Vehicle	Damage		
Vege	etative	Animal Yes	Burrows			Vehicle Yes	Damage		

Additional Observations:

<u>2. Landfill Cover</u>									
Qualifier	Intermediate Soil Cover		Final Soil Cover		Bottom Ash Cover		Alternative Cover		
	Yes	No	Yes	No	Yes	No	Yes	No	
Installed	X								
Erosion		X	N/A		N/A		N/A		
Location									

Additional Observations:

3A. Run-on and Run-off Control System

Uncontaminated Surface Water Management System

Qualifier	Diversion Berms		Downchutes		Perimeter Drainage Channels		Cu	ılverts	Detention Basins	
	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No
Inspection	Χ		Χ		Χ		Χ		Χ	
Damage		X	X			Χ	X			Х
Туре			See Note 1				Blockage (See Note 2)			
Location			Subcell 2E				Stormwater Pond Entrance			

Additional Observations: ¹ Located on east slope of Subcell 2E to control uncontaminated surface water.

² One (center) of three culverts located on the west side of the stormwater pond is blocked and unable to transmit uncontaminated water.

Qualifier	Qualifier Diversion Berms			Drainage at Draina Perimeter Berm Separation		nage at ion Berm	n Culvert		Ponding of Contact Water		Release of Contact Water	
	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No
Inspection	Χ		X		Χ		Χ		Χ		Χ	
Damage	X			Χ		Χ		Х		Χ		Χ
Туре	See	Note 1										
Location	Sub	cell 2D										

3B. Run-on and Run-off Control System

Contact Water Management System

Additional Observations: ¹Minor damage to contact water diversion berm in Subcell 2D. Not enough to allow contact water release.

4. Exposed Liner and Leachate Collection and Removal System

Qualifier	Intercell Berm Sacrificial Plastic				Leachate Sump Pump/Controls		Leachate Evaporation Pond			
	Yes	No	Yes	No	Yes	No	Yes	No	Freeboard (ft)	
Inspection	X		Χ		Χ		X		5	
Damage		Х		X		X		Х	NA	
Туре									NA	
Location									NA	

Qualifier	LCRS I	Ball Valve	Prote Cov		Exposed Geosynthetics		
	Yes	No	Yes	No	Yes	No	
Inspection	X		Χ		Х		
Damage		X	Χ		Χ		
Туре	See	Note 2	See Notes 2 and 3		See Note 3		
Location	Sub	cell 2E	Subce	ell 2D	Subcell 2E		

Additional Observations: ¹ LCRS Ball Valves were covered by soil, but have not been damaged.

² Protective cover damaged on Northwest corner of subcell 2D, but geosynthetic was not exposed.

³ Protective cover removed and geosynthetic exposed at temporary downchute on east slope of Subcell 2E.

5. Dust Emissions

Landfill		Haul	Trucks	Ash Silo		
Yes	No	Yes	No	Yes	No	
	X		X		X	

Additional Observations:

6. Leachate Evaporation Pond Underdrain System
--

Sedi	Sediment Veget		etation	Deb	oris	Water Flow		
Yes	No	Yes	Yes No		No	Yes	No	
	X		X		X	X		

Additional Observations:

7.	Groundwater	Monitoring	System

Da	mage	Excess V	Vegetation	Lock W	orking	-	ing Lid tional	Insects	in Housing	Housin Pee	g Paint ling		bel Juate
Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No
	X		X	X		X			Χ		Χ	X	

Additional Observations:

8. Document Review

Description	Yes	No
Weekly Inspection Checklists Reviewed:	Х	
All Weekly Inspections Completed:	Х	
Site Operating Record Reviewed:	X	
All necessary documents maintained in Site Operating Record: (see attached Site Operating Record Checklist)	X	

Additional Observations:

Additional Comments/Observations/Recommendations:

Professional Engineer's Signature and Seal

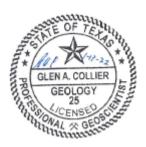
12/30/2020

Date

SANDY CREEK ENERGY STATION CCR LANDFILL ANNUAL SITE OPERATING RECORD REVIEW

		-			Maintain	ned in Opera	ting Recor
Primary Citation	Description	Required	Deadline	Date Completed	Yes	No	NA
257.60(a)	Documentation of compliance with location restrictions: aquifer	Yes	No later than date of initial reciept of CCR in any lateral expansion (e.g. Cell 3)	NA			х
			No later than date of initial reciept of CCR in any			╡───┤	
257.61(a)	Documentation of compliance with location restrictions: wetland	Yes	lateral expansion (e.g. Cell 3)	NA			Х
256.62(a)	Documentation of compliance with location restrictions: seismic zone	Yes	No later than date of initial reciept of CCR in any	NA			х
200102(u)		105	lateral expansion (e.g. Cell 3)				
256.63(a)	Documentation of compliance with location restrictions: damage zone near fault lines	Yes	No later than date of initial reciept of CCR in any lateral expansion (e.g. Cell 3)	NA			Х
257.64(a)	Documentation of compliance with location restrictions: unstable areas	Yes	10/17/2018	10/1/2018	Х		1
257.70(e)	Liner Design Certification	No	NA	NA			Х
257.70(f)	Liner Construction Certification	No	NA	NA			Х
257.80(b)	Fugitive Dust Control Plan	Yes	10/19/2015	10/18/2015	Х		
257.80(c)	Fugitive Dust Control Plan Annual Report	Yes	1 year after previous report completion	12/16/16, 11/30/17, 12/18/18, 12/19	X		
257.81(c)	Initial and Periodic run-on and run-off control system plan	Yes	10/17/2016, and every 5 years after initial plan	10/14/2016	Х		l
257.84(a)	Weekly inspection reports	Yes	Weekly in 2016, 2017, 2018, 2019, and 2020	Weekly in 2016, 2017, 2018, 2019, and 2020	Х		
257.84(b)(2) and (3)	Annual Inspections	Yes	Due 1/19/2016 and 1 year after previous report completion	1/13/2016, 1/13/17, 1/13/18, 1/13/19	X		
257.84(b)(5)	Documentation of corrective measures for deficiency or release (based on annual report)	Yes	As soon as feasible	NA			х
257.90(e)	Annual groundwater monitoring and corrective action report	Yes	1/31/2018, and Annual Report due 1 year after previous report completion	1/30/18, 1/30/19, 1/30/20	X		
257.91(e)(1)	Documentation of design, installation, development, and decommissioning of GW Wells	Yes	10/17/2017	3/11/2016	Х		l
257.91(f)	Groundwater Monitoring System certification	Yes	10/17/2017	3/11/2016	Х	(T	l
257.93(f)	Certification of selected statistical method for evaluating GW monitoring data	Yes	10/17/2017	3/2/2016	Х		l
257.94(e)(3)	GW Assessment Monitoring Program establishment notification	Yes	30 days after plan establishment	NA			Х
257.95(d)(1)	GW Assessment monitoring program sampling and results	Yes	90 days after results, and on at least semiannual basis thereafter	NA			X
257.95(e)	Notification of resuming GW detection monitoring program	Yes	30 days after program establishment	NA			Х
257.95(g)	Notification of GW constituent(s) being above protection standards	Yes	30 days after detection	NA			Х
257.96(d)	Assessment of GW corrective measures	Yes	90 days after detection	NA			x
257.96(e)	Documentation recording public meeting for GW corrective measures assessment	Yes	After meeting	NA			X
257.97(a)	Progress reports (Semiannually) for selecting and design remedy for GW corrective action	Yes	6 months after selection and design completion	NA			X
257.98(e)	Notification and certification of GW remedy completion	Yes	After 30 days of completion	NA			Х
257.102(b)	Closure Plan	Yes	10/17/2016	10/14/2016	Х		
257.104(d)	Post-Closure Care Plan	Yes	10/17/2016	10/14/2016	Х		

\bed-fs02\shares\Data\Projects\16220101.00\20210104 Sandy Creek 2020 Annual Inspection Checklist.xlsx


SANDY CREEK ENERGY STATION COAL COMBUSTION RESIDUAL WASTE MANAGEMENT FACILITY REGISTRATION APPLICATION TCEQ REGISTRATION NO. ----

PART VI GROUNDWATER MONITORING AND CORRECTIVE ACTION PLAN

Prepared for:

SANDY CREEK SERVICES, LLC 2161 Rattlesnake Road P.O. Box 370 Riesel, TX 76682

Prepared by:

SCS ENGINEERS

Texas Board of Professional Engineers, Reg. No. F-3407 Dallas/Fort Worth Office 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

> Revision 0 – January 2022 SCS Project No. 16221059.00

		TABLE OF CONTENTS	
<u>SECTI</u>	<u>ON</u>		<u>GE</u>
1	PE CERT	TIFICATION1	-1
2	INTROD	DUCTION	2-1
3	REGION	VAL PHYSIOGRAPHY, TOPOGRAPHY AND CLIMATE	-2
	3.1	PHYSIOGRAPHY AND TOPOGRAPHY AND CLIMATE Breth Solar 1/13/22 3	-2
	3.2	CLIMATE	-2
4	GEOLO	OGY	-1
	4.1	GEOLOGIC SETTING	-1
	4.2	GEOLOGIC SETTING	-1
5	HYDRO		
	5.1	REGIONAL HYDROGEOLOGY	-1
	5.2	LOCAL HYDROGEOLOGY	j -1
6	GROUN	DWATER INVESTIGATION REPORT	-1
	6.1	OVERVIEW)-1
	6.2	WELL INSTALLATION AND CONSTRUCTION)-1
	6.3	SLUG TESTING	<u>)</u> -2
	6.4 CFR δ2.4	GROUNDWATER ELEVATIONS AND FLOW CALCULATIONS (30 TAC §352.911 [4 57.93(c)])	
7	-	NDWATER QUALITY CHARACTERIZATION	
	7.1	OVERVIEW OF THE EXISTING GROUNDWATER MONITORING SYSTEM	
	7.2	GROUNDWATER MONITORING DATA7	
	7.3	GROUNDWATER MONITORING SYSTEM (30 TAC §352.911 [40 CFR §257.91]).7	
	7.4 2	ASSESSMENT OF CORRECTIVE MEASURES (30 TAC §352.961 [40 CFR §257.96]).	
	7.5	SELECTION OF REMEDY (30 TAC §352.971 [40 CFR §257.97])7	′-3
	7.6 CFR §25	IMPLEMENTATION OF THE CORRECTIVE ACTION PROGRAM (30 TAC §352.981 [457.98])7	
	7.7	CORRECTIVE ACTION EFFECTIVENESS REPORT (30 TAC §352.991)7	
8	RECORE	DKEEPING, NOTIFICATION, AND POSTING OF INFORMATION TO THE INTERNET . 8	8-1

<u>Tables</u>

7-1 Sandy Creek Energy Station Groundwater Monitoring System

<u>Drawings</u>

VI-1Typical Monitor Well DetailVI-2Groundwater Monitoring System and Groundwater Contour Map

Figures

VI-1 Waco Average Monthly Rainfall

Appendices

- VI.A Groundwater Monitoring Sampling and Analysis Program
- VI.B Geology and Groundwater Supplemental Information
- VI.C Historical Groundwater Reports and Data

1 PE CERTIFICATION

BRETT J. DeVRIES BRETT J. DeVRIES BRETT J. DeVRIES BRETT J. DeVRIES BRETT J. DeVRIES	I, Brett DeVries, Ph.D., P.E. and Glen Collier, P.G., hereby certify that the groundwater monitoring system Sandy Creek Energy Station Coal Combustion Residual Waste Management Facility meets the requirements in 30 TAC §352.911 (40 CFR §257.93). This certification is based on investigated available geologic and hydrogeologic information within the Landfill Registration Boundary. This Plan was prepared by or under my supervision. I am a duly licensed Professional Engineer or Professional Geologist under the laws of the State of Texas.
	Brett DeVries, Ph.D., P.E. (printed or typed name)
	License number <u>128061</u>
TELEOF TELEVILLE	My license renewal date is <u>9/30/2022</u>
GLEN A. COLLIER GEOLOGY	Glen A. Collier, P.G. (printed or typed name)
RIMAL & GEORGE	License number 25
	My license renewal date is 12/30/2021

2 INTRODUCTION

This document is the Groundwater Monitoring and Corrective Action Plan for the Registration Application for the Sandy Creek Energy Station (Plant) Coal Combustion Residual Waste Management Facility (Landfill) and has been prepared in accordance with 30 Texas Administrative Code (TAC) §352.241 and such provisions of Title 40 of the Code of Federal Regulations (40 CFR) Part 257, Subpart D, as are incorporated by reference. At the time of preparing this Groundwater and Corrective Action Plan (Plan), Cells 1 and 2 are existing active cells constructed in 2010 and 2014, respectively. A portion of Cell 3 (inclusive of Subcells 3A through 3D) was constructed in 2021 prior to and during the time of preparing this Plan..

Discussion related to locations restrictions for groundwater and geology, specifically placement above the uppermost aquifer (30 TAC §352.601 [40 CFR §257.60]), fault areas, and seismic impact zones (30 TAC 352.631 [40 CFR §257.63]) are provided in Part II – Location Restriction Demonstration of this Registration Application.

This Report summarizes available data related to regional and site-specific geologic and hydrogeologic conditions, as well as information pertinent to aquifers in the area of the Landfill. Information from the following sources was used where applicable.

- Groundwater Monitoring System Certification Report for Solid Waste Disposal Facility, Sandy Creek Energy Station, Riesel, McLennan County, Texas, Geosyntec Consultants, March 2016 (Geosyntec, 2016 – see Appendix VI.B).
- November 2020 Groundwater Monitor Well Install Report, Sandy Creek Energy Station, McLennan County, Texas, SCS Engineers, January 22, 2021 (SCS, 2020 – see Appendix VI.C).
- Cell 3 Compliance Demonstration, Sandy Creek Energy Station Solid Waste Disposal Facility, McLennan County, Texas, SCS Engineers, June 7, 2021 (SCS, 2021 see Appendix II.A).

3 REGIONAL PHYSIOGRAPHY, TOPOGRAPHY AND CLIMATE

3.1 PHYSIOGRAPHY AND TOPOGRAPHY

The Landfill is in McLennan County, Texas and is located in the Blackland Prairies physiographic province of the Texas Gulf Coastal plains. The Blackland Prairies consist of chalks and marls that weather to deep, black clay soils (Physiographic Map of Texas 1996). The existing topography within the Landfill Registration Boundary had natural grades ranging from approximately 415 to 520 feet-mean sea level (MSL) [elevations across the Landfill ranged from 480 to 550 feet MSL] at the time of developing this Registration Application. Post-development, a number of natural drainage features within the Landfill Registration Boundary were filled with soil to create relatively flat areas for infrastructure construction. In the area of the Landfill, ground slopes to the southwest.

3.2 CLIMATE

The climate in the Waco area (within close proximity to the Landfill as depicted on Drawing I.B-1) is sub-humid, with area rainfall averaging approximately 34.7 inches per year (averaged between 1981 and 2010 at the Waco-McGregor Municipal Airport; source: <u>www.usclimatedata.com</u>). Figure VI-1 provides the average monthly rainfall in the Waco area over the 29 years.

4 GEOLOGY

4.1 GEOLOGIC SETTING

The Landfill is located northeast of the Central Texas uplift. The landscape is dominated by widespread outcrops of Upper Cretaceous rocks in various stages of weathering. To the east and across the Balcones and Mexia-Talco-Luling fault zones, Eocene strata are exposed at the surface. Lower Cretaceous stratigraphic units make up the extensive Edwards Plateau to the west and southwest.

The Lower Cretaceous Trinity Group hosts the uppermost aquifer beneath the Landfill Registration Boundary (George et al., 2011). The Trinity Group is overlain by, in ascending order, the Lower Cretaceous Fredericksburg and Washita groups. Overlying the Washita Group are rocks of the following Upper Cretaceous groups, in ascending order, Woodbine, Eagle Ford, and Austin (American Association of Petroleum Geologists [AAPG], 1979). Lithologies of these units include chalk, limestone, marl, clay, shale, and sandstone.

The integrated Lower Taylor Marl Formation (Ozan Formation) and the Wolfe City Formation, both of the Upper Cretaceous epoch, overlie the Austin Group and are exposed at the surface of the facility. The shallow subsurface stratigraphy within the Landfill Registration Boundary, as revealed by borings, consists predominantly of high plasticity yellow-brown clays, weathered clayshale, and marl units of fluvial and shallow marine origin (Geotechnical Design Report Revision 0, Sandy Creek Power Partners, Apr. 2009).

4.2 SITE STRATIGRAPHY

Site soil conditions within the vicinity of the Landfill Registration Boundary were investigated by the original Owner/Operator prior to Landfill Construction by borings within and adjacent to the Landfill footprint (Geosyntec, 2015 as provided in Appendix VI.B). Consistent with the above referenced reports, the soils in the vicinity of the Landfill Registration Boundary are comprised of three soil layers, identified in soil borings conducted to depths of up to 100 feet at the Landfill. These stratigraphic units are described in Section 4 of Part I.

The locations and logs of the borings drilled in since 2010 in the vicinity of the Landfill Registration Boundary are found in the various reports provided in Appendix VI.C. The results of geotechnical laboratory tests conducted on soil samples collected by Black and Veatch and Geosyntec Consultants during subsurface investigation activities are also included in Appendix VI.B.

Based on available information, including field investigations of the Landfill Registration Boundary, the geology of the Landfill is considered suitable for Landfill development.

5 HYDROGEOLOGY

5.1 REGIONAL HYDROGEOLOGY

The Trinity aquifer, a major aquifer in Texas, generally consists of sands, gravels, and conglomerates interbedded with limestone, shale, clay and marl. There are no other minor or major aquifers in the vicinity of the Landfill Registration Boundary (George et al., 2011). The Trinity aquifer is located more than 1,000 ft below the existing ground surface within the Landfill Registration Boundary , and has combined freshwater saturated thickness of approximately 1,000 ft (George et al., 2011). The overlying Cretaceous formations serve as confining units between the Landfill and the Trinity aquifer. Due to the low hydraulic conductivity and the significant thickness of these units, the potential for Landfill constituents to migrate from the Landfill to the Trinity aquifer during the active life and post-closure care period does not exist. Therefore groundwater monitoring of the Trinity aquifer beneath the Site is not warranted.

5.2 LOCAL HYDROGEOLOGY

While B&V (2009 – see Geosyntec, 2015) found groundwater in Stratum II at depths of 14 to 43 ft below ground surface in some of the borings and all of the piezometers in the northwest portion within the Plant Boundary, they did not encounter groundwater in borings drilled in the vicinity of the Landfill. B&V (2009 - see Geosyntec, 2015) concluded that water flowed in cracks and fissures in the clay. The majority of the fissures were in-filled with sand and gypsum, indicating secondary mineralization and water flow at certain depths, and some fissures were stained with iron oxide. In the northwest portion of the Plant Boundary, free water was commonly encountered within the sand layers found in Stratum II at depths greater than 20 feet. The groundwater encountered in Stratum II is considered transient and perched and is not expected to be found in significant quantities. Hydraulic conductivity tests were conducted on four undisturbed soil samples collected from Stratum II. Measured vertical hydraulic conductivities ranged from to 4.6 $\times 10^{-9}$ to 6.6 $\times 10^{-8}$ cm/sec. Slug tests were conducted by Geosyntec (2015) in three borings drilled in 2010 in the vicinity of the leachate evaporation pond. Estimated horizontal hydraulic conductivities for Stratum II ranged from 1.2×10^{-4} to 3.1×10^{-4} cm/s over saturated soil thicknesses of approximately 7.8 to 12.5 feet. Based on their hydrogeologic characteristics, Stratum I is generally an unsaturated zone, Stratum II is the uppermost water bearing zone beneath the Plant Boundary, and Stratum III is an aquitard or lower confining layer for Stratum II. The top of Stratum III generally follows topography and slopes to the southwest in the Landfill area. However, and as previously stated, the uppermost aquifer (Trinity aquifer) is estimated to be located approximately 1,000 feet below the existing ground surface.

6 GROUNDWATER INVESTIGATION REPORT

6.1 OVERVIEW

The previous groundwater investigation reports, included as Appendix VI.B, are sufficient to characterize the hydrogeological setting and to facilitate the design of the groundwater monitoring system to monitor the uppermost groundwater bearing unit as required by 30 TAC §352.911.

6.2 WELL INSTALLATION AND CONSTRUCTION

Existing well installation and construction details are found in Appendix VI.B reports. Should additional wells be needed or existing wells replaced, new wells will be constructed in accordance 16 TAC Chapter 76 and with the installation specifications described in the following paragraphs within this section and depicted on Drawing VI-1 in this Plan.

A qualified Texas-licensed driller will drill and install monitoring wells using equipment and methods that are appropriate for the conditions within the Landfill Registration Boundary . A licensed professional geoscientist or engineer who is familiar with the geology of the area will supervise drilling, develop a detailed lithologic description of the boring, monitor well installation, and oversee well development. The boring will be at least 4 inches larger than the outer diameter of the well casing and screen. If water is used in drilling, it will be from a potable source, and a current chemical analysis will be provided with the monitoring well installation report. A licensed professional geoscientist or engineer who is familiar with the geology of the area will supervise or make a boring log for each monitoring well and shall seal, sign, and date the boring log.

After a monitoring well is installed, it will be developed until excessive turbidity due to drilling/installation has been removed and field measurements of pH, specific conductance, and temperature have stabilized. Development may be accomplished through the use of pumping and/or bailing. Upon completion of well installation activities, a registered professional surveyor will survey the locations with vertical measurements to the nearest 0.01-foot and referenced to mean sea level (with year of the sea-level datum shown). Survey points for each well will include the top of PVC casing (with referenced point marked), top of protective cap, and ground surface adjacent to the well pad. Horizontal locations will be determined to the nearest tenth of a second for latitude and longitude or accurately located relative to the Site grid system. Within 60 days of well completion, well installation and construction information will be submitted to the TCEQ on current forms. The report will include a detailed geologic log, any test results, a description of development procedures, and a site map (to scale) showing the location of all monitoring wells and the point of compliance. Any monitoring well that is damaged to the extent that it is no longer suitable for sampling will be reported to the TCEQ with a recommendation to repair or replace the well. Any monitoring well that is no longer used shall be properly abandoned and plugged in accordance with 16 TAC §76.702 and §76.1004 with prior authorization in writing from the TCEQ.

The wells will be operated and maintained so that they will yield representative groundwater samples for the appropriate hydrogeologic unit throughout the life of the groundwater monitoring

program. Groundwater monitoring will be conducted throughout the active life and the closure and post-closure care period of the Landfill.

6.3 SLUG TESTING

In September 2010, Geosyntec performed falling head permeability tests in piezometers GB-2 and GB-4 and well MW-3 (Geosyntec, 2015). The tests were performed using a solid "slug" to generate water level changes and a pressure transducer/data logger set up to monitor the water level response in the piezometers and well over time. Estimated horizontal hydraulic conductivities for Stratum II ranged from 1.2×10^{-4} to 3.1×10^{-4} cm/sec (0.34 to 0.88 feet/day) over saturated soil thicknesses of approximately 7.8 to 12.5 feet. The calculated geometric mean hydraulic conductivity is 2.0×10^{-4} cm/sec (0.55 feet/day). Estimated transmissivities ranged from 2.9 to 10.9 feet/day.

6.4 GROUNDWATER ELEVATIONS AND FLOW CALCULATIONS (30 TAC §352.911 [40 CFR §257.93(C)])

In accordance with 40 CFR Part §257.93(c), the groundwater flow rate and direction in the uppermost water bearing zone in the area of the existing groundwater monitoring wells were calculated.

Flow Rate Calculation:

(Driscoll, 1986, Groundwater and Wells) Va = KI7.5N

Where:

Va = Actual Velocity of Groundwater Flow (feet/day)

Κ = Hydraulic Conductivity (gpd/ft^2)

Ι = Hydraulic Gradient (feet/feet)

Ν = Effective Porosity (%)

Then:

= 2.0×10^{-4} cm/sec (geometric mean hydraulic conductivity obtained from slug Κ tests performed by Geosyntec in 2010)

Find K equivalent in units of gpd/feet²:

(1 cm/sec = 21,200 gallons/day/ft2)

 $2.0 \times 10^{-4} \text{ cm/sec} \times 21,200 \text{ gallons/day/ft2} = 4.24 \text{ gpd/ft}^2$

Find I: BW-1 elevation – MW-3 elevation: 468.37 feet – 421.46 feet = 0.0199 feet/feet

distance between wells: 2,350 ft

I = 0.0199 feet/feet (ave. gradient across the site, from June 2021 water levels)

N = 6% (representative effective porosity for clay from Morris and Johnson, 1967)

Therefore:

Va = $\frac{4.24 \text{ gpd/feet}^2 \text{ x} (0.0199 \text{ feet/feet}) = 0.187 \text{ feet/day}}{7.5 (0.06)}$

(0.187 feet/day)(365 days/year) = 68 feet/year

Conclusion:

The calculated June 2021 site groundwater flow rate is **68 ft/year**. The gradient was measured using BW-1 and MW-3. The June 2021 groundwater flow direction is to the south-southwest. The calculated groundwater flow rate and direction are consistent with conditions previously observed at the site. See Drawing VI-2 for details, provided in accordance with 40 CFR part §257.93(c).

7 GROUNDWATER QUALITY CHARACTERIZATION

7.1 OVERVIEW OF THE EXISTING GROUNDWATER MONITORING SYSTEM

The current groundwater monitoring system at the Landfill consists of six wells (see Table 8-1). One (BW-1) is upgradient and five (MW-1, -2, -3, -4, & -5) are downgradient. Drawing II.B-1 and Drawing VI-2 shows the groundwater monitoring system at the Landfill.

Well ID (U-upgradient; D-downgradient)	Status	Top of Casing Elevation (ft MSL)	Well Depth (ft, bgs)	Screen Interval (ft, bgs)	Water Level Elevation (ft MSL On 6/22/2021) ¹
B₩-1 (U)	Detection	485.57	38.63	28.30- 38.30	468.37
MW-1 (D)	Detection	465.87	34.23	23.90- 33.90	455.29
MW-2 (D)	Detection	442.15	19.63	9.30-19.30	431.88
MW-3 (D)	Detection	430.06	16.23	5.98-15.98	421.46
MW-4 (D)	Background	436.91	30.3	20.00- 30.00	427.52
MW-5 (D)	Background	454.52	35.3	25.00- 35.00	432.29

 Table 7-1
 Sandy Creek Energy Station Groundwater Monitoring System

1. June 22, 2021 is the latest groundwater water level measurements conducted at the Landfill at the time of developing this Registration Application.

The potential pathways for contaminant movement from the Landfill is expected to be lateral [horizontal] via bedding planes and along shale fractures that develop primarily horizontally as the overlying sediments unload over geologic time due to erosion. The locations and depths of the monitoring wells are designed to determine the quality of groundwater passing the point of compliance and to detect groundwater impact from the Landfill.

7.2 GROUNDWATER MONITORING DATA

Sampling of groundwater monitoring wells is conducted in accordance with 40 CFR §257.93 and the Groundwater Monitoring Sampling and Analysis Program (GWSAP) as provided in Appendix VI.A. Groundwater monitoring of six wells will be performed (BW-1, MW-1, MW-2, MW-3, MW-4, MW-5; as depicted on Drawing II.B-1 and VI-2). In accordance with 40 CFR §257.94(b), quarterly background monitoring will be performed for each well for eight consecutive quarters (i.e., eight independent samples collected for each well). The Appendix III and IV constituents

monitored during the first eight quarters and the first semiannual detection monitoring event include 18 inorganic compounds, total dissolved solids, radium-226, and radium-228. The constituents monitored in subsequent events and during the June 2021 semiannual detection monitoring event include Appendix III constituents only. Initial background monitoring for monitoring wells MW-1, MW-2, MW-3, and BW-1 commenced in December 2015 and was completed in August 2017. The subsequent Background Evaluation Report is included as Appendix III. MW-1, MW-2, MW-3, and BW-1 are currently in detection monitoring. Monitoring wells MW-4 and MW-5 are currently in background monitoring. None of the wells are in assessment monitoring at the time of developing this Registration Application.

The First Semiannual Groundwater Monitoring Report for 2020 is included as Appendix VI.C. Historical groundwater sampling results for all six wells are also provided in Appendix VI.C.

7.3 GROUNDWATER MONITORING SYSTEM (30 TAC §352.911 [40 CFR §257.91])

As required by 40 CFR §257.91, the groundwater monitoring system will consist of a sufficient number of appropriately located wells to yield groundwater samples from the uppermost aquifer that represent the quality of background groundwater and the quality of groundwater passing the point of compliance.

Previously described Stratum II is the uppermost water bearing zone beneath the Landfill Registration Boundary. Based on the boring logs for the monitoring wells, the thickness of the water bearing zone within Stratum II (i.e., the zone with sand or gypsum lenses or iron oxide staining) ranges from eight to 18 feet thick beneath the facility.

Water levels measured periodically from 2010 to the present indicate a general southsouthwesterly direction to groundwater movement in Stratum II. The velocity of groundwater moving through Stratum II has been calculated to range from 67 to 86 feet per year.

Based on the thickness of the uppermost water-bearing zone, groundwater flow direction, and groundwater velocity, the groundwater monitoring system consists of a sufficient number of appropriately located wells to yield representative samples of groundwater passing beneath the Landfill.

7.4 ASSESSMENT OF CORRECTIVE MEASURES (30 TAC §352.961 [40 CFR §257.96])

Within 90 days of finding that any of the Appendix IV constituents have been detected at a statistically significant level above a Groundwater Protection Standards (GWPS), Landfill Owner/Operator (Sandy Creek Services, LLC) will initiate an assessment of corrective measures. This assessment will be completed within 90 days of initiating the assessment and may be extended for no longer than 60 days. The assessment will be included in the annual groundwater monitoring and corrective action report required by 40 CFR §257.90(e), in addition to the certification by a qualified professional engineer.

Unless preceded by an Alternative Source Demonstration showing that the statistically significant increase (SSI) is not attributable to the Landfill, the assessment will analyze the effectiveness of potential corrective measures, including performance, reliability, ease of implementation, and potential impacts. The assessment will also discuss the control of exposure to residual contamination, time required to begin and complete the remedy, costs of remedy implementation, and any institutional requirements that may substantially affect implementation of the remedy or remedies.

At least 30 days prior to selecting a remedy, Landfill Owner/Operator will discuss the results of the assessment of corrective measures in a public meeting with interested and affected parties. The Landfill Owner/Operator of the Landfill must comply with the recordkeeping requirements specified in 40 CFR §257.105(h), the notification requirements specified in 40 CFR §257.106(h), and the Internet requirements specified in 40 CFR §257.106(h).

Within 30 days of completing the assessment of corrective measures required by this section, and before implementation of the remedy, Landfill Owner/Operator will submit an amendment application, on forms prescribed by the Executive Director, in accordance with §352.131. Landfill Owner/Operator will provide any additional information as the Executive Director may require that compliance with §352.131 be demonstrated. The application will include, at a minimum:

- Documentation that characterizes the nature and extent of the release, both vertically and horizontally, and meets the applicable requirements of §352.951,
- The completed assessment of corrective measures,
- The proposed selection of remedy required by §352.971,
- A comparison of the Appendix III constituents with a statistically significant increase over the background value, and the corresponding background value at each monitoring well,
- A comparison of the Appendix IV constituents and the corresponding groundwater protection standard meeting the requirements of §352.951(b) at each monitoring well,
- A proposed timeline for the submission of the corrective action effectiveness report required by §352.991, and
- A signed affidavit certifying that the owner or operator has complied with the applicable notification requirements of §352.951.

7.5 SELECTION OF REMEDY (30 TAC §352.971 [40 CFR §257.97])

Based on the results of the corrective measures assessment, Landfill Owner/Operator must as soon as feasible, select a remedy that, at a minimum, meets the remedy standards in 40 CFR §257.97(b). Landfill Owner/Operator will prepare a semiannual report describing the progress in selecting and designing the remedy. Upon selection of a remedy, Landfill Owner/Operator must prepare a final report describing the selected remedy and how it meets the standards specified in 40 CFR

§257.97(b). The final remedy selection will be achieved through issuance of the registration amendment required under §352.961.

7.6 IMPLEMENTATION OF THE CORRECTIVE ACTION PROGRAM (30 TAC §352.981 [40 CFR §257.98])

The Landfill Owner/Operator will implement a corrective action groundwater monitoring program following the schedule specified for the selected remedy. The corrective action is considered complete when the concentrations of all constituents are shown to be at or below GWPSs for a period of three consecutive years. Landfill Owner/Operator will also take any interim measures necessary to ensure the protection of human health and the environment. Interim measures will, to the greatest extent practicable, be consistent with the objectives of and contribute to the performance of the approved remedy.

Prior to returning to detection monitoring or assessment monitoring, Landfill Owner/Operator will submit documentation that demonstrates that the requirements of this section have been fulfilled, and the remedy has been achieved for the impacted property. The documentation submitted will include at a minimum:

- All analytical data prepared and presented in accordance with §352.931 that demonstrates achievement of the remedy,
- A narrative discussion of how the requirements of this section have been fulfilled for the impacted property, and
- A description of the volume and final disposal location, and a copy of any waste manifests or other documentation of disposition, for waste or environmental media which were removed from the impacted property.

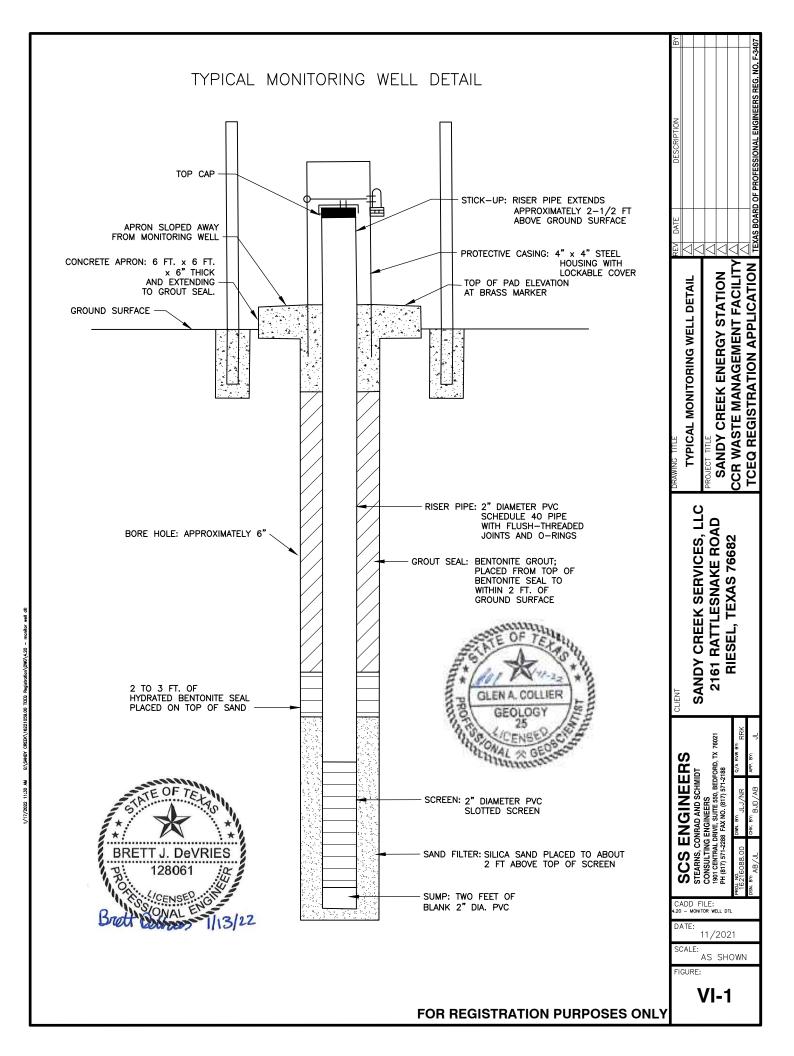
The Landfill Owner/Operator may return to either detection monitoring or assessment monitoring only after satisfying the conditions of this section, and after obtaining written approval from the Executive Director. All coal combustion residuals managed under a remedy required under §352.971, or an interim measure required under this section, will be managed in a manner that complies with all applicable United States Resource Conservation and Recovery Act and state requirements.

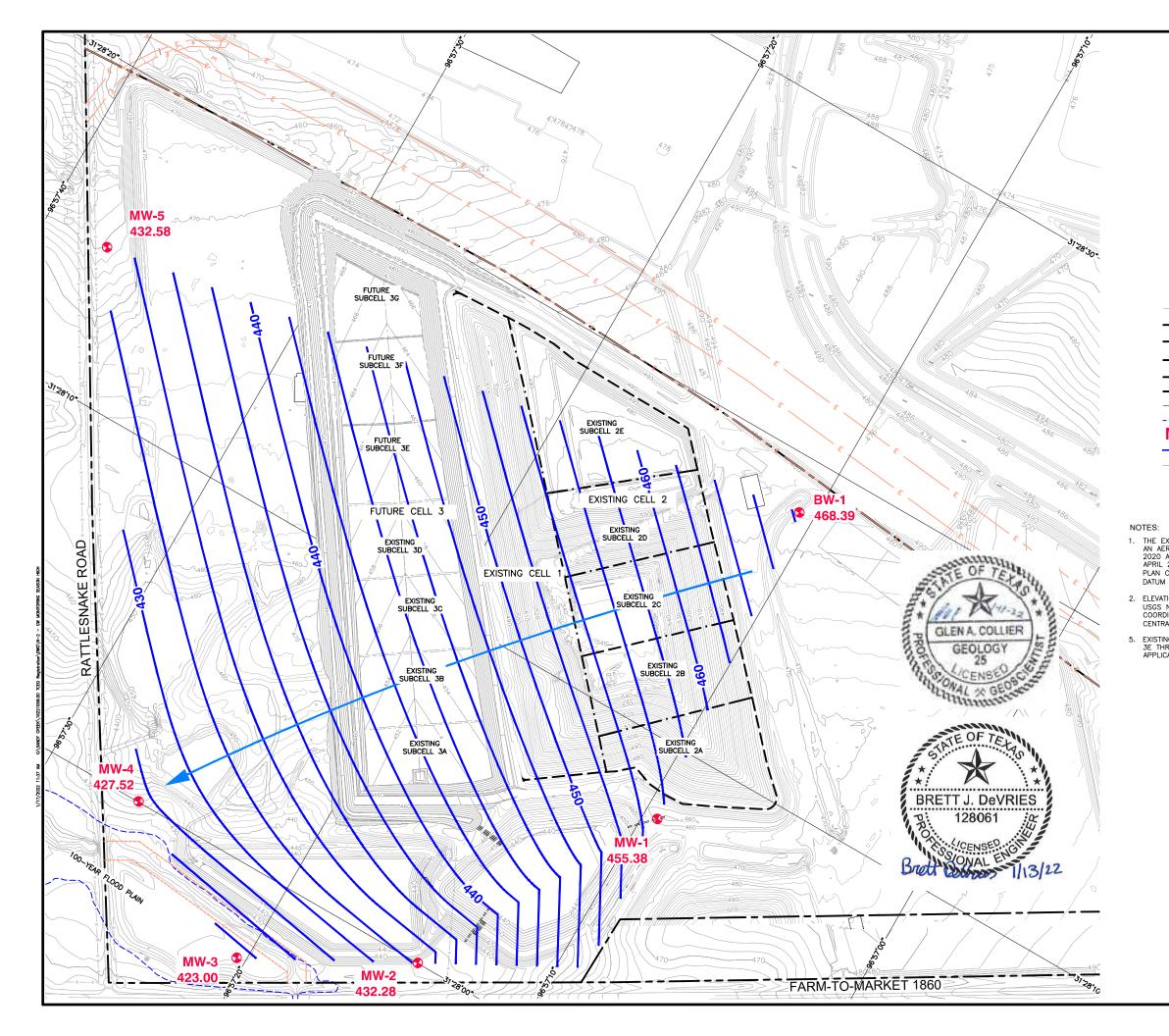
7.7 CORRECTIVE ACTION EFFECTIVENESS REPORT (30 TAC §352.991)

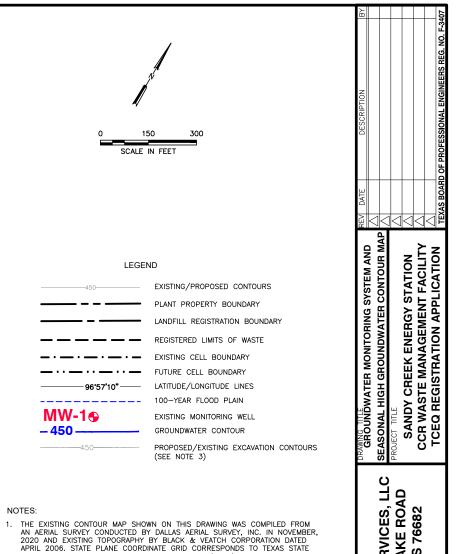
If the Landfill is performing corrective action, a corrective action effectiveness report will be submitted to the TCEQ following each reporting period.

RECORDKEEPING, NOTIFICATION, AND POSTING OF 8 INFORMATION TO THE INTERNET

The Landfill Owner/Operator will maintain a copy of this Plan in the Site Operating Record and on the Landfill's publicly accessible website consistent with §352.902, §257.105(g), and §257.107(g) as specified in Section 4 of the SOP.


Notification, submittal, posting, and public meeting requirements stated in §35.911, §352.931, §352.941, §352.951, §352.961, §352.991, §257.90(f), §257.91(g), §257.93(j), §257.94(f), and §257.95(i) will be completed by the Landfill Owner/Operator.


In accordance with 30 TAC §352.911(c), any changes to this Plan will be approved by the TCEQ in accordance with §352.931.


DRAWINGS

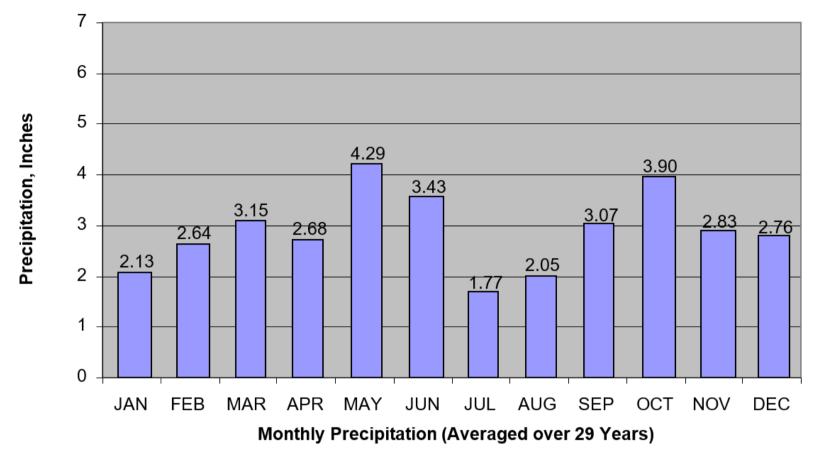
Drawing VI-1: Typical Monitoring Well Detail

Drawing VI-2: Groundwater Monitoring System and Groundwater Contour Map

APRIL 2006. STATE PLANE COORDINATE GRID CORRESPONDS TO TEXAS STATI PLAN COORDINATE SYSTEM, TEXAS CENTRAL ZONE (4203), NORTH AMERICAN DATUM 83 (NAD83) 1983.

 ELEVATION ARE IN FEET ABOVE MEAN SEA LEVEL (FT, MSL) AS DEFINED BY THE USGS NATIONAL GEODETIC VERTICAL DATUM (NGVD) OF 1988. STATE PLANE COORDINATE GRID CORRESPONDS TO TEXAS STATE COORDINATE SYSTEM, TEXAS CENTRAL ZONE (4203), NORTH AMERICAN DATUM OF 1983 (NAD-83).

EXISTING FEATURES IN SUBCELLS 3A THROUGH 3D ARE EXISTING AND SUBCELLS 3E THROUGH 3G ARE PROPOSED AT THE TIME OF THIS REGISTRATION APPLICATION DEVELOPMENT.


SEASONAL HIGH GROUNDWATER				
MONITORING WELL	SAMPLE DATE	GW ELEVATION		
BW-1	11/10/2020	468.39		
MW-1	06/24/2019	455.38		
MW-2	06/24/2019	432.28		
MW-3	06/24/2019	423.00		
MW-4	06/22/2021	427.52		
MW-5	03/24/2021	432.58		

CIENT SCS ENGINEERS SANDY CREEK SERVICES, LLC SANDY CREEK SERVI

FOR REGISTRATION PURPOSES ONLY

FIGURES

Figure VI-I: Waco Average Monthly Rainfall

(Averaged between 1981 and 2010 at the Waco-Mcgregor Municipal Airport; source: www.usclimate.com).

Figure VI-1 - Waco Average Monthly Rainfall

APPENDIX VI.A

GROUNDWATER MONITORING SAMPLING AND ANALYSIS PROGRAM

SANDY CREEK ENERGY STATION COAL COMBUSTION RESIDUAL WASTE MANAGEMENT FACILITY REGISTRATION APPLICATION TCEQ REGISTRATION NO. -----McLENNAN COUNTY, TEXAS

APPENDIX VI.A GROUNDWATER SAMPLING AND ANALYSIS PLAN

Prepared for:



SANDY CREEK SERVICES, LLC 2161 Rattlesnake Road Riesel, TX 76682

Prepared by:

SCS ENGINEERS Texas Board of Professional Engineers, Reg. No. F-3407 Dallas/Fort Worth Office 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

> Revision 0 – January 2022 SCS Project No. 16221059.00

		TABLE OF CONTENTS
<u>SEC</u>	<u>'ION</u>	BRETT J. DeVRIES
1	PE CER	TIFICATION
2		DUCTION
3	GROUI	NDWATER SAMPLING PROCEDURES
	3.1	GENERAL FIELD PROCEDURES
	3.2	WELL INSPECTION
	3.3	WELL INSPECTION
	3.4	WELL PURGING
	-	.4.1 Purging With Bailer
	-	.4.2 Low-Flow Purging
	3.5	
	3.5	SAMPLE COLLECTION (30 TAC §352.931 [40 CFR §257.93(a)(1)])3-5 SAMPLE CONTAINERS AND LABELS
	3.0 3.7	SAMPLE CONTAINERS AND LABELS
		3-6 (a)(2)])
	3.8	QUALITY ASSURANCE AND QUALITY CONTROL (30 TAC §352.931 [40 CFR
	§257.9	23(a)(5)])
	3.9	CHAIN-OF-CUSTODY DOCUMENTATION (30 TAC §352.931 [40 CFR
	•	² 3(α)(4)])
	3.10	EQUIPMENT DECONTAMINATION
	3.11	FIELD DOCUMENTATION
4		ATORY QUALITY ASSURANCE AND QUALITY CONTROL4-1
5	GROU	NDWATER MONITORING REQUIREMENTS
	5.1	GROUNDWATER MONITORING PARAMETERS AND ANALYTICAL METHODS (30
	-	352.931 [40 CFR §257.93(a)(3)])5-1
	5.2	MONITORING FREQUENCY
	5.3	STATISTICAL METHODS (30 TAC §352.931 [40 CFR §257.93(g)])5-2
6		DKEEPING, NOTIFICATION, AND POSTING OF INFORMATION TO THE INTERNET AC §352.931 [40 CFR §257.93 (j)])6-1

<u>Tables</u>

5-1 Groundwater Monitoring Constituents

SCS Engineers TBPE Reg. # F-3407

1 PE CERTIFICATION

BRETT J. DeVRIES BRETT J. DeVRIES BRETT J. DeVRIES BRETT J. DeVRIES BRETT J. DeVRIES BRETT J. DeVRIES	I, Brett DeVries, Ph.D., P.E. and Glen Collier, P.G, hereby certify that the statistical method, as described in this Plan, is appropriate for evaluating the groundwater monitoring data for the Sandy Creek Energy Station Coal Combustion Residual Waste Management Facility. This Plan was prepared by or under my supervision. I am a duly licensed Professional Engineer or Professional Geologist under the laws of the State of Texas.		
	<u>Brett DeVries, Ph.D., P.E.</u> (printed or typed name)		
	License number <u>128061</u>		
	My license renewal date is <u>9/30/2022</u>		
TE OF TE HUND	<u>Glen A. Collier, P.G.</u>		
5 * (101 2 17-22 * * * * * * * * * * * * * * * * * *	(printed or typed name)		
GEOLOGY 25	License number 25		
NOS CENSE OCT	My license renewal date is 12/30/2021		

2 INTRODUCTION

This Groundwater Sampling and Analysis Plan (GWSAP) has been prepared for Sandy Creek Services, LLC (Owner and Operator) of the Sandy Creek Energy Station (Plant) Coal Combustion Residual (CCR) Waste Management Facility (Landfill), located in McLennan County. It has been developed in accordance with Title 30 of the Texas Administrative Code (30 TAC) §352.931 and Title 40 of the Code of Federal Regulations (40 CFR) §257.93, and following TCEQ's Coal Combustion Residuals Groundwater Monitoring and Corrective Action Draft Technical Guideline No. 32. This GWSAP provides procedures and techniques for groundwater monitoring for consistency and to maintain data quality throughout the life of the program.

Six wells (BW-1, MW-1, MW-2, MW-3, MW-4, and MW-5) comprise the groundwater monitoring system of the Landfill. Background monitoring for wells MW-1, MW-2, MW-3, and BW-1 commenced in December 2015 and was completed in August 2017. The wells are currently in detection monitoring. Monitoring wells MW-4 and MW-5 are currently in background monitoring.

3 GROUNDWATER SAMPLING PROCEDURES

The following sampling procedures are designed to aid in obtaining representative groundwater samples at each well. These or equivalent procedures are to be followed by all personnel conducting groundwater monitoring well sampling (sampler).

3.1 GENERAL FIELD PROCEDURES

The sampler will refrain from using organic sprays or other potential contaminants to remove any insects found on or in the casing, or organic lubricants on well components such as hinges and locks. Topical skin care products may also contain organic compounds and will not be allowed to contaminate the area or the sample.

Sampling equipment will include a container for measuring bailed or purged well fluids and a container for measuring temperature, specific conductance, and pH. Field instruments for measuring pH and specific conductance will be calibrated following manufacturer's instructions prior to the sampling event.

Decontamination equipment will include suitable materials such as spray bottles with appropriate phosphate-free detergent and/or clean water, and additional rinse water bottles as needed.

3.2 WELL INSPECTION

The components of the well and its surroundings will be verified to be in good condition, and the well will be clearly identified. The casing, concrete pad, protective collar, and protective barriers will be checked for damage or deterioration. The sampler will check that the lid of the protective collar has a lock, that the lock is functional, and that the lid was locked when the sampler visited the well. The condition of the well cap will be noted. Also, the sampler will note the proximity of the well to potential sources of contamination, including facility roads.

The wells will also be inspected for damage, excessive vegetation, and other deficiencies by Plant Personnel or qualified person on a monthly basis and on an annual basis by a qualified professional engineer as outlined in Section 3 of Part III – Site Operating Plan.

3.3 MEASUREMENT OF GROUNDWATER ELEVATIONS

Before purging a well, the sampler will measure and record the depth to water at every event. The sampler also will measure and record the depth to the bottom of the well at least once every other calendar year. All depth measurements will be taken from a permanent, clearly marked and identifiable reference point, or datum. The datum is typically a notch or a point marked with permanent marker at the top of the well casing, and will be documented on the Well Data Sheet for each well. The water level indicator probe will be decontaminated before use in each well. The sampler will include in the field log any indication of organic compounds that have formed a liquid separate from the groundwater. The sampler will calculate the elevation of the water level with respect to mean sea level and record it to the nearest hundredth of a foot.

Water level measurements will be collected from the highest water elevation to the lowest water elevation wells (based on previous event results) unless any constituents are detected at concentrations of concern. If the constituents are detected at concentrations of concern, then water level measurements will be collected from the least to greatest impacted well.

3.4 WELL PURGING

Each well will be purged prior to sampling. Purging will remove stagnant water in the well casing and allow formation water to enter the well for sampling. Based on well construction, depth to water, recharge rate, and analytical results to date, purging with a bailer is the primary purging method. Acceptable alternative methods include purging with a pump and low-flow purging and sampling.

The order of well purging will be from the highest water elevation to the lowest water elevation wells (based on water level measurements obtained immediately prior to the event), unless non-naturally occurring impacts are confirmed. In the event that non-naturally occurring impacts are confirmed, purging will be conducted from the least-impacted to the most impacted well.

During the purging operations, a field log or equivalent, will be maintained that will record pertinent data and noteworthy observations. The information will include the following:

- Sampler's name.
- Date and time.
- Outdoor temperature and weather conditions.
- Initial depth to water, well depth, and calculated height and volume of the water column.
- Desired well volume to purge (for example, three casing volumes).
- Purge-discharge rate, if known, and purge duration (elapsed time).
- Volume of water actually purged from a well.
- Low-flow parameter readings, if a low-flow method is used.
- Well inspection results.
- Any other pertinent information.

Water purged from each well, along with unused water obtained during sampling and water used for decontamination, is to be collected and disposed as follows: purge and decontamination water will be collected in drums and stored for subsequent disposal in an approved manner. Analytical data will be reviewed prior to disposal of the water.

3.4.1 PURGING WITH BAILER

When purging with a bailer, the sampler will take extra care to avoid introducing contaminants to the water in the well, and use disposable gloves, a new pair for each well, to avoid cross-contamination. Bailers will have a bottom emptying device that allows the bailer to be emptied slowly with minimum aeration of the sample.

Each monitoring well will be purged immediately prior to sample collection with a dedicated bailer. Purge water can be measured in a known volume container such as a 5-gallon bucket. Purged water from the monitoring wells will be discharged into drums. Each well will be purged until three well volumes are removed or until dry. If a well goes dry during the purging process, it is deemed sufficiently purged.

The volume of water to be purged will be calculated as follows:

The depth of water in the well column is calculated by subtracting the depth to the water surface from the total depth of the well casing. The volume per foot of 2-inch diameter, schedule 40 PVC well casing is 0.163 gallons. The amount of water present in the well casing can be calculated by multiplying the depth of water by the value above for the proper casing diameter. The volume to be purged is three times the well casing volume.

Example:

Total depth of well casing (feet)	20.00
Depth to groundwater (feet)	- 9.50
Depth of water column (feet)	10.50
Gallons per foot of 2-inch casing	x 0.163
Amount of water in casing (gallons)	1.71
Three well volumes	x 3
Total volume to be purged (gallons)	5.13

3.4.2 LOW-FLOW PURGING

Low flow purging is a widely used method of well purging which involves removal of well water in a manner that minimizes drawdown, turbidity, and disturbances to the groundwater. The sampler will place the pump intake in the middle of the screened interval to avoid mixing formation water with sediments in the well bottom or overlying stagnant water within the well casing, unless water levels within the screen are low enough to warrant a lower pump intake placement. A dedicated purging and sampling device will be used, but if non-dedicated equipment is used, it will be decontaminated between wells to prevent cross-contamination. Water levels will be measured and recorded before pumping. After purging is initiated, the flow rate will be adjusted to maintain a minimal drawdown. The minimum well-purge volume will be at least two pump and tubing volumes.

Field parameters will be continuously monitored during purging, preferably with a flow-through cell. Stabilization of parameters such as pH, specific conductance, dissolved oxygen (DO), oxidation-reduction potential (ORP), temperature, and turbidity will be used to determine when stagnant casing water has been purged and formation water is available for sampling. A minimum subset will include pH, specific conductance, and temperature.

Measurements will be recorded every three to five minutes. Stabilization is considered achieved when the parameters are within tolerances listed below for three successive readings.

- ± 0.1 units for pH;
- $\pm 3\%$ for specific conductance;
- ± 10 millivolts for ORP; and
- $\pm 10\%$ for turbidity and DO.

3.4.3 PURGING WITH A PUMP

Purging with electric, or air-operated pumps at higher speeds than low-flow rates is acceptable. Generally a peristaltic pump is used but a submersible or pneumatic pump may be used, depending on the amount of lift required. Pumps and tubing will be limited to those made of stainless steel, Teflon®, or other resistant materials. Care should be taken to prevent air from contacting the water and to minimize aeration in the well.

The following procedures should be implemented when purging by a non-low-flow method:

- For each well, the pump and tubing will be clean to minimize cross-contamination between wells.
- The volume of water in each well will be calculated using the method described under Section 3.4.1 of this Plan.
- To avoid stirring up accumulated sediments at the bottom of the well, the pump level will be at least three to five feet from the bottom of the well, if possible.
- The volume of water purged will be measured using a flow meter or by discharging in a graduated container.
- The well should be purged at a rate low enough to prevent groundwater that is recharging the well from cascading down the sides of the well, if possible.

• Continue purging until the desired volume, as calculated in Section 3.4.1, has been purged, unless the well goes dry before the purging process is completed.

3.5 SAMPLE COLLECTION (30 TAC §352.931 [40 CFR §257.93(a)(1)])

Using the bailer sampling method, groundwater samples will be collected with a disposable PVC bailer utilizing a bottom emptying device to reduce aeration and turbulence. A new disposable bailer will be used for each well. All samples will be placed directly into the appropriate sample vessel without the use of transfer containers, taking care not to allow the sampling device to touch the sample container.

The order of well sampling will be from the highest water elevation to the lowest water elevation wells (based on water level measurements obtained immediately prior to the sampling), unless non-naturally occurring impacts are confirmed. In the event that non-naturally occurring impacts are confirmed, sampling will be conducted from the least-impacted to the most impacted well.

The elapsed time between purging and sample collection will be as short as practical, to avoid temporal variations in water levels and water chemistry. Preferably, sampling will be done within 24 hours of purging. The sampler will measure the water level in each well again before sampling to determine whether there is enough water for sampling, especially if the well went dry during purging. Where practicable, the water level in a well will be allowed to recover to 90 percent of the level that existed prior to purging, before collecting a sample. To allow wells that were purged dry to recover sufficiently to sample, or suspended sediments to settle, the sampler may have to wait several hours or several days between purging and sampling.

The sampler may allow up to seven days recovery time after purging a well before determining that the well is dry or has not recharged sufficiently to sample. If after seven days a slowly recharging well has not recovered sufficiently for a complete set of samples, the sampler will collect a partial set of samples in the order specified in this GWSAP, or in another order if warranted by conditions and data needs, until no more samples for the well can be collected. If non-naturally occurring impacts are known to be present in one or more wells at the Landfill, the sampler will begin the sampling at the well that is known to be the least impacted and end with the most impacted well. Where no non-naturally-occurring impacts are known, the order will generally be from the well with the highest water-level elevation to the one with the lowest elevation (that is, from upgradient to downgradient) for wells screened in the same water-bearing unit.

Disposable gloves (non-powder latex, nitrile, or equivalent) will be worn during all sample collection procedures. Soiled equipment such as sample bottles, gloves, bailers or bottom emptying devices will not be reused until decontaminated. Water removed during sampling that is not placed in sample bottles will be handled in a manner similar for purged water.

For low-flow purging and sampling, samples will be collected following removal of the calculated purge volume and stabilization of field parameters. For sampling with non-low flow procedures, sampling will be collected following removal of the calculated purge volume and field parameter stabilization, and after sufficient recharge has occurred.

3.6 SAMPLE CONTAINERS AND LABELS

Water samples collected are to be placed into laboratory-cleaned bottles of the appropriate size and construction for the chemical constituents to be analyzed. Sample containers will be marked as described below.

Sample labels will be affixed to each sample container and will contain the following information in waterproof ink:

- Project name (includes site name);
- Sample and well number;
- Date and time of sample collection; and
- Special handling instructions.

Quality Assurance and Quality Control (QA/QC) samples will be labeled accordingly. Duplicate samples will be labeled in a manner to prevent the laboratory from knowing which well produced the duplicate.

3.7 SAMPLE PRESERVATION AND SHIPMENT (30 TAC §352.931 [40 CFR §257.93(a)(2)])

No samples will be filtered in the field before shipping. Filtering is allowed by the laboratory only if required to protect sensitive analytical equipment.

Samples to be shipped will be packed in a hard-sided, insulated, shipping container pre-cooled with water ice. The sample containers will be packed to prevent breakage. Water ice used to pre-cool the shipping container will be discarded and adequate ice added to maintain the temperature at about 4°C during shipment. Dry ice will not be used for chilling.

3.8 QUALITY ASSURANCE AND QUALITY CONTROL (30 TAC §352.931 [40 CFR §257.93(a)(5)])

To document that sample collection and handling procedures used in the field have not affected the quality of groundwater samples, blanks are to be prepared and analyzed. These blanks consist of one duplicate sample per sampling event. Equipment blanks will not be required due to the use of disposable equipment. Field blanks will not be required because no volatile constituents will be analyzed.

Duplicate samples will be analyzed for the detection monitoring constituents listed in Table 5-1.

3.9 CHAIN-OF-CUSTODY DOCUMENTATION (30 TAC §352.931 [40 CFR §257.93(a)(4)])

A chain-of-custody (COC) form will be maintained in order to track possession and handling of samples from field collection through laboratory testing in accordance with 40 CFR §257.93(a)(4). COC records show the custody of samples at all times. Samples are considered in the custody of an individual when they are either in the individual's sight or securely under the individual's control.

COC documentation will be maintained on a chain-of-custody record form. Each sample will be logged onto the COC record form as it is collected. Information on the COC record form typically includes the following, as appropriate:

- Project name (includes site name);
- Site location;
- Sample number;
- Sample date and time;
- Sample type;
- Number and type of sample containers;
- Analyses required;
- Sample preservative;
- Lab destination;
- Carrier/shipping number;
- Special instructions; and
- Spaces for signatures of sampler(s) and everyone assuming sample custody.

The COC record will contain the signatures of anyone assuming custody of the samples. Each time custody changes hands, the party releasing the samples signs under "Relinquished By" and records the date and time. The party receiving the samples signs under the heading "Received By" and records the date and time. The COC form is typically provided by the analytical laboratory. When the sample container(s) are relinquished for shipping, the shipping paperwork constitutes the COC for that period when the sample(s) are in the custody of the shipper.

3.10 EQUIPMENT DECONTAMINATION

Reusable sampling equipment and measurement instruments coming in contact with the groundwater in wells or in samples are to be decontaminated before use at each well location. Standards or equivalent procedures for decontamination of well purging and sampling equipment consist of washing the equipment with a nonphosphate detergent and rinsing with deionized water. Waste decontamination water and cleaning agents will be placed in drums that are used to contain well purge water.

3.11 FIELD DOCUMENTATION

Field activities will be thoroughly documented in the field log, forms, or equivalent. Below is an outline of the information that is documented during field activities, as appropriate for the conditions.

- Project name;
- Date and time of all activities;
- Sampler;
- Field instrument calibration methods and remarks;
- Well identification number;
- Well description, including casing size;
- Description of well condition;
- Initial water-level measurement with point of reference (top of casing) and time of measurement;
- Well volume calculations;
- Presence and thicknesses of immiscible layers, if present;
- Physical description of groundwater (color, odor, turbidity);
- Temperature, conductivity, and pH measurements;
- Sample time, date and description; and
- Samples collected (number of bottles).

4 LABORATORY QUALITY ASSURANCE AND QUALITY CONTROL

All analytical data submitted will be examined so that the data quality objectives are considered and met prior to submittal. The quality assurance and quality control (QA/QC) results, supporting data, and data review by the laboratory will be included. Any potential impacts will be reported such as the bias on the quality of the data, footnotes in the report, and anything of concern that was identified in the laboratory case narrative summary.

The laboratory will document and report all problems and observed anomalies associated with the analysis. If analysis of the data indicates that the data fails to meet the quality control goals for the laboratory's analytical data analysis program, the Landfill Owner/Operator in consultation with the laboratory and consultant will determine if the data is usable. If the evaluation determines the analytical data may be utilized, the problems and corrective action that the laboratory identified during the analysis will be included in a Laboratory Case Narrative (LCN).

A LCN report for problems and anomalies observed will be included with the report. The LCN will report the following information:

- The exact number of samples, testing parameters and sample matrix.
- The name of the laboratory involved in the analysis. If more than one laboratory is used, all laboratories will be identified in the case narrative.
- The test objective regarding samples.
- Explanation of each failed precision and accuracy measurement determined to be outside of the laboratory and/or method control limits.
- Explanation if the effect of the failed precision and accuracy measurements on the results induces a positive or negative bias.
- Identification and explanation of problems associated with the sample results, along with the limitations these problems have on data usability.
- A statement on the estimated uncertainty of analytical results of the samples when appropriate and/or requested.
- A statement of compliance and/or noncompliance with the requirements and specifications. Exceedance of holding times and identification of matrix interferences will be identified. Dilutions will be identified and if dilutions are necessary, they will be done to the smallest dilution possible to effectively minimize matrix interferences and bring the sample into control for analysis.
- Identification of any and all applicable quality assurance and quality control samples that will require special attention by the reviewer.

• A statement on the quality control of the analytical method of the permit and the analytical recoveries information will be provided when appropriate and/or when requested.

In addition to the LCN, the following information will be submitted for all analytical data:

- A table identifying the field sample name with the sample identification in the laboratory report.
- Chain of custody.
- An analytical report that documents the results and methods for each sample and analyses to be included for every analytical testing event. These test reports will document the reporting limit/method detection limit the laboratory used.

GROUNDWATER MONITORING REQUIREMENTS 5

Groundwater monitoring is to follow the requirements for detection, assessment, and corrective action monitoring as outlined in applicable parts of 30 TAC §352.931 and 40 CFR §257.93.

5.1 GROUNDWATER MONITORING PARAMETERS AND ANALYTICAL METHODS (30 TAC §352.931 [40 CFR §257.93(a)(3)])

The Landfill will establish background limits for the constituents listed in Appendix III and Appendix IV of 40 CFR Part 257, adopted by reference in 30 TAC §352.1421 and §352.1431, and listed in Table 5-1.

Table 5-1	Constituents to be	Tested
Part 257 Appendix	Constituent	Method Number
III	Boron	6010B
III	Calcium	6010B
III	Chloride	9056
III	Fluoride	9056
III	pН	9040C
III	Sulfate	9056
III	Total Dissolved Solids	160.1
Part 257 Appendix	Constituent	Method Number
IV	Antimony	6010B
IV	Arsenic	6010B
IV	Barium	6010B
IV	Beryllium	6010B
IV	Cadmium	6010B
IV	Chromium	6010B
IV	Cobalt	6010B
IV	Fluoride*	9056
IV	Lead	6010B
IV	Lithium	6010B
IV	Mercury	7470A
IV	Molybdenum	6010B
IV	Selenium	6010B
IV	Thallium	6010B
IV	Radium 226/228	903.1/904.0

*Fluoride is listed twice in Table 5-1 because Part 257 includes it in both Appendices III and IV

Approved analytical methods to be used for testing are listed for each constituent in Table 5-1; equivalent or better methods may be substituted.

5.2 MONITORING FREQUENCY

Eight (8) background samples will be obtained quarterly. This interval is estimated to be sufficient to obtain "statistically independent" samples and allow for seasonal variation.

After the completion of background monitoring, the monitoring wells will be sampled twice a year at roughly 6-month intervals for the constituents listed in Appendix III. An effort will be made to perform the semiannual sampling consistently in the same (2) months each year.

Monitoring wells BW-1, MW-1, MW-2, and MW-3 completed the eight (8) background samples in August 2017; and at the time of developing this Registration Application, MW-4 and 5 have completed three of the background samples.

5.3 STATISTICAL METHODS (30 TAC §352.931 [40 CFR §257.93(g)])

Once background sampling is completed, statistical evaluation of Appendix III detection groundwater-monitoring constituents is required. The statistical analysis will meet the standards described in 40 CFR 257.93(g), and will include use of time series charts, Shewhart-CUSUM control charts for normally-distributed data, and prediction intervals for data that could not be normalized. Intra-well statistical methods are appropriate in most cases. In some circumstances, such as significant concentrations of constituents in upgradient wells, inter-well methods may be the most appropriate. As the database increases over time, different statistical methods may be required.

Statistical analysis will be performed on each of the Appendix III constituents that are detected in downgradient wells, using methods cited above that are appropriate for the distribution of the concentration values of the constituents. Statistical analysis will commence upon completion of the first detection monitoring event for each downgradient well.

A Statistically Significant Increase (SSI) will be determined using procedures as described above and outlined in §257.93(g) and (h). The analysis will be aided by an electronic database used in conjunction with software suited to statistical analysis of groundwater monitoring data. An unconfirmed SSI can be verified by resampling within sixty (60) days of determining the unconfirmed SSI.

If there is a reasonable cause to think that a source other than the Landfill caused the SSI or that the SSI resulted from error in sampling, analysis, or statistical evaluation, or from natural variation in groundwater quality, then a report demonstrating the alternate source may be issued. In accordance with TAC §352.951(d), to pursue an Alternate Source Demonstration (ASD), the intention for must be made in writing to the executive director of the TCEQ within 14 days of determining an SSI over background limit. The ASD will be submitted within 90 days of determining an SSI.

Unless an ASD is completed in accordance with \$257.94(e)(2), assessment monitoring will be implemented in accordance with \$257.93(h) and \$257.95 whenever a SSI has been confirmed for one or more of the Appendix III constituents. In accordance with \$257.95(b), within ninety (90) days of confirming an SSI, and annually thereafter, each well will be sampled for all Appendix IV

constituents, in addition to the routinely sampled Appendix III constituents. Any constituent(s) detected as a result of the Appendix IV analysis will continue to be analyzed during subsequent semiannual events in accordance with §257.95(d)(1). Eight (8) semiannual samples from each well will be collected and analyzed for the detected Appendix IV constituents to establish background levels for the additional Appendix IV constituent(s). In accordance with §257.95(e), if all of the Appendix III and IV constituents fall below statistical background levels for two (2) consecutive events, normal detection monitoring of Appendix III constituents will resume. If concentrations of any constituents remain above background levels, assessment monitoring will continue in accordance with §257.95(f).

If one or more of the Appendix III or IV constituents exceeds the background statistical level established by eight (8) events, one of following two (2) procedures will be implemented:

- Procedures listed in §257.95(g) will be followed, including implement Assessment of Corrective Measures as detailed in §257.96 and subsequent actions detailed in §257.97 and §257.98. The nature and extent of any release will be characterized. At least one (1) additional monitoring well will be installed between the monitoring well with the SSI and the Landfill Registration Boundary.
- (2) Demonstrate a source other than the Landfill is the cause of the SSI in accordance with §257.97 257.95(g)(3)(ii).

6 RECORDKEEPING, NOTIFICATION, AND POSTING OF INFORMATION TO THE INTERNET ((30 TAC §352.931 [40 CFR §257.93 (J)])

The Landfill Owner/Operator will maintain a copy of this Plan in the Site Operating Record and on the Landfill's publicly accessible website consistent with 40 CFR §257.105(f), §257.106(f), §257.107(f), and Section 4 of the SOP (Part V).

All reports will be prepared under the supervision of and certified by a registered professional engineer in the State of Texas. Recordkeeping, reporting, and public notification will be implemented in accordance with §257.105 through §257.107. An annual groundwater monitoring report will be prepared in accordance with §257.105(h), placed in the Site Operating Record, and posted in the Landfill's publicly accessible website consistent with §257.105(h)(6), placed in the Site Operating Record, and semiannual reports will be prepared in accordance with §257.105(h)(6), placed in the Site Operating Record, and posted in the Landfill's publicly accessible website consistent with §257.105(h)(6), placed in the Site Operating Record, and posted in the Landfill's publicly accessible website consistent with §257.105(h)(6), placed in the Site Operating Record, and posted in the Landfill's publicly accessible website consistent with §257.107.

If one or more constituents in Appendix IV are detected at statistically significant levels above the groundwater protection standard established for the Landfill, the Landfill Owner/Operator will notify the TCEQ and any local pollution agency with jurisdiction that has requested to be notified, in writing within 14 days of the determination in accordance with §352.951(d). If one or more constituents in Appendix IV are detected at statistically significant levels above the groundwater protection standard established for the the Landfill, the Landfill Owner/Operator may submit an alternative source demonstration in accordance with §257.95(g)(3) to the TCEQ for review. This demonstration will be submitted to the TCEQ and any local pollution agency with jurisdiction within 90 days of detection and will be certified in accordance with §352.4.

In accordance with 30 TAC §352.931(b), any changes to this GWSAP will be approved by the TCEQ in accordance with §352.131.

APPENDIX VI.B

GEOLOGY AND GROUNDWATER SUPPLEMENTAL INFORMATION

GROUNDWATER MONITORING SYSTEM CERTIFICATION REPORT FOR SOLID WASTE DISPOSAL FACILITY, SANDY CREEK ENERGY STATION, RIESEL, MCLENNAN COUNTY, TEXAS, GEOSYNTEC CONSULTANTS, MARCH 2016.

GROUNDWATER MONITORING SYSTEM CERTIFICATION REPORT FOR SOLID WASTE DISPOSAL FACILITY

20

Sandy Creek Energy Station Riesel, McLennan County, Texas

Submitted to

NAES Corporation Sandy Creek Energy Station 2161 Rattlesnake Road

2161 Rattlesnake Road Riesel, Texas 76682

Submitted by

Geosyntec[▶]

consultants

engineers | scientists | innovators Engineering Firm Registration No. 1182 8217 Shoal Creek Blvd, Suite 200 Austin, Texas 78757

March 2016

TABLE OF	CONTENTS
----------	----------

Table of Con	itentsi							
List of Table	esii							
0	esii							
List of Draw	ingsii							
	ndicesii							
	ION 1 Introduction1-1							
1.1	Purpose1-1							
1.2	Report Organization1-1							
SECTION 2	Background Information2-1							
2.1	Site Location							
2.2	Description of SWDF2-1							
2.3	Regional Setting2-2	,						
	2.3.1 Physiography2-2							
	2.3.2 Geology and Hydrogeology2-2	,						
2.4	Site Setting2-2							
	2.4.1 Topography2-2	1						
	2.4.2 Stratigraphy2-3	;						
	2.4.3 Hydrostratigraphy2-3	;						
SECTION 3	Piezometers and Monitoring WellS							
3.1	Overview							
3.2	Piezometer and Well Design and Installation							
3.3	Piezometer and Well Construction	ļ						
3.4	Piezometer and Well Development	ļ						
3.5	Slug Testing							
3.6	Piezometer and Well Survey							
SECTION 4	Considerations for Groundwater Monitoring System Design4-1							
4.1	Overview4-1							
4.2	Thickness of Uppermost Water Bearing Zone4-1							
4.3	Groundwater Elevations and Flow Directions4-1							
4.4	Average Groundwater Flow Velocity4-2							
4.5	SWDF Features							
	4.5.1 Landfill Liner Grades and Sumps4-2	•						
	4.5.2 Leachate Evaporation Pond	;						
	4.5.3 Stormwater Pond and Swales							
4.6	Conclusions4-3							

SECTION 5 Certification	
SECTION 6 References	

LIST OF TABLES

Table 1Monitoring Well and Piezometer Construction Details and Groundwater
Elevations

LIST OF FIGURES

- Figure 1 Groundwater Monitoring Well Location Map
- Figure 2Potentiometric Surface Map (October 2015)
- Figure 3 Potentiometric Surface Map (November 2015)
- Figure 4 Potentiometric Surface Map (December 2015)

LIST OF DRAWINGS

Drawing 1 Site Layout (Geosyntec, 2014)

LIST OF APPENDICES

- Appendix A Boring Logs for Groundwater Monitoring Wells (BW-1 and MW-1 to MW-3) and Piezometer (GB-2)
- Appendix B Monitoring Well and Piezometer Data
- Appendix C State of Texas Well Reports
- Appendix D Survey Data
- Appendix E Supplemental Documentation

SECTION 1

INTRODUCTION

1.1 <u>Purpose</u>

The purpose of this report is to present the groundwater monitoring system for the Solid Waste Disposal Facility (SWDF) at the Sandy Creek Energy Station (Site) in Riesel, McLennan County, Texas and to demonstrate it complies with the United States Environmental Protection Agency's (EPA's) groundwater monitoring system requirements of the new Coal Combustion Residuals (CCR) Rule (40 CFR § 257.91).

This report was prepared by Mr. Alexander Brewster and Ms. Lindsay O'Leary, P.E. of Geosyntec Consulants (Geosyntec) and reviewed by Dr. Beth Gross, P.E., also of Geosyntec, in accordance with the senior review policies of the firm.

1.2 <u>Report Organization</u>

This report is organized as follows:

- Section 2, Background Information, describes the Site location, the SWDF layout and design, and the regional and site settings with respect to geology and hydrogeology;
- Section 3, Piezometers and Monitoring Wells, describes piezometer and well design, installation, construction, development, slug tests, and survey;
- Section 4, Considerations for Groundwater Monitoring System Design, describes the uppermost water bearing zone beneath the Site, observed groundwater elevations and flow directions, average flow rate, and SWDF features considered during design of the groundwater monitoring system;
- Section 5, Certification, provides certification of the groundwater monitoring system by qualified professional engineers; and
- Section 6, References, lists references that were used in development of this Report.

Appendices A to D, respectively, contain boring logs, monitoring well and piezometer data, State of Texas well reports, and survey data. Appendix E contains supplemental documentation on the geotechnical investigations that have been conducted at the Site.

SECTION 2

BACKGROUND INFORMATION

2.1 <u>Site Location</u>

The 698-acre Sandy Creek Energy Station is located in southeast McLennan County approximately 17 miles southeast of Waco, Texas, west of the City of Riesel. It is bounded on the south by FM 1860 and on the west and north by Rattlesnake Road (Drawing 1).

2.2 <u>Description of SWDF</u>

The SWDF is a CCR landfill located on the southwest corner of the Site (Drawing 1). It is operated under Texas Commission on Environmental Quality (TCEQ) Registration No. 88448 and used for disposal of CCR and incidental waste generated during coal combustion at the Site.

The SWDF will ultimately occupy approximately 65 acres and will consist of four cells, referred to as Cells 1 to 4 (Drawing 1). The base of Cell 1 was constructed approximately at grade, while the based of Cell 2 was constructed up to about 15 feet (ft) below grade. Subgrade elevations for the cells range from approximately 449 to 495 ft-mean sea level (ft-msl). Waste placement in the SWDF began in Cell 1 after start up of the Sandy Creek Energy Station in October 2011. Because the start up period took an extended period of time, only a small amount of waste was placed during the first year of landfill operation. Cell 2 was constructed in early 2014. As of November 2015, Cell 1 had been filled to its initial waste grades, and waste placement was occurring in the south end of Cell 2. Waste had not been placed on the north side of Cell 2. Based on the current waste generation rates, it is anticipated that Cell 3 will not be operational until 2022. The approximate design life of the SWDF is 35 years.

The liner system for the SWDF is designed to convey leachate to the south side of the landfill for removal. The liner system for Cell 1 consists of a 3-ft thick compacted clay liner (with hydraulic conductivity no greater than 1×10^{-7} centimeter/second [cm/s]) overlain by a 6-in. thick protective soil layer and then a leachate collection piping system with pipes at 50-ft spacings. The liner system for Cell 2 consists of, from bottom to top: a 3-ft thick compacted clay liner (with hydraulic conductivity no greater than 1×10^{-7} cm/s), double-sided geocomposite drainage layer for leachate collection, and 1-ft thick protective cover.

Leachate from the SWDF is piped to a leachate evaporation pond located southwest of Cell 2 (Figure 1). The pond has a composite liner consisting of a 2-ft thick compacted clay liner (with hydraulic conductivity no greater than 1×10^{-7} cm/s) overlain by a 60-mil thick high density polyethylene (HDPE) geomembrane.

2.3 <u>Regional Setting</u>

2.3.1 Physiography

As described by Black and Veatch Corporation (B&V) (2009), the Site lies in the Blackland Prairies province of the Gulf Coastal Plains. This province is located northeast of the Central Texas uplift and consists of chalks and marls that weather to clay soils.

2.3.2 Geology and Hydrogeology

Two integrated geologic formations of the Taylor Group from the Upper Cretaceous period lie below the site. The uppermost is the Wolfe City Formation, which consists of marl, sand, sandstone, and clay interbedded with thin sandstone and sand lenses and was estimated by B&V (2009) to be approximately 150 ft thick at the Site. The Ozan Formation, primarily clay, grades upward into the Wolfe City and is reported to be 500 to 775 ft thick in the Waco area (Proctor et al., 1970).

Below the Taylor are three addition groups of the Upper Cretaceous period (Austin, Eagle Ford, and Woodbine) and two groups of the Lower Cretaceous period (Washita and Fredericksburg), which consist primarily of chalk, limestone, marl, clay, and shale and overlie the Trinity Group (American Association of Petroleum Geologists [AAPG], 1979). The Trinity Group includes, from top to bottom, the Paluxy, Glen Rose, and Travis Peak/Twin Mountains Formations, which compose the uppermost aquifer beneath the Site (George et al., 2011). The Trinity Aquifer, a major aquifer in Texas, generally consists of sands, gravels, and conglomerates interbedded with limestone, shale, clay and marl. There are no other minor or major aquifers in the vicinity of the Site (George et al., 2011). The Trinity Aquifer is located more than 1,000 ft below ground surface at the Site and has combined freshwater saturated thickness of approximately 1,000 ft (George et al., 2011). The overlying Cretaceous formations serve as confining units between the SWDF and the Trinity Aquifer. Due to the significant thickness of these units, the potential for landfill constituents to migrate from the SWDF to the Trinity Aquifer during the active life and post-closure care period does not exist. Therefore groundwater monitoring of the Trinity Aquifer beneath the Site is not warranted.

2.4 <u>Site Setting</u>

2.4.1 Topography

Natural grades at the Site range from approximately 415 to 520 ft-msl (Drawing 1 and Appendix E). With development, a number of the natural drainage features at the Site were filled with soil to create relatively flat areas for infrastructure construction. In the area of the SDWF, ground slopes to the southwest (Figure 1).

2.4.2 Stratigraphy

Three stratigraphic units were identified in soil borings conducted to depths of up to 100 ft at the Site (B&V, 2009, 2010; Geosyntec, 2010, 2015). From top to bottom, these strata generally consist of:

- Stratum I: 1 to 12-ft thick (typical), dry to moist, soft to firm, high plasticity, brown clay with trace amounts of rounded sand and gravel;
- Stratum II: within 10 to 45-ft below ground surface (typical), dry to moist, firm to stiff, high plasticity yellow-brown clay grading to gray with depth, with trace amounts of subrounded sand and gravel, occasional horizontal seams of fine sand in the upper portions of the stratum, and horizontal and vertical deposits of gypsum throughout the layer; and
- Stratum III: dry to moist, hard, high plasticity, fissile, gray clayshale with infrequent fine sand layers and very infrequent fissures and joints, typically found below depths of 50 ft in uplands and 25 ft in bottom valleys.

The locations and logs of the borings drilled in the vicinity of the SWDF and discussed in the B&V (2010) report are provided in Appendix E. The geologic cross section for the SWDF area developed by B&V (2010) is also included in Appendix E. In addition to Strata I to III, Geosyntec also encountered soil fill when drilling. The locations and logs of the borings drilled in 2010 and 2015 in the vicinity of the SWDF under the direction of Geosyntec are provided in Appendices A and E. The results of geotechnical laboratory tests conducted on soil samples collected by B&V and Geosyntec during subsurface investigation activities are also included in Appendix E.

Cells 1 and 2 of the SWDF as well as the leachate evaporation pond extend into Strata I and II clayey soils.

2.4.3 Hydrostratigraphy

While B&V (2009) found groundwater in Stratum II at depths of 14 to 43 ft below ground surface in some of the borings and all of the piezometers in the northwest portion of the Site, they did not encounter groundwater in borings drilled in the vicinity of the SWDF. B&V (2009) concluded that water flowed in cracks and fissures in the clay. The majority of the fissures were in-filled with sand and gypsum, indicating secondary mineralization and water flow at certain depths, and some fissures were stained with iron oxide. In the northwest portion of the Site free water was commonly encountered within the sand layers found in Stratum II at depths greater than 20 ft. The groundwater encountered in Stratum II is considered transient and perched and is not expected to be found in significant quantities. Hydraulic conductivity tests were conducted on four undisturbed soil samples collected from Stratum II. Measured vertical hydraulic

conductivities ranged from to 4.6×10^{-9} to 6.6×10^{-8} cm/s (Appendix E). Slug tests were conducted by Geosyntec in three borings drilled in 2010 in the vicinity of the leachate evaporation pond. Estimated horizontal hydraulic conductivities for Stratum II ranged from 1.2×10^{-4} to 3.1×10^{-4} cm/s over saturated soil thicknesses of approximately 7.8 to 12.5 ft.

Based their hydrogeologic characteristics, Stratum I is generally an unsaturated zone, Stratum II is the uppermost water bearing zone beneath the Site, and Stratum III is an aquitard or lower confining layer for Stratum II. The top of Stratum III generally follows topography and slopes to the southwest in the SWDF area.

EPA's new CCR Rule requires monitoring of groundwater in the uppermost aquifer beneath an active CCR landfill. As defined by 40 CFR §257.53, "*Aquifer* means a geologic formation, group of formations, or portion of a formation capable of yielding usable quantities of groundwater to wells or springs." The uppermost aquifer, the Trinity Aquifer, is located more than 1,000 ft below ground surface and is isolated from the Site by thick Cretaceous confining units. With this significant hydraulic isolation, there is no need to monitor the Trinity. As is standard practice in Texas and other states for landfills sited over clay formations, the uppermost water bearing zone is often considered an "aquifer" for groundwater monitoring purposes. Although Stratum II is not an aquifer and does not yield useable quantities of water for water supply, it is anticipated to yield sufficient groundwater for a groundwater monitoring program.

SECTION 3

PIEZOMETERS AND MONITORING WELLS

3.1 <u>Overview</u>

In August and September 2010, Geosyntec directed the drilling of five soil borings (GB-1 to GB-5) in the vicinity of the current leachate evaporation pond to collect geotechnical data and evaluate groundwater levels in the pond area as part of the pond design. The subsurface investigation program was completed under the direction of Edward B. Dolan, P.G., a licensed geoscientist in the State of Texas. Boring locations are shown on Figure 1. Piezometers were constructed in borings GB-1 to GB-4 and screened in Stratum II above the Stratum II/Stratum III interface. While water levels were recorded in Piezometers GB-2 to GB-4, Piezometer GB-1 remained dry. Slug tests were conducted in Piezometers GB-2 to GB-4. Piezometers GB-1 and GB-4 were decommissioned prior to pond construction.

In September 2015, Geosyntec directed the drilling of five additional borings (GB-6, GB-7, BW-1, MW-1, and MW-2) in the SWDF area as part of the development of the proposed groundwater monitoring system. The subsurface investigation program was completed under the direction of Lindsay A. O'Leary, P.E., a licensed professional engineer in the State of Texas. Boring locations are shown on Figure 1. Borings GB-6 and GB-7 were dry and were plugged and abandoned; piezometers were installed in BW-1, MW-1, and MW-2 and screened in Stratum II above the Stratum II/Stratum III interface.

Based on the location of the piezometers relative to SWDF, four piezometers are proposed to be used as wells in the groundwater monitoring system. Well BW-1 will serve as the background well, and Wells MW-1, MW-2, and MW-3 (former GB-3) will serve as downgradient wells. Piezometer GB-2 will be retained for water level measurements to provide more control for evaluating groundwater flow directions and gradients.

Boring logs are provided in Appendices A and E. Well and piezometer construction logs are included in Appendices B and E. State of Texas well reports are provided in Appendices C and E. Piezometer and well survey information is presented in Appendix D. The remainder of this section primarily describes the design, installation, construction, and development of Piezometer GB-2 and Wells BW-1, MW-1, MW-2, and MW-3.

3.2 <u>Piezometer and Well Design and Installation</u>

A Geosyntec engineer provided oversight of piezometer installation in 2010 and groundwater monitoring well installation in 2015. Prior to conducting field work at the Site, Geosyntec prepared a Site-specific Health and Safety Plan (HASP) and a Task Hazard Analysis (THA), contacted the Texas utility notification services and NAES regarding underground utilities and other subsurface lines, and attended a Site-specific health and safety orientation. During field work at the Site, Geosyntec conducted daily safety briefings and utilized the appropriate professional protective equipment (PPE) prescribed in the HASP.

Drilling performed in 2010 used both rotary wash and hollow stem auger; in 2015, the hollow stem auger method was used. Soil cores were collected continuously using a five-foot long CME core barrel, and the core lithology was logged by a Geosyntec engineer in general accordance with American Society for Testing and Materials (ASTM) D 2487. Thin-walled tube samples were also collected at select locations for geotechnical laboratory testing. Drilling equipment was cleaned prior to use at the Site and after completing work at each borehole location. Soil cores and drill cuttings were distributed to the land surface in the vicinity of each borehole. Cleaning water and development water were placed in 55-gallon steel drums with lids, labeled with non-hazardous waste identification decals, and staged on wooden pallets for subsequent management by NAES.

During the 2010 field activities, five borings (GB-1 to GB-5) were drilled 17 to 32 ft below ground surface by Total Support Services of Austin, Texas, a Texas licensed water well driller. Four of the five borings (GB-1 to GB-4) were completed as piezometers; GB-5 was plugged with a cement-bentonite grout mixture. In general, piezometers were installed though Strata I and II and approximately 1-ft into Stratum III and were screened 10 ft from the Stratum II/Stratum III interface upward. Piezometers GB-2 to GB-4 subsequently yielded water; Piezometer GB-1 remained dry. Slug tests were subsequently conducted in Piezometers GB-2 to GB-4. Piezometers GB-1 and GB-4 were plugged and abandoned on 12 April 2011, prior to the construction of the leachate evaporation pond (Fugro Consultants, Inc., 2011).

During the 2015 field activities, five borings (GB-6, GB-7, BW-1, MW-1, and MW-2) were drilled 25 to 50 ft below ground surface by Best Drilling Services, Inc. (Best) of Friendswood, Texas, a Texas licensed water well driller. Groundwater was observed in borings BW-1 and MW-1 after the boreholes were left open overnight. Boring MW-2 was initially observed to be dry, but groundwater was observed five days after well development. These three borings (BW-1, MW-1, and MW-2) were completed as piezometers with a similar design to those installed in 2010. Two borings (GB-6 and GB-7) were observed to be dry boreholes with little evidence of water transmission (sand seams, iron oxide staining, gypsum seams). These borings were plugged with a cement-bentonite grout mixture. Geosyntec also observed groundwater in previously-installed Piezometers GB-2 and GB-3.

Based on the observation of groundwater in Piezometer GB-3 in September 2015 and the geographical location of the piezometer relative to the SWDF and leachate evaporation pond, Piezometer GB-3 was redesignated as Well MW-3 and incorporated into the groundwater monitoring network. Although groundwater was also observed in Piezometer GB-2, the piezometer was not considered for use as a well because it is located approximately 40 ft south of the proposed limit of waste (i.e., SWDF footprint) (Figure 1) and will ultimately be overlain

by approximately 25 ft of structural fill placed during construction of the southwest portion of the SWDF perimeter berm.

3.3 <u>Piezometer and Well Construction</u>

The Geosyntec engineer logging the borings determined where to set the piezometer and well screens based on the observations of the geologic strata encountered. Boring logs included in Appendix A contain details on the materials accounted and groundwater levels observed at the time of drilling. Details on the piezometer and well construction materials, dimensions, elevations, and locations are included in Appendix B.

The piezometer and wells were constructed with new 2-in. diameter polyvinyl chloride (PVC) casings, screens, and bottom caps supplied in clean plastic bags. All PVC joints were flush threaded. Screens had 0.01-inch slots, which are compatible with the gradation of the sand pack used to fill the annulus between the borehole and the well casing. As described below, all piezometers and wells were cased in a manner that maintains the integrity of the borehole.

The piezometer or well, consisting of a solid casing and slotted screen, was set at the elevation determined by the Geosyntec engineer. The sand pack was then installed by slowly pouring the sand material into the borehole, around the piezometer or well, to approximately 1 to 2 ft above the piezometer or well screen. Then, a 2-ft thick (minimum) bentonite seal was constructed above the sand pack. For BW-1, MW-1, and MW-2, after the bentonite was hydrated, a cement/bentonite grout was gravity fed into the borehole from the top of the bentonite seal to approximately 2 ft below ground surface. For GB-2 and MW-3, due to the proximity of the sand pack to the ground surface, hydrated bentonite chips were placed in the borehole between the top of the sand pack and the concrete pad. The above-ground (i.e., stick-up) piezometer or well was completed by filling the remainder of the borehole with concrete and constructing a concrete pad around it. The stick-up portion of the piezometer or well extended through the concrete pad and was housed in a locking aluminum well casing (i.e., protective outer casing). Concrete bollards (i.e., protection posts) were installed at each corner of the concrete pad. State of Texas well reports documenting the piezometer or well construction were submitted by the drillers to the Texas Water Development Board. Copies of the reports are provided in Appendix C.

3.4 <u>Piezometer and Well Development</u>

Geosyntec developed Piezometer GB-2 and Well MW-3 in 2010 using a surging and purging technique with a surge block and submersible pump. Best developed Wells BW-1, MW-1, and MW-2 and purged Well MW-3 in September 2015 using a submersible pump to surge and purge. The following details the development activities.

Each piezometer and well was first gauged using an electronic water level indicator to obtain the depth to water. For Piezometer GB-2 and Well MW-3, a surge block was used to suspend sediments in water and facilitate sediment removal. A submergible pump was then used to

remove the water and sediment. The pump was periodically raised and lowered along the piezometer or well screen (i.e., surged) in order to induce flow out through the screen and thereby flush the fine sediments from the filter pack. After Piezometer GB-2 and Well MW-3 were pumped dry, pumping ceased. Development was resumed six days later after allowing natural recharge to occur. Water quality parameters were measured during well development and used, along with water clarity, to evaluate when development was complete (i.e., water quality parameters had stabilized and the purged water was clear). The water quality parameters and volumes of water removed from the wells were recorded.

For BW-1, MW-1, and MW-2, a submersible pump was used to surge and purge the wells until they were pumped dry. Then potable water was added through the PVC casing and pumping was resumed. This process continued until the water remained visibly clear, at which time the well was pumped dry once more (i.e., removing added potable water). Approximately 80 to 100 gallons of water was added to and pumped from each well. The water quality parameters and volumes of water removed from the wells were measured and recorded.

MW-3 was originally developed in 2010 and subsequently purged in 2015. Best intermittently pumped five gallons of water from MW-3 and then pumped the well dry. MW-3 was allowed to recharge and then pumped intermittently at approximately 5-minute intervals until approximately 10 gallons of water was removed. MW-3 produced visibly clear water throughout purging. The water quality parameters and volumes of water removed were measured and recorded during the process.

Field equipment used for well development was cleaned prior to use between wells, and new tubing was used in each well.

3.5 <u>Slug Testing</u>

In September 2010, Geosyntec performed falling head permeability tests in Piezometers GB-2 and GB-4 and Well MW-3. The tests were performed using a solid "slug" to generate water level changes and a pressure transducer/data logger set up to monitor the water level response in the piezometers and well over time. Estimated horizontal hydraulic conductivities for Stratum II ranged from 1.2×10^{-4} to 3.1×10^{-4} cm/s (0.34 to 0.88 ft/day) over saturated soil thicknesses of approximately 7.8 to 12.5 ft. The calculated geometric mean hydraulic conductivity is 2.0×10^{-4} cm/s (0.55 ft/day). Estimated transmissitivies ranged from 2.9 to 10.9 ft²/day.

3.6 <u>Piezometer and Well Survey</u>

The physical locations, ground surface elevations (at the edge of concrete pads), and top of the inner PVC casing elevations were surveyed by Walker Partners of Waco, Texas. The survey data are provided in Appendix D.

SECTION 4

CONSIDERATIONS FOR GROUNDWATER MONITORING SYSTEM DESIGN

4.1 <u>Overview</u>

As required by 40 CFR § 257.91, a groundwater monitoring system for a CCR unit, such as the SWDF, must consist of a sufficient number of appropriately located wells to yield groundwater samples from the uppermost aquifer that represent the quality of background groundwater and the quality of groundwater passing the waste boundary of the CCR. Although the rule requires a minimum of one upgradient and three downgradient monitoring wells, the number, spacing and depths of the monitoring wells must be determined based on hydrogeology of the site including aquifer thickness, groundwater flow rates, and direction.

4.2 <u>Thickness of Uppermost Water Bearing Zone</u>

As described in Section 2.4.3, Stratum II is the uppermost water bearing zone beneath the Site and is considered the "uppermost aquifer" for the groundwater monitoring purposes. Based on the boring logs for the monitoring wells, the thickness of the water bearing zone within Stratum II (i.e., the zone with sand or gypsum lenses or iron oxide staining) is on the order of 8 ft in the vicinity of Well BW-1 and 10 to 18-ft thick along the southern boundary of the SWDF.

4.3 <u>Groundwater Elevations and Flow Directions</u>

Groundwater levels in piezometers and wells installed in 2010 and 2015 have been periodically recorded since they were installed and developed. Following stabilization of groundwater levels in the wells recently installed in September 2015, NAES personnel have been recording depth to water (DTW) measurements for Wells BW-1 and MW-1 through MW-3 and Piezometer GB-2 on a monthly basis (Table 1). Groundwater elevations were then calculated by subtracting the DTW measurements from the surveyed elevations of the tops of casings. The top of casing elevations and calculated monthly groundwater elevations are presented in Table 1. Based on the available groundwater data, groundwater elevations on the southern boundary of the SWDF in late 2010 and early 2011 are similar to groundwater elevations in late 2015 and early 2016. It is recommended that groundwater level data continue to be collected and evaluated to further assess the seasonal and temporal fluctuations in the groundwater table and, thus, groundwater flow.

Groundwater elevations observed in October, November, and December 2015 were plotted on a Site map, and potentiometric surfaces for each of these dates were contoured (Figures 2 through 4). Groundwater elevations for January 2016 were not plotted. Observed groundwater elevations, potentiometric surface maps, and the boring logs show that groundwater elevations in Stratum II generally mimics the natural ground surface topography at the site (Drawing 1) as well as the

elevation changes of the top of Stratum III. Based on these features, groundwater flow is expected to flow to the southwest. The potentiometric surfaces in Figures 2 to 4 are consistent with this Site conceptual model. The Site conceptual model is consistent with those for other Texas Sites located in similar hydrogeologic settings.

Based on the potentiometric surfaces, natural ground surface topography, top of Stratum III elevations, and locations of the SWDF and leachate evaporation pond, Well BW-1 is considered an upgradient or background well for the SWDF, and Wells MW-1 to MW-3 are considered downgradient wells. Given that only Cells 1 and 2 of the SWDF have been constructed and that these cells have only been fully operational for a relatively short period, it may also be appropriate to use groundwater samples from Wells MW-1 to MW-3 along with those from Well BW-1 to establish background conditions for the SWDF.

4.4 Average Groundwater Flow Velocity

The average velocity of groundwater moving through Stratum II was calculated using Darcy's equation:

$$v = ki/n_e$$

where v = average groundwater velocity (ft/day), k = average hydraulic conductivity (ft/day), i = average hydraulic gradient (ft/ft), and $n_e =$ effective porosity (dimensionless).

Using a geometric mean horizontal hydraulic conductivity estimated from slug tests of 0.55 ft/day, an assumed effective porosity for the clay of 0.05 (i.e., five percent of the soil matrix volume is composed of connected voids), and an average hydraulic gradient of 0.021 ft/ft, the calculated average horizontal groundwater flow rate is 0.24 ft/day (86 ft/yr).

4.5 <u>SWDF Features</u>

4.5.1 Landfill Liner Grades and Sumps

The liner system for Cells 1 and 2 is designed with a compacted clay liner and leachate collection system graded to convey leachate to the southwest corner of the cells. Leachate heads in the cells are anticipated to be highest at these locations and, therefore, the potential for leachate migration into the compacted clay liner is greater at these locations than elsewhere in the cells. Monitoring well MW-1 is located downgradient of the Cell 2 sump, and Monitoring Well MW-2 is located downgradient of the Cell 1 sump and the leachate evaporation pond. Based on the available groundwater data, Monitoring Well MW-3 is located downgradient of the sump of future Cell 3 and the leachate evaporation pond, and an additional well may be required in the future to monitor Cell 4.

4.5.2 Leachate Evaporation Pond

The existing leachate evaporation pond was constructed with a geomembrane/compacted clay composite liner. While small in footprint area compared to the SWDF, the leachate evaporation pond is operated with a higher hydraulic head than that anticipated for the SWDF. In consideration of the leachate evaporation pond, groundwater monitoring wells MW-2 and MW-3 are located hydraulically down-gradient of the pond and the SWDF.

4.5.3 Stormwater Pond and Swales

The existing stormwater pond and the drainage channel located along the eastern and southern perimeter of the SWDF (Figure 1) represents locations where accumulated surface water could potentially influence the groundwater flow direction by providing a source of additional recharge to Stratum II. However, these features were designed to drain rather than retain flow. The stormwater pond was constructed with a bleed pipe to drain the stormwater pond to approximately 1 ft deep within three days of the design storm. The drainage channels along the eastern and southern perimeter of the SWDF are designed to drain storm water offsite or to the stormwater pond.

4.6 <u>Conclusions</u>

Based on the thickness of the uppermost water bearing zone, groundwater flow direction and velocity, and SWDF features, including liner system grades and sumps, the groundwater monitoring system described in this report consists of a sufficient number of appropriately located wells to yield samples of groundwater representative of background conditions and conditions downgradient of the SWDF.

Groundwater Monitoring System Certification Report March 2016

SECTION 5

CERTIFICATION

We hereby certify as a qualified professional engineers that based on the information presented in this Groundwater Monitoring System Certification Report, the groundwater monitoring system for the SWDF has been designed and constructed to meet the requirements of 40 CFR §257.91.

X. 2 3/11/2016

Lindsay A. O'Leary, P.E. Texas Number 110164

3/11/2016 us

Beth Ann Gross, Ph.D., P.E. Texas Number 79864

5-1

SECTION 6

REFERENCES

American Association of Petroleum Geologists (1979). Geological Highway Map of Texas.

- Black & Veatch Corporation (2009). *Geotechnical Design Report, Sandy Creek Energy Station,* Apr.
- Black & Veatch Corporation (2010). Engineering Report, Sandy Creek Energy Station, Solid Waste Disposal Facility, Oct.
- Fugro Consultants, Inc. (2011). *Leachate Evaporation Pond Final Report*, prepared for Sandy Creek Services, 29 July.
- George, P.G., Mace, R.E., and Petrossian, R. (2011). *Aquifers of Texas*, Texas Waste Development Board, Report 380, July.
- Geosyntec Consultants, Inc. (2014). Site Layout, Operations Plan Solid Waste Disposal Facility (Cell 2), Drawing 1 of 16, June.
- Proctor, C.V., Jr., McGowen, J.H., and Haenggi. (1970). *Geologic Atlas of Texas, Waco Sheet*, Texas Bureau of Economic Geology.

TABLE

Table 1 Monitoring Well and Piezometer Construction Details and Groundwater Elevations SWDF Groundwater Monitoring Network, Sandy Creek Energy Station, Reisel, Texas

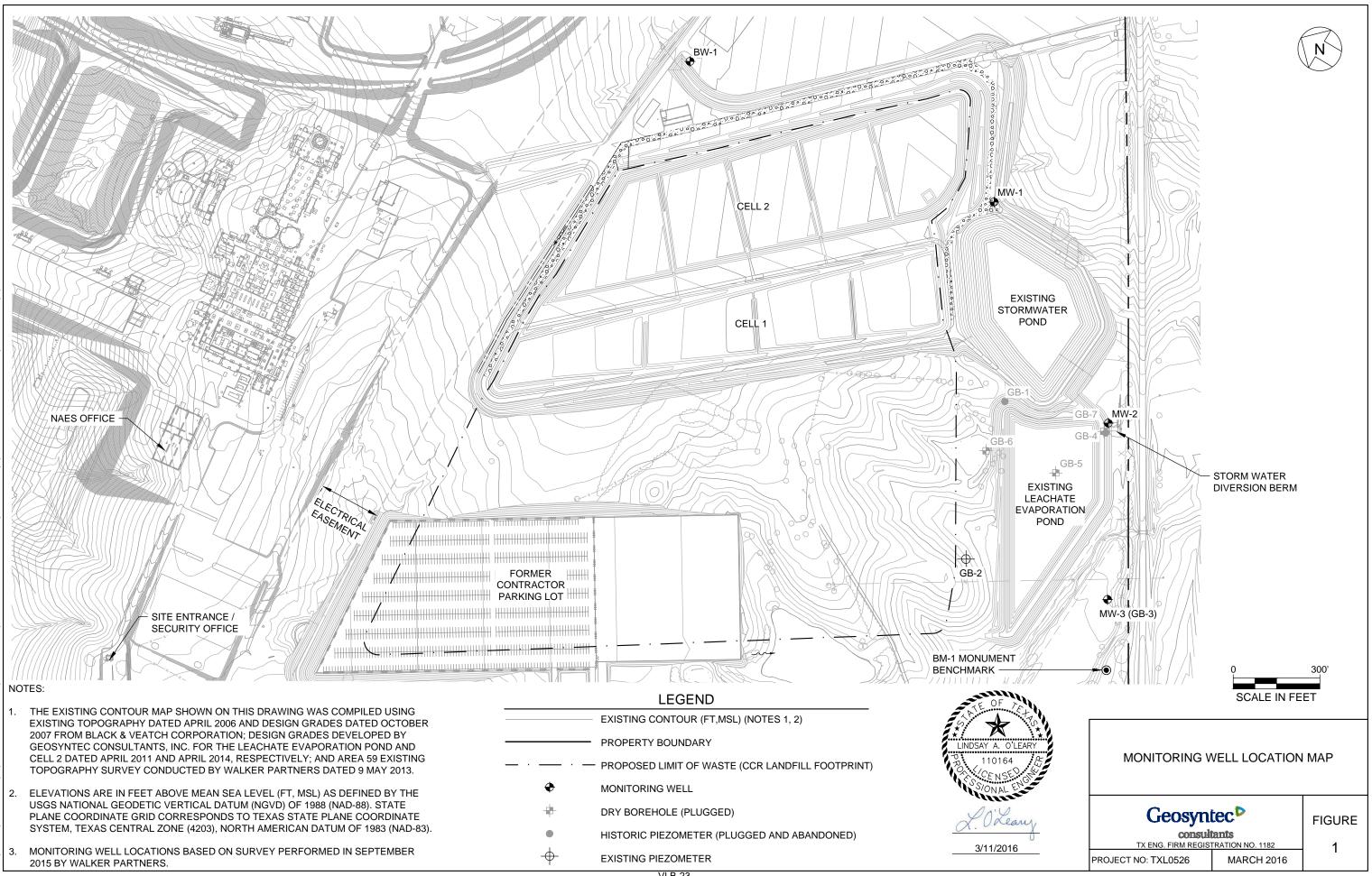
	Top of Well Casing Screen Screen Well		Well	06-Oct-15		04-Nov-15		02-Dec-15		19-Jan-16				
ID	Casing Elevation (ft msl)	Depth (ft BTOC)	Height (ft)	Length (ft)	Interval (ft bgs)	Diameter (inches)	Depth to Water (ft BTOC)	Groundwater Elevation (ft msl)						
Monitoring Wells														
BW-1	485.57	41.50	2.87	10.0	28.30 - 38.30	2	20.80	464.77	17.60	467.97	20.10	465.47	20.20	465.37
MW-1	465.87	37.25	3.02	10.0	23.90 - 33.90	2	13.60	452.27	13.40	452.47	12.50	453.37	12.40	453.47
MW-2	442.15	22.60	2.97	10.0	9.30 - 19.30	2	13.95	428.20	12.40	429.75	12.10	430.05	13.50	428.65
MW-3	430.06	19.95	2.97	10.0	5.98 - 15.98	2	12.60	417.46	8.60	421.46	7.70	422.36	8.40	421.66
Piezometer														
GB-2	447.45	22.10	2.83	10.0	9.02 - 19.02	2	13.20	434.25	13.40	434.05	11.80	435.65	11.10	436.35

Notes:

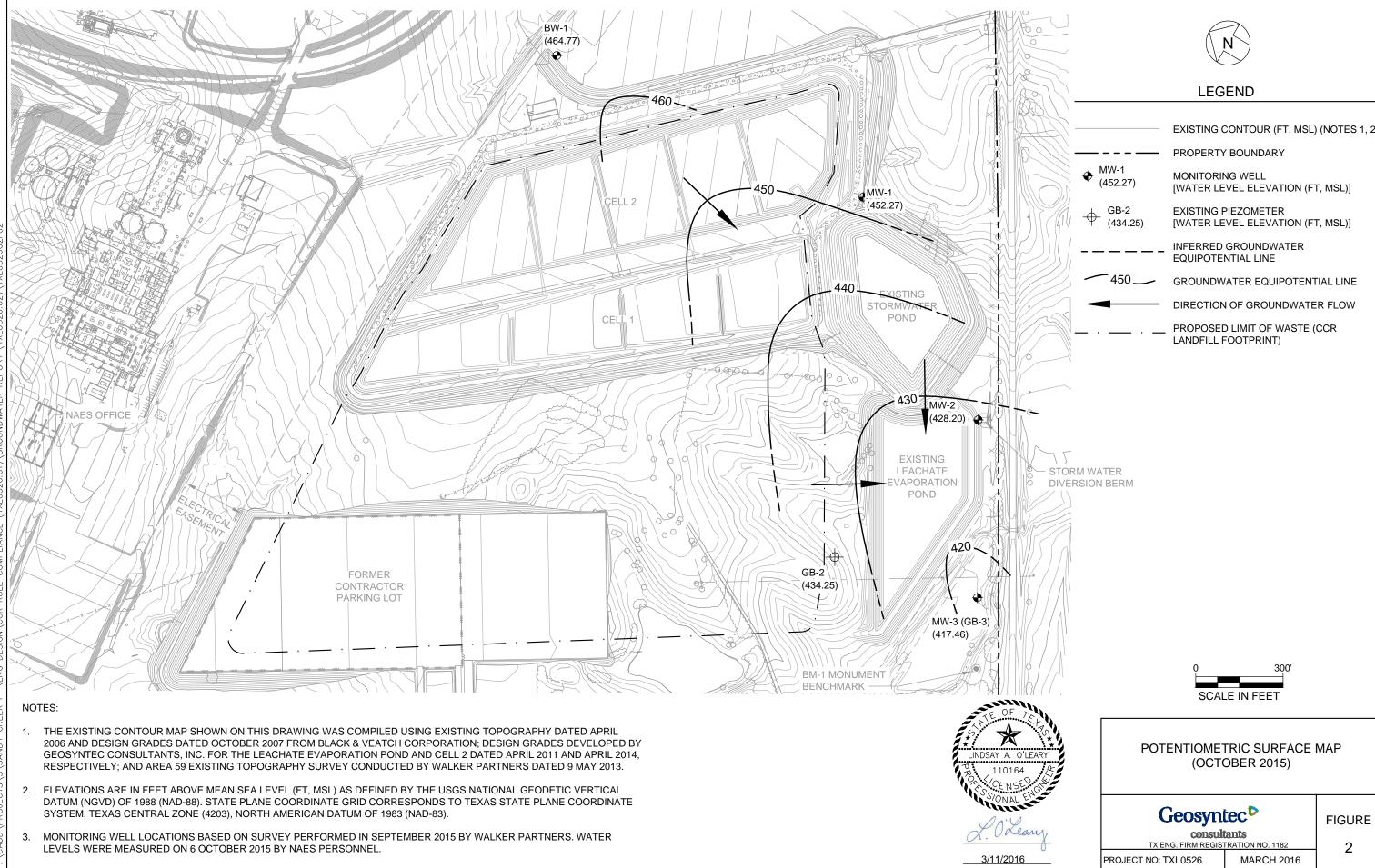
1. ft msl indicates feet above mean sea level, ft bgs indicates feet below ground surface, and ft BTOC indicates ft below top of casing.

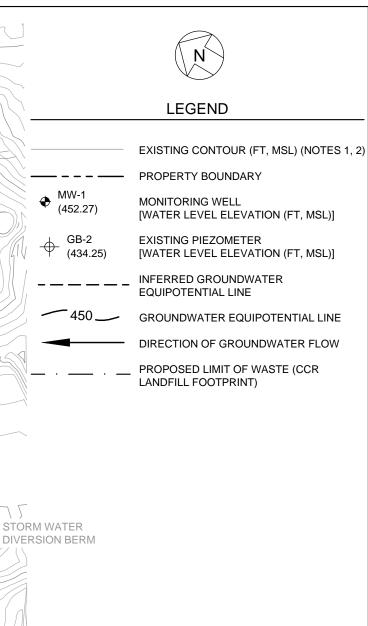
2. Top of casing elevations are taken from the survey data provided in Appendix D.

3. Monitoring well construction details are taken from the well construction logs provided in Appendix B.

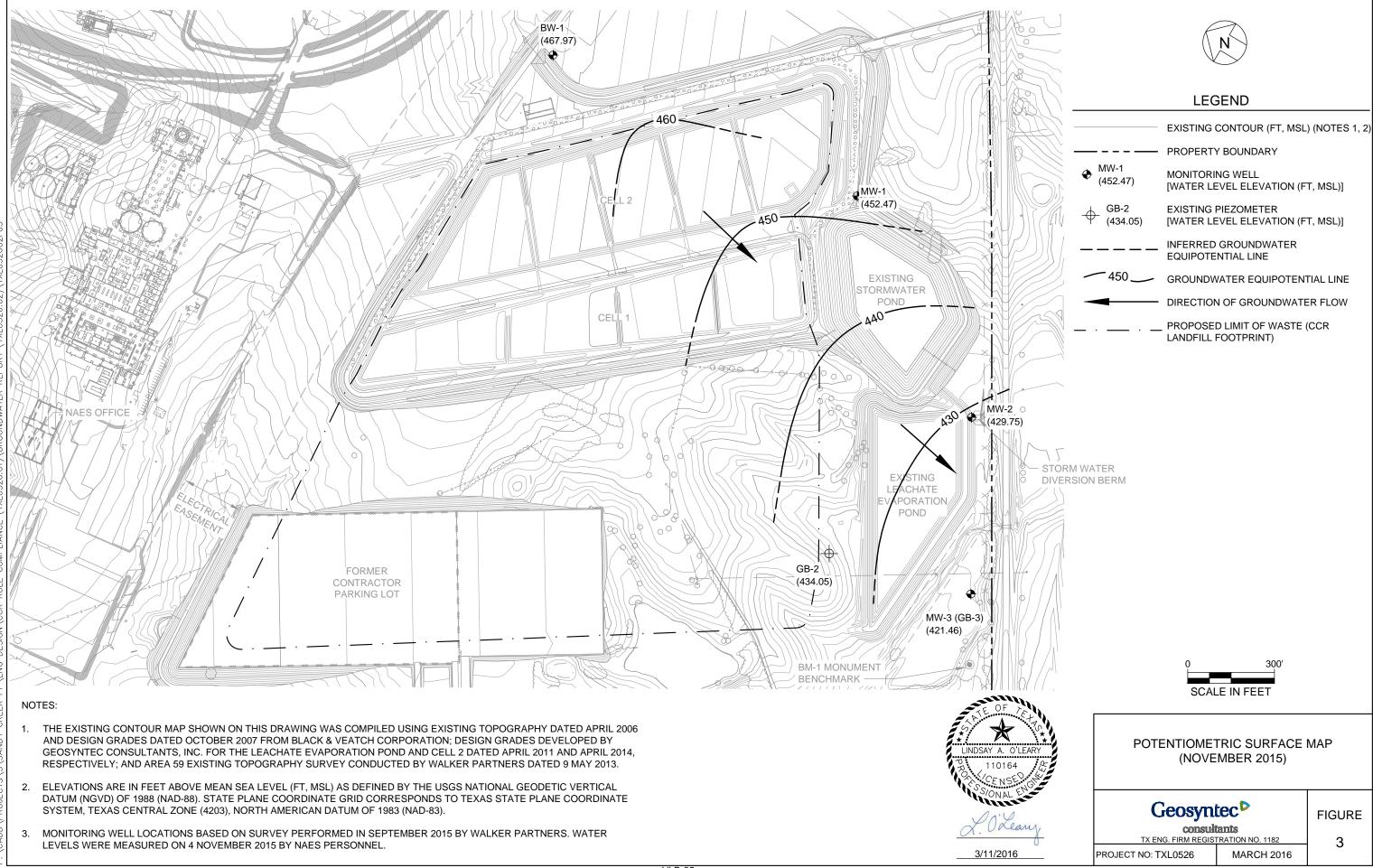

4. Groundwater elevation is calculated by subtracting the recorded depth to water (ft BTOC) from the surveyed top of casing elevation (ft msl).

5. The groundwater elevation in MW-3 (GB-3) was measured by Geosyntec on 28 September 2010 (421.38 ft msl) and 26 April 2011 (419.48 ft msl).

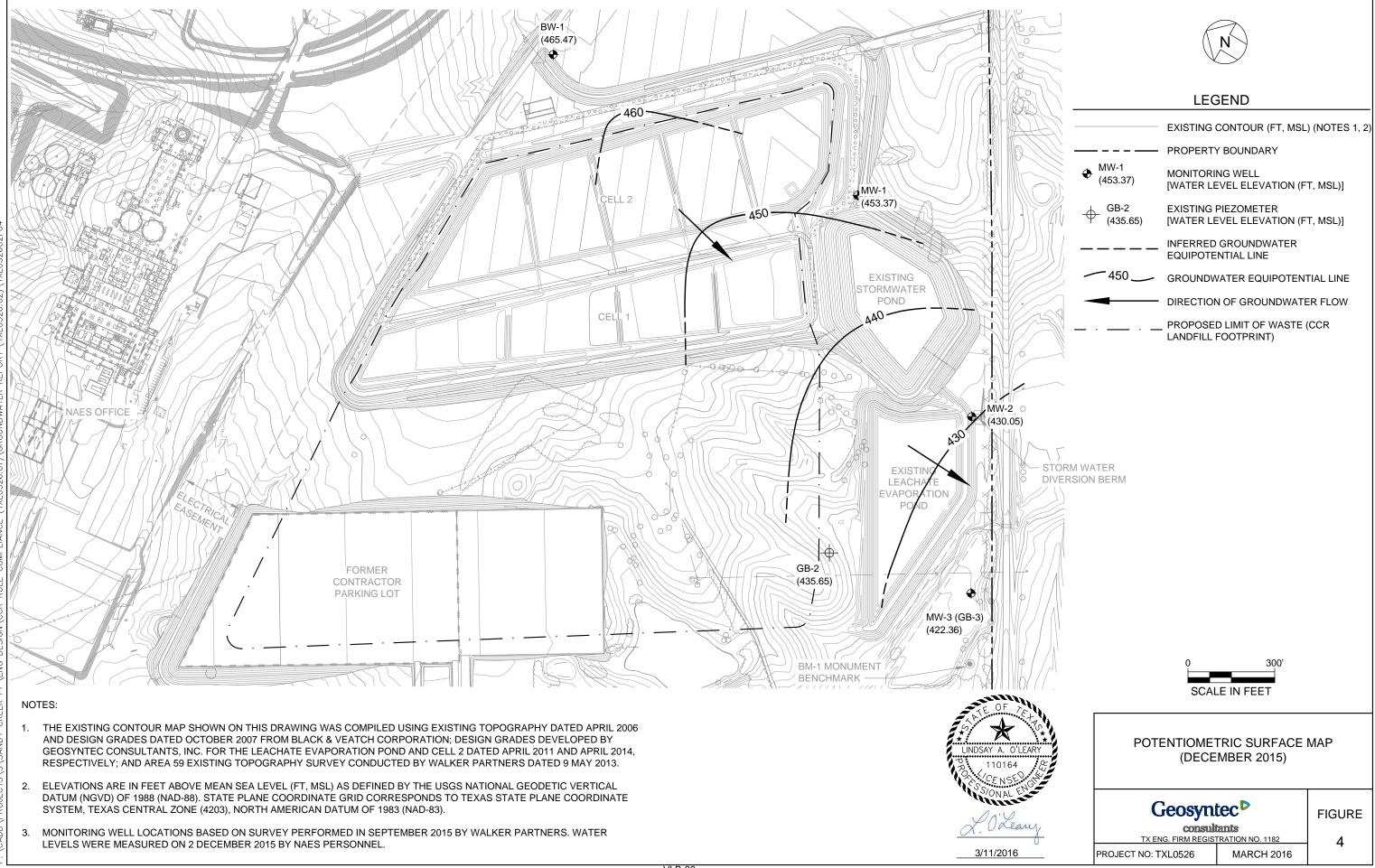

6. The groundwater elevation in GB-2 was measured by Geosyntec on 28 September 2010 (436.08 ft msl) and 26 April 2011 (434.25 ft msl).

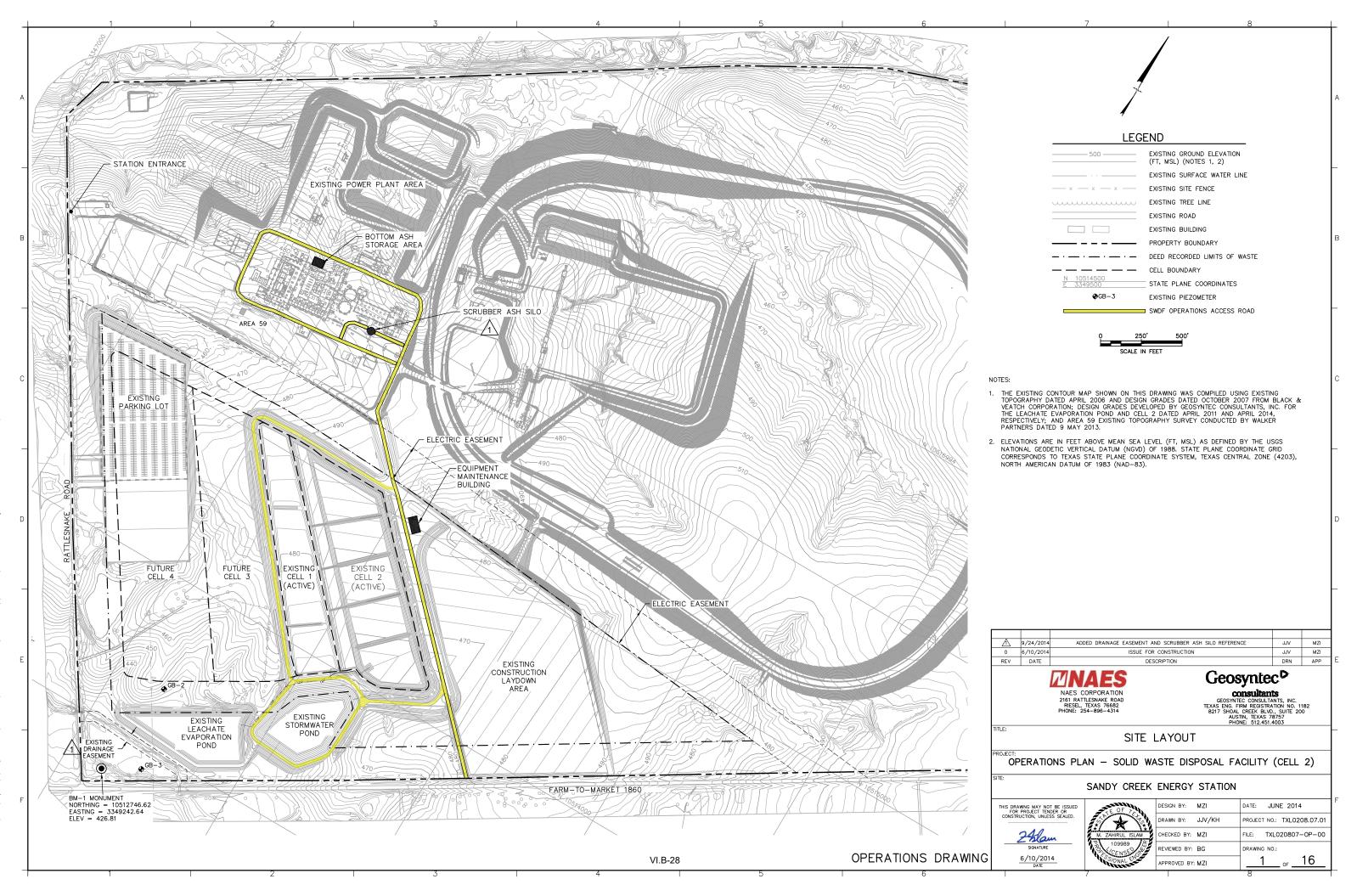

7. The groundwater elevation in former GB-4, located near current MW-2 was measured by Geosyntec on 28 September 2010 (430.42 ft msl).

FIGURES



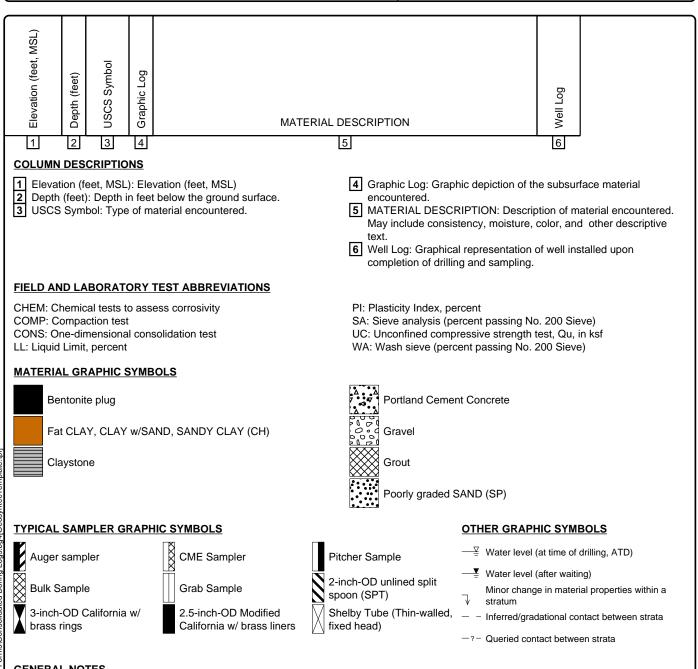
VI.B-23





	N
	LEGEND
	EXISTING CONTOUR (FT, MSL) (NOTES 1, 2)
	PROPERTY BOUNDARY
	MONITORING WELL [WATER LEVEL ELEVATION (FT, MSL)]
	EXISTING PIEZOMETER [WATER LEVEL ELEVATION (FT, MSL)]
	INFERRED GROUNDWATER EQUIPOTENTIAL LINE
450	GROUNDWATER EQUIPOTENTIAL LINE
	DIRECTION OF GROUNDWATER FLOW
· ·	PROPOSED LIMIT OF WASTE (CCR LANDFILL FOOTPRINT)

LEGEND EXISTING CONTOUR (FT, MSL) (NOTES 1, 2 PROPERTY BOUNDARY MW-1 (453.37) MONITORING WELL (WATER LEVEL ELEVATION (FT, MSL)] GB-2 (435.65) EXISTING PIEZOMETER (WATER LEVEL ELEVATION (FT, MSL)] INFERRED GROUNDWATER EQUIPOTENTIAL LINE 450 GROUNDWATER EQUIPOTENTIAL LINE URECTION OF GROUNDWATER FLOW PROPOSED LIMIT OF WASTE (CCR LANDFILL FOOTPRINT)		N
 PROPERTY BOUNDARY MW-1 (453.37) MONITORING WELL [WATER LEVEL ELEVATION (FT, MSL)] GB-2 (435.65) EXISTING PIEZOMETER [WATER LEVEL ELEVATION (FT, MSL)] INFERRED GROUNDWATER EQUIPOTENTIAL LINE GROUNDWATER EQUIPOTENTIAL LINE DIRECTION OF GROUNDWATER FLOW PROPOSED LIMIT OF WASTE (CCR 		LEGEND
 MW-1 (453.37) MONITORING WELL [WATER LEVEL ELEVATION (FT, MSL)] GB-2 (435.65) EXISTING PIEZOMETER [WATER LEVEL ELEVATION (FT, MSL)] INFERRED GROUNDWATER EQUIPOTENTIAL LINE GROUNDWATER EQUIPOTENTIAL LINE GROUNDWATER EQUIPOTENTIAL LINE DIRECTION OF GROUNDWATER FLOW PROPOSED LIMIT OF WASTE (CCR 		EXISTING CONTOUR (FT, MSL) (NOTES 1, 2)
 MONITORING WELL [WATER LEVEL ELEVATION (FT, MSL)] GB-2 (435.65) EXISTING PIEZOMETER [WATER LEVEL ELEVATION (FT, MSL)] INFERRED GROUNDWATER EQUIPOTENTIAL LINE GROUNDWATER EQUIPOTENTIAL LINE GROUNDWATER EQUIPOTENTIAL LINE DIRECTION OF GROUNDWATER FLOW PROPOSED LIMIT OF WASTE (CCR 		- PROPERTY BOUNDARY
(435.65) [WATER LEVEL ELEVATION (FT, MSL)] [WATER LEVEL ELEVATION (FT, MSL)] [WATER LEVEL ELEVATION (FT, MSL)] [NFERRED GROUNDWATER EQUIPOTENTIAL LINE 450 GROUNDWATER EQUIPOTENTIAL LINE DIRECTION OF GROUNDWATER FLOW PROPOSED LIMIT OF WASTE (CCR	<u> </u>	
EQUIPOTENTIAL LINE GROUNDWATER EQUIPOTENTIAL LINE OIRECTION OF GROUNDWATER FLOW PROPOSED LIMIT OF WASTE (CCR	<u></u> == =	
DIRECTION OF GROUNDWATER FLOW PROPOSED LIMIT OF WASTE (CCR		
PROPOSED LIMIT OF WASTE (CCR	450	GROUNDWATER EQUIPOTENTIAL LINE
		 DIRECTION OF GROUNDWATER FLOW
	· · .	

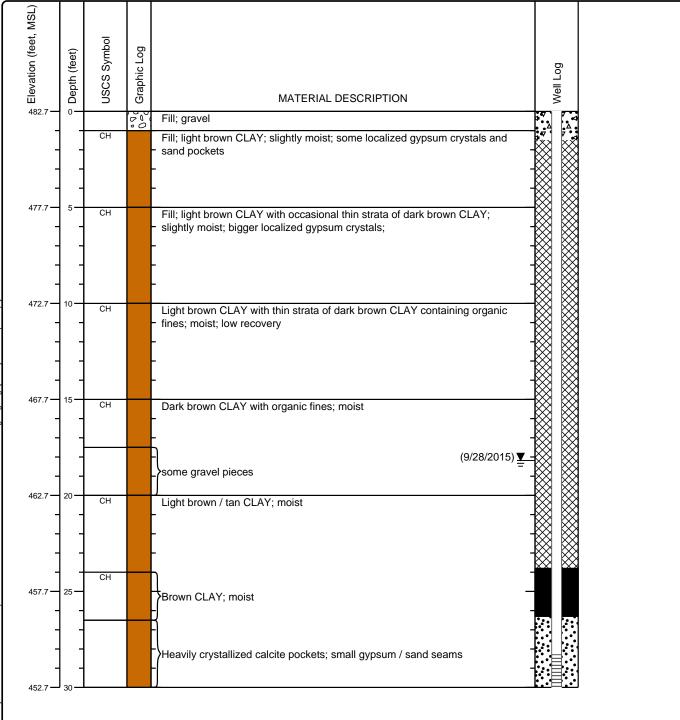

DRAWINGS

JAMING: Austin P./CADD\Projects\S\Sandy Creek PP\OPERATIONS\CELL 2 OPERATIONS [TXL0208.07.01]\DRAMINGS\TXL020807-OP-00.dwg PLOTTED: Dec

APPENDIX A

BORING LOGS FOR GROUNDWATER MONITORING WELLS (BW-1 and MW-1 to MW-3) AND PIEZOMETER (GB-2)

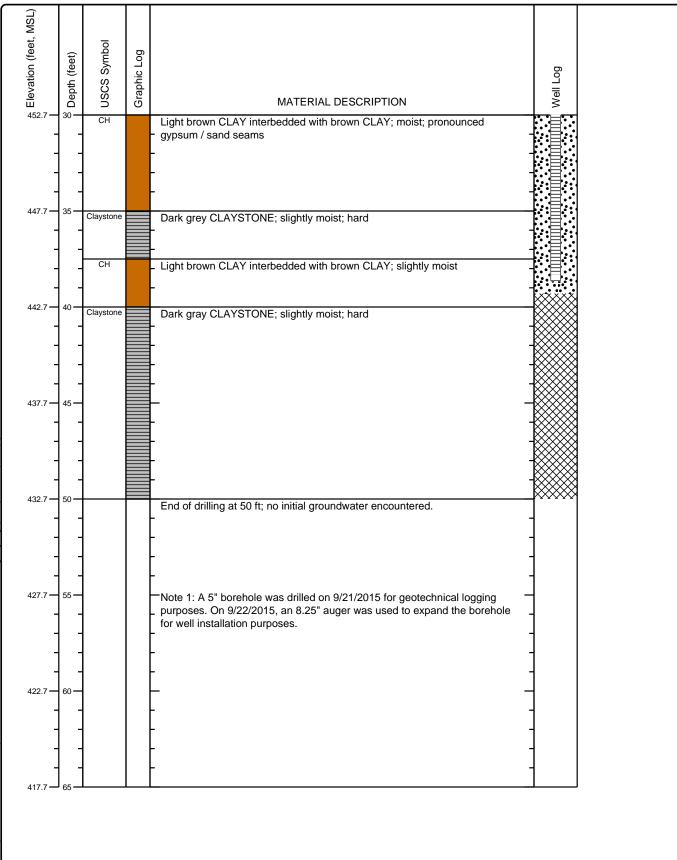
GENERAL NOTES


1: Soil classifications are based on the Unified Soil Classification System. Descriptions and stratum lines are interpretive, and actual lithologic changes may be gradual. Field descriptions may have been modified to reflect results of lab tests.

2: Descriptions on these logs apply only at the specific boring locations and at the time the borings were advanced. They are not warranted to be representative of subsurface conditions at other locations or times.

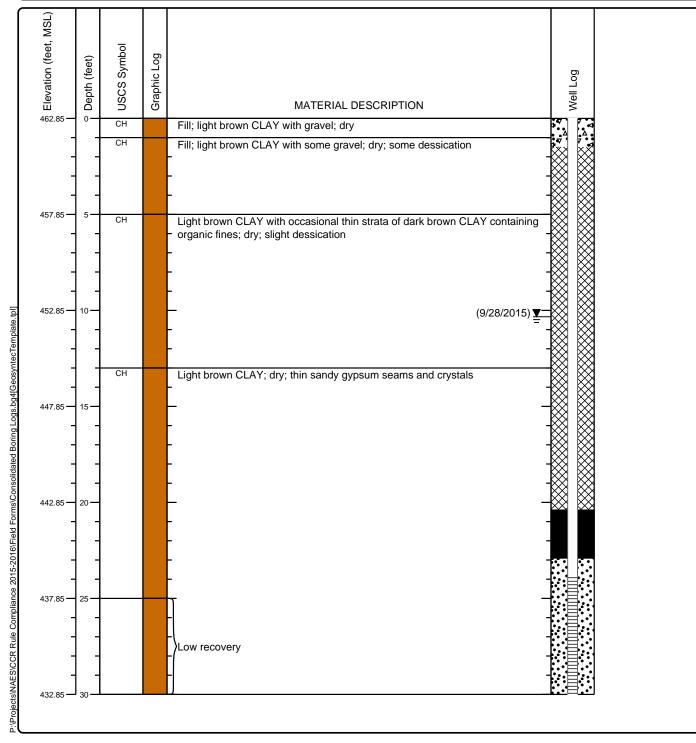
Project: Sandy Creek Energy Station Project Location: 2161 Rattlesnake Road Riesel, TX 76682 Project Number: TXL0526 / 02

Log of Boring BW-1 Sheet 1 of 2

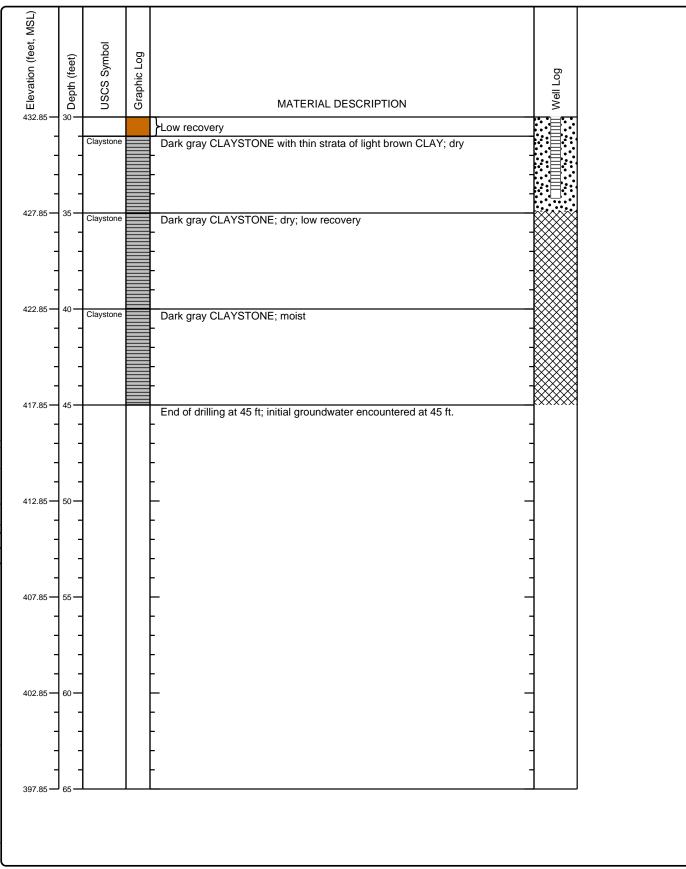

Date(s) Drilled 9/21/2015 and 9/22/2015	Logged By Alexander Brewster	Checked By Lindsay O'Leary, P.E.			
Drilling	Drill Bit	Total Depth			
Method Hollow Stem Auger	Size/Type 5" and 8.25" HSA (Note 1)	of Borehole 50 ft			
Drill Rig	Drilling	Approximate			
Type Truck-Mounted CME	Contractor Best Drilling Services, Inc.	Surface Elevation 482.70 (ft, MSL)			
Groundwater Level 464.52	Sampling	Hammer N/A			
and Date Measured (ft, MSL) (9/28/2015)	Method(s) Core Barrel	Data			
Borehole Backfill Well Completion	UTM: N 10515061.29', E 3350322.30'. N-NE of Landfill Cell 2; between the warehouse and laydown yard; near the eastern corner of a stormwater swale.				

P:/Projects/NAES/CCR Rule Compliance 2015-2016/Field Forms/Consolidated Boring Logs.bg4[GeosyntecTemplate.tp]

Project: Sandy Creek Energy Station Project Location: 2161 Rattlesnake Road Riesel, TX 76682 Project Number: TXL0526 / 02

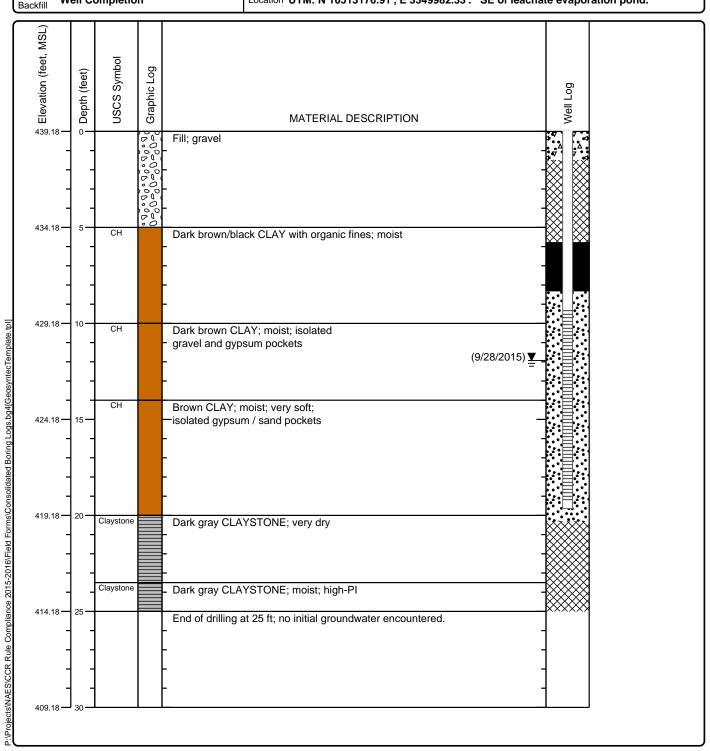

Log of Boring BW-1 Sheet 2 of 2

Project: Sandy Creek Energy Station Project Location: 2161 Rattlesnake Road Riesel, TX 76682

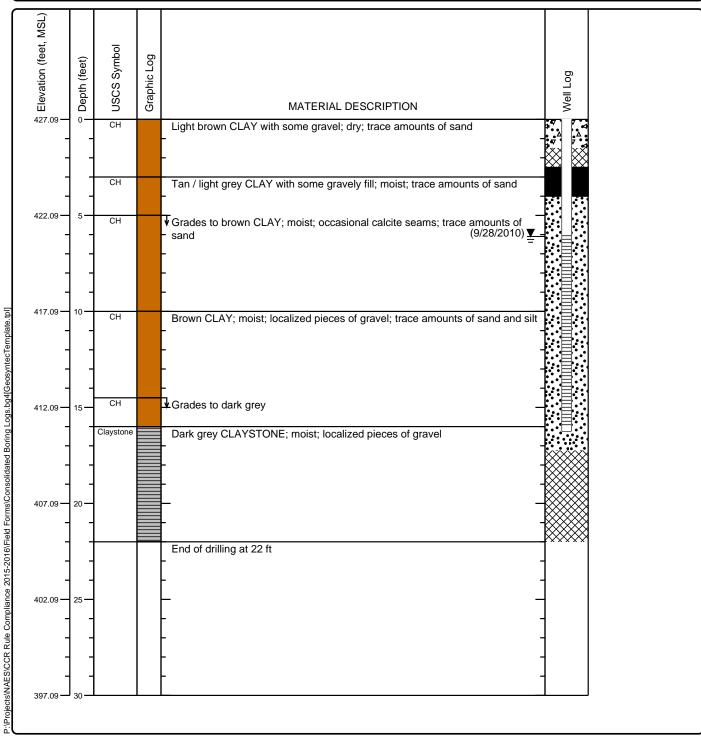

Project Number: TXL0526 / 02

Date(s) Drilled 9/21/2015	Logged By Alexander Brewster	Checked By Lindsay O'Leary, P.E.
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 8.25" HSA	Total Depth of Borehole 45 ft
Drill Rig Type Truck-Mounted CME		Approximate Surface Elevation 462.85 (ft, MSL)
Groundwater Level 452.52 (ft, MSL) and Date Measured (9/28/2015)	Sampling Method(s) Core Barrel	Hammer Data N/A
Borehole Backfill Well Completion	Location UTM: N 10513907.71', E 3350439.78'. of stormwater pond.	S of Landfill Cell 2; near northeastern edge

Project: Sandy Creek Energy Station Project Location: 2161 Rattlesnake Road Riesel, TX 76682 Project Number: TXL0526 / 02

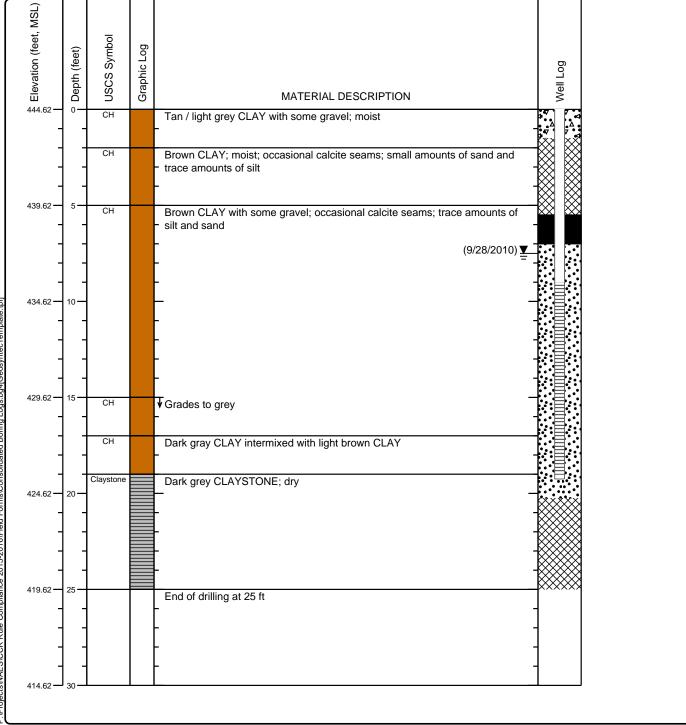

Log of Boring MW-1 Sheet 2 of 2

Project: Sandy Creek Energy Station Project Location: 2161 Rattlesnake Road Riesel, TX 76682


Project Number: TXL0526 / 02

Date(s) Drilled 9/23/2015	Logged By Alexander Brewster	Checked By Lindsay O'Leary, P.E.
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 8.25" HSA	Total Depth of Borehole 25 ft
Drill Rig Type Truck-Mounted CME		Approximate Surface Elevation 439.18 (ft, MSL)
Groundwater Level 427.25 (ft, MSL) and Date Measured (9/28/2015)	Sampling Method(s) Core Barrel	Hammer Data N/A
Borehole Backfill Well Completion	Location UTM: N 10513176.91', E 3349982.33'	. SE of leachate evaporation pond.

Project: Sandy Creek Energy Station Project Location: 2161 Rattlesnake Road Riesel, TX 76682 Project Number: TXL0084 / 03


Date(s) 9/1/2010 Drilled	Logged By M. Zahirul Islam	Checked By Lindsay O'Leary, P.E.
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 8.25" HSA	Total Depth of Borehole 22 ft
Drill Rig Type Truck-Mounted CME	Drilling Contractor Total Support Services, Inc.	Approximate427.09 (ft, MSL) (based onSurface ElevationOct 2015 survey)
Groundwater Level 420.99 (ft, MSL) and Date Measured (9/28/2010)	Sampling Method(s) Core Barrel	Hammer N/A Data
Borehole Backfill Cement Bentonite Grout	Location UTM: N 10512867.54', E 3349455.27' (evaporation pond.	(based on Oct 2015 survey). SW of leachate

Project: Sandy Creek Energy Station Project Location: 2161 Rattlesnake Road Riesel, TX 76682 Project Number: TXL0084 / 03

Log of Boring GB-2 Sheet 1 of 1

Date(s) Drilled 8/31/2010 and 9/1/2010	Logged By M. Zahirul Islam	Checked By Lindsay O'Leary, P.E.			
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 8.25" HSA	Total Depth of Borehole 25 ft			
Drill Rig Type Truck-Mounted CME	Drilling Contractor Total Support Services, Inc.	Approximate444.62 (ft, MSL) (based onSurface ElevationOct 2015 survey)			
Groundwater Level 437.12 (ft, MSL) and Date Measured (9/22/2010)	Sampling Method(s) Core Barrel	Hammer N/A Data			
Borehole Backfill Well Completion	Location UTM: N 10513360.72', E 33494325.82' (based on Oct 2015 survey). Approximately 65 ft N of western corner of leachate evaporation pond.				

APPENDIX B

MONITORING WELL AND PIEZOMETER DATA

- Well and Piezometer Construction Logs
- Water Level Measurements

WELL CONSTRUCTION DIAGRAM - EPA TYPE II WELL (STICK-UP) Geosyntec^C JOB NAME: NAES Sandy Creek **BW-1** JOB NO.: TXL0526 / 02 DATE/TIME: WELL NO .: 9/22/2015 0830 consultants WELL LOCATION: N'NE of Cell 2 Lindsay O'Learv FIELD REP: 482.70 GROUND SURFACE ELEVATION: (ft, msl) BENTONITE TYPE: Enviroplug Med. (for plug); High Yield Bentonite Gel (for CB grout) 454.40 TOP OF SCREEN ELEVATION: (ft, msl) MANUFACTURER: Wyo-Ben (for plug); N/A (for CB grout) 444.07 BOTTOM OF WELL ELEVATION: (ft, msl) CEMENT TYPE: Quikrete Portland Cement Type I/II TOP OF PVC RISER ELEVATION (TOC): 485.57 (ft, msl) CEMENT MANUFACTURER: Quikrete 10515061.29 EASTING: 3350322.30 SAND PACK TYPE AND SIZE: 20/40 Silica NORTHING: SCREEN MATERIAL: SCH 40 PVC SAND MANUFACTURER: Unimin RISER MATERIAL: SCH 40 PVC DRILLING CONTRACTOR: Best Drilling Services, Inc. (Friendswood, TX) RISER MANUFACTURER: N/A AMOUNT BENTONITE USED IN PLUG: 0.5 bags 50 lbs (ft) AMOUNT BENTONITE USED IN BACKFILL GROUT: 0.5 bags 50 lbs RISER DIAMETER: 2 (in) Length: 31.17 SCREEN DIAMETER: 2 (in) Length: 10 (ft) AMOUNT CEMENT USED: 1.5 bags 50 lbs 10 bags 50 lbs BOREHOLE DIAMETER: 8.25 (in) AMOUNT SAND USED: (in) STATIC WATER: 21.05 (9/28/2015) DRILLING TECHNIQUE: HSA Size: 8.25 ft below TOC ENCOUNTERED WATER: 45 (See Boring Log) depth from ground (ft) WELL DIAGRAM Protective Pipe **PVC Stick-up Height** PVC Pipe 2.87 ft ***** Dimensions of Concrete Pad: Ground Surface (REFERENCE POINT) 2' x 2' x 4" (protected by 4 bollards) Placed on 9/24/2015 R Length of Riser s 28.30 ft е Depth to Top of Bentonite 23.8 ft Total Depth of Well Depth to Bottom of Depth to Top of Sand Hole 38.63 ft S 26.3 ft 39.3 ft С Length of Screen ρ 10 ft e Length of Bottom Cap 4 in Length of Sand Base 1 ft **;;;;;**; Cement/Bentonite Grout Sand Pack Neat Concrete Bentonite Bottom Cap QA/QC INSTALLED BY: Best Drilling Services, Inc. (Lawrence Tobola) OBSERVED BY: Lindsay O'Leary, PE 9/22/2015 DATE: CHECKED BY: Alex Brewster DATE: 10/9/2015

Geosyntec JOB NAME: <u>NAES Sandy Creek</u> JOB NO.: <u>TXL0526 / 02</u> MW-1
JOB NO.: TXL0526 / 02 MW-1
Consultants DATE/TIME: 9/21/2015 1355 WELL NO.: WELL LOCATION: South of Cell 2 FIELD REP: Lindsay O'Leary
CONSULTATION South of Cell 2 FIELD REP: Lindsay O'Leary
GROUND SURFACE ELEVATION: 462.85 (ft, msl) BENTONITE TYPE: Enviroplug Med. (for plug); High Yield Bentonite Gel (for CB grout)
Image: TOP OF SCREEN ELEVATION: 438.95 (ft, msl) MANUFACTURER: Wyo-Ben (for plug); N/A (for CB grout)
30TTOM OF WELL ELEVATION: 428.62 (ft, msl) CEMENT TYPE: Quikrete Portland Cement Type I/II
FOP OF PVC RISER ELEVATION (TOC): 465.87 (ft, msl) CEMENT MANUFACTURER: Quikrete
NORTHING: 10513907.71 EASTING: 3350439.78 SAND PACK TYPE AND SIZE: 20/40 Silica
SCREEN MATERIAL: SCH 40 PVC SAND MANUFACTURER: Unimin
RISER MATERIAL: SCH 40 PVC DRILLING CONTRACTOR: Best Drilling Services, Inc. (Friendswood, TX)
RISER MANUFACTURER: N/A AMOUNT BENTONITE USED IN PLUG: 0.5 bags 50 lbs
RISER DIAMETER: 2 (in) Length: 26.92 (ft) AMOUNT BENTONITE USED IN BACKFILL GROUT: 0.3 bags 50 lbs
SCREEN DIAMETER: 2 (in) Length: 10 (ft) AMOUNT CEMENT USED: 1.0 bags 50 lbs
BOREHOLE DIAMETER: 8.25 (in) AMOUNT SAND USED: 7 bags 50 lbs
DRILLING TECHNIQUE: HSA Size: 8.25 (in) STATIC WATER: 13.35 (9/28/2015) ft below TOC
ENCOUNTERED WATER: 40 (See Boring Log) depth from ground (ft)
WELL DIAGRAM
Protective Pipe
PVC Pipe 3.02 ft
Ground Surface (REFERENCE POINT)
2' X 4" (protected by 4 bollards) Placed on 9/24/2015
Length of Riser
s and the second s
e <u>23.90 ft</u>
Depth to Top of Bentonite
Total Depth of Well
Depth to Bottom of Depth to Top of Sand
Hole $\int 34.23 \text{ ft}$ $\int $
34.9 ft \langle \rangle $ $ c $ $ c $ $ 22.9 ft
Length of Screen
e <u>10 ft</u>
Length of Bottom Cap
4 in
Length of Sand Base
<u>1 ft</u>
Cement/Bentonite Grout Sand Pack Neat Concrete Bentonite Bottom Cap
QA/QC INSTALLED BY: Best Drilling Services, Inc. (Lawrence Tobola) OBSERVED BY: Lindsay O'Leary, P.E.
DATE: 9/21/2015 CHECKED BY: Alex Brewster DATE: 10/9/2015

Geosyntec JOB NAME: NAES Sandy JOB NO.: TXL0526 / 02	MW-2
consultants DATE/TIME: 9/23/201 WELL LOCATION: SE of	5 1700 WELL NO.: Teachate pond FIELD REP: Lindsay O'Leary
GROUND SURFACE ELEVATION: 439.18 (ft, msl) BENTONITE TYP	PE: Enviroplug Med. (for plug); High Yield Bentonite Gel (for CB grout)
	R: Wyo-Ben (for plug); N/A (for CB grout)
BOTTOM OF WELL ELEVATION: 419.55 (ft, msl) CEMENT TYPE:	Quikrete Portland Cement Type I/II
TOP OF PVC RISER ELEVATION (TOC): 442.15 (ft, msl) CEMENT MANU	FACTURER: Quikrete
NORTHING: 10513176.91 EASTING: 3349982.33 SAND PACK TYL	PE AND SIZE: 20/40 Silica
SCREEN MATERIAL: SCH 40 PVC SAND MANUFA	CTURER: Unimin
RISER MATERIAL: SCH 40 PVC DRILLING CONT	TRACTOR: Best Drilling Services, Inc, (Friendswood, TX)
RISER MANUFACTURER: N/A AMOUNT BENT	ONITE USED IN PLUG: 0.5 bags 50 lbs
RISER DIAMETER: 2 (in) Length: 12.27 (ft) AMOUNT BENT	ONITE USED IN BACKFILL GROUT: 0.5 bags 50 lbs
SCREEN DIAMETER: 2 (in) Length: 10 (ft) AMOUNT CEME	NT USED: 1.5 bags 50 lbs
BOREHOLE DIAMETER: 8.25 (in) AMOUNT SAND	USED: 8 bags 50 lbs
DRILLING TECHNIQUE: HSA Size: 8.25 (in) STATIC WATER	:: 14.90 (9/28/2015) ft below TOC
ENCOUNTEREE	DWATER: N/A depth from ground (ft)
WELL DIAGRAM	
	C Stick-up Height
PVC Pipe	2.97 ft
Ground Surface (REFERENCE POINT)	Dimensions of Concrete Pad: 2' x 2' x 4" (protected by 4 bollards)
	Placed on 9/24/2015
	ength of Riser
s s	9.30 ft
	<u>0.00 R</u>
	Depth to Top of Bentonite
	5.8 ft
Total Depth of Well	
Depth to Bottom of Hole <u>19.63 ft</u>	Depth to Top of Sand
	<u>8.3 ft</u>
<u>20.3 ft</u>	
$\begin{array}{c c} 19.63 \\ \hline 20.3 \\ ft \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	ngth of Screen
	<u>10 ft</u>
	Length of Bottom Cap
	<u>4 in</u>
	<u></u>
	Length of Sand Base
	<u>1 ft</u>
Cement/Bentonite Grout Sand Pack Neat Concrete	Bentonite Bottom Cap
QA/QC INSTALLED BY: Best Drilling Services, Inc. (Lawrence Tobola) OBSER	VED BY: Lindsay O'Leary, P.E.
DATE: 9/23/2015 CHECK	ED BY: Lindsay O'Leary DATE: 10/9/2015

CONSULTATIS UOB NO.: TUL0084-03 DATE/TIME: WELL NO.: MW-3 (GB-3) NUN-3 (GB-3) ATE/TIME: 91/2010 Zahin/1 Islam ROUND SURFACE ELEVATION: 427.09 (Lmst) Well NO.: TELDBARD OP OF SCREEN ELEVATION: 421.11 (Lmst) Well NOTWEIL PPE: Vestern Bentonite OP OF OP CREEN ELEVATION: 421.11 (Lmst) NUM-3 (GB-3) OP OF OP CREEN ELEVATION: 421.11 (Lmst) NUM-3 (GB-3) OP OF OP CREEN ELEVATION: 420.06 (Lmst) NUM-3 (GB-3) OP OF OP CREEN ELEVATION: 420.06 (Lmst) NUM OP OF OP CREEN ELEVATION: 420.06 (Lmst) NUM ORENDATION: 10512627.42 EASTING: 349455.27 SAND MANUFACTURER: NIA SIGR ADAUFACTURER: 2 (I) Length: 10 m0, AMOUNT ENTONITE USED: NA Age to to to to to take the standard to take the standard totake the standa	<u></u>					<u></u>
CONSULTANTS DATE/TIME: 9//2010 WELL NO: FIELD REP: Zahrul Islam ROUND SURFACE ELEVATION: 427.09 ft.mail: ENTONITE TYPE: Western Bertionite DP OF SCREEN ELEVATION: 421.11 ft.mail: ENTONITE TYPE: Western Bertionite DP OF SCREEN ELEVATION: 410.11 ft.mail: ENTONITE TYPE: Witteed: sealed with hydrated bentonite drip OF OP VC RISE TELEVATION: 410.00 ft.mail: ENTONITE TYPE: NA ORE TIME: 10512867.42 EASTING: 3349455.27 SAND PACK TYPE AND SIZE: Salida 2040 SIRE MATERIAL: PVC - Schedule 40 SAND HACK TYPE AND SIZE: Salida 2040 Sand Pack Total Support Services, Inc. SIRE MARKETER: 2 (or) Length: 10 (nt, AMOUNT CEMENT USED: 3 bags 40 iss SIRE MARKETER: 2 (or) Length: 10 (nt, AMOUNT CEMENT USED: 7 bags 50 iss OREHOLE DIAMETER: 2 (or) Length: 10 (nt, AMOUNT CEMENT USED: 7 bags 50 iss SIRE DIAMETER: 2 (or) Length: 8.25 (or) ENCOUNTERED WATER: Not Encountered exphritm groups OREHOLE DIAMETER: 2.97 ft Dimensions of Concrote Pad. 2.87 % (ordected by 4 bolidrain)	Geosv	ntec			Pond Design	MM-2 (GB-2)
CONSULTAINS PIELD CCATION: FIELD REP: Zahirul Islam ROUND SURFACE ELEVATION: 427.09 (tr.mp) BENTONITE TYPE: Western Bentonite DP OF SCREEN ELEVATION: 421.11 (tr.mp) CAMUAFACTURER: PDS OPTOM OF WELL LEVATION: 410.11 (tr.mp) CAMUAFACTURER: NA OPTOM OF WELL LEVATION: 430.06 (tr.mp) CAMUAFACTURER: NA OPTOM OF WELL LEVATION: 430.06 (tr.mp) CAMUAFACTURER: NA OPTOM OF WELL LEVATION: 430.06 (tr.mp) CAMUAFACTURER: NA OPTOM OF WELL DEVATION: 430.06 (tr.mp) CAMUAFACTURER: NA SIRE DIAMETER: 2 (tr.mp) Length: 3 tage: 40 its. SER MANUFACTURER: 2 (tr.mp) Length 3 tage: 40 its. SIRE DIAMETER: 2 (tr.mp) Length Total Support Services, Inc. 3 tage: 40 its. SER MANUFACTURER: 2.02.5 (tr.mp) MANUFACTURER: NA Total Support Services, Inc. NA Condengit <td>•</td> <td></td> <td></td> <td></td> <td>WELL NO.:</td> <td>WW-5 (GD-5)</td>	•				WELL NO.:	WW-5 (GD-5)
DP OF SCREEN ELEVATION: 410.11 (t. mai) OF SCREEN ELEVATION: 410.11 (t. mai) OF WELL ELEVATION: 410.11 (t. mai) OF PVC RISER ELEVATION: 410.11 (t. mai) SER MATERIAL: PVC Schedule 40 SAND PACK TYPE AND SIZE: SILE 2040 Unimin SER MATERIAL: PVC Schedule 40 DRILLING CONTRACTOR: 10 (t) AMOUNT SENTONTE USED: 3 lange 40 (t. mai) SER MATERIAL: 2 (t. mai) 2 (t. mai)	cons	sultants				Zahirul Islam
DP OF SCREEN ELEVATION: 410.11 (t. mai) OF SCREEN ELEVATION: 410.11 (t. mai) OF WELL ELEVATION: 410.11 (t. mai) OF PVC RISER ELEVATION: 410.11 (t. mai) SER MATERIAL: PVC Schedule 40 SAND PACK TYPE AND SIZE: SILE 2040 Unimin SER MATERIAL: PVC Schedule 40 DRILLING CONTRACTOR: 10 (t) AMOUNT SENTONTE USED: 3 lange 40 (t. mai) SER MATERIAL: 2 (t. mai) 2 (t. mai)	GROUND SURFACE ELEVA	ATION: 427		BENTONITE TYPE V	Vestern Bentonite	
OTTOM OF WELL ELEVATION: 410.11 (tt, mail) CEMENT TYPE: Not used, sealed with hydrated bentonite chip OP OF PVC RISER ELEVATION: 430.06 (tt, mail) CEMENT MANUFACTURER: N/A ORTHING: 10512867.42 EASTING: 3349455.27 SAND PACK TYPE AND SIZE: Silica 20/40 CREEN MATERIAL: PVC - Schedule 40 SAND MANUFACTURER: Unimin Total Support Services, Inc. ISSER MANUFACTURER: 2 (m) Length: 8.95 mMOUNT BENTONTE USED: 3 tage 40 tbs ISSER MATERIAL: PVC - Schedule 40 ORTHUNG: OTTOM OF MANUFACTURER: Unimin tage 40 tbs ISSER MATERIAL: PVC - Schedule 40 ORTHUNG CONTRACTORS: N/A tage 40 tbs ISSER MATERIAL: PVC - Schedule 40 ORTHUNG CONTRACTORS: N/A tage 40 tbs ISSER MATERIAL: PVC - Schedule 40 ORTHUNG CONTRACTORS: N/A tage 40 tbs ISSER MATERIAL: PVC - Schedule 40 SAND MACK TYPE AND USED: N/A tage 40 tbs SRE MANUFACTURER: 8.25 (m) AMOUNT SAND USED: N/A tage 50 tbs OREHOLE DIMMETER: 8.25 (m) AMOUNT SAND USE			· · · · · ·			
DP OF PVC RISER ELEVATION: 430.06 (tt, tmail) CEMENT MANUFACTURER: NA ORTHINS: 10512867.42 EASTINS: 3349455.27 SAND PACK TYPE AND SIZE: Sile 20:40 CREEN MATERIAL: PVC - Schedule 40 SISER MARATERIAL: PVC - Schedule 40 DRILLING CONTRACTORER: Unimin SISER MARATERIAL: PVC - Schedule 40 DRILLING CONTRACTORER: Unimin SISER MARATERI: 2 (m) Length: 8.95 (t), AMOUNT SENTONITE USED: 3 teags 40 tea SISER MARATERI: 2 (m) Length: 8.95 (t), AMOUNT SENTONITE USED: 7 teags 50 tea CREEN DIAMETER: 2 (m) Length: 8.95 (t), AMOUNT SENTONITE WISED: NA teags 50 tea CREEN DIAMETER: 2 (m) Length: 8.95 (t), AMOUNT SENTONITE WISED: NA teags 50 tea CREEN DIAMETER: 2 (m) Length: 8.25 (m) STATIC WATER: 0.08 ft (0/28/2010) elepth from ground RILLING TECHNIQUE: Hollow stem Size: 8.25 (m) ENCOUNTERED WATER: Not Encountered elepth from ground Protective Pipe VC Pipe VC Stick-up Height 2.97 ft Dimensions of Concrete Pad: 2'x 2'x 6' (protected by 4 bollads) Conund Surface (REFERENCE POINT) Total Depth of Well 16.23 ft Vell 17.0 ft Length of Riser 17.0 ft Length of Bantonite 16.23 ft Length of Bantonite 17.0 ft Length of Bantonite 16.23 ft Length of Bantonite 16.23 ft Length of Bantonite 17.0 ft Length of Bantonite 16.23 ft Length of Bantonite 17.0 ft Length of Bantonite 16.23 ft Length of Bantonite 16.23 ft Length of Bantonite 16.23 ft Length of Bantonite 17.0 ft Length of Bantonite 18.25 ft Length of Bantonite 19.15 Length of						th hydrated bentonite chip
ORTHING: 10512867 42 EASTING: 3349455.27 SAND PACK TYPE AND SIZE: Silica 20/40 CREEN MATERIAL: PVC - Schedule 40 SAND MANUFACTURER: Unimin ISER MATERIAL: PVC - Schedule 40 SAND MANUFACTURER: Unimin ISER MANEACTURER: AMOUNT BENTONTE USED: 3 bage 40 the ISER DIAMETER: 2 (in) Length: 10 (ii) AMOUNT SAND USED: 7 bage 50 the OREHOLE DIAMETER: 2 (iii) Length: 10 (iii) STATIC WATER: Not Encountered depth from ground OREHOLE DIAMETER: 8.25 (iii) OT TO BE 200000000000000000000000000000000000						
CREEN MATERIAL: PVC - Schedule 40 SAND MANUFACTURER: Unimin DRILLING CONTRACTOR: Total Support Services, Inc. AMOUNT BENTONITE USED: 3 begs 40 tos BER MANUFACTURER: AMOUNT CEMENT USED: NA begs 10 to CREEN DIAMETER: 2 (m) Length: 10 (t) AMOUNT SAND USED: 7 begs 50 tos CREEN DIAMETER: 8.25 (m) STATIC WATER: 6.08 ft (9/28/2010) depth from ground CREEN DIAMETER: 8.25 (m) ENCOUNTERED WATER: Not Encountered depth from ground CREEN DIAMETER: 8.25 (m) ENCOUNTERED WATER: Not Encountered depth from ground CREEN DIAMETER: 8.25 (m) ENCOUNTERED WATER: Not Encountered depth from ground CREEN DIAMETER: 8.25 (m) ENCOUNTERED WATER: Not Encountered depth from ground CREEN DIAMETER: 8.25 (m) ENCOUNTERED WATER: Not Encountered depth from ground CREEN DIAGRAM PVC Pipe PVC Pipe PVC Pipe PVC Pipe PVC Pipe PVC Stick-up Height Dimensions of Concrete Pad: 2.97 ft Depth to Top of Bentonite 1.5 ft Depth to Top of Bentonite 16.23 ft Vell DIAGRAM Used Concrete Pad: 10 ft Length of Screen 10 ft Length of Screen 10 ft Length of Screen 11 ft Not Statue Grout Sand Pack Neat Concrete Destruction CREMENTING CONCRETERING CONCRETERING CAP NOC INSTALLED BY: Total Services. Inc.	NORTHING: 105128			-		0/40
ISER DANUFACTURER: SISER DIAMETER: 2 00 Length: 8.95 m) AMOUNT GENTONITE USED: 1 0 th AMOUNT SAND USED: 7 bags 50 bs CREEN DIAMETER: 8.25 (0) STALLED R: 8.25 (0) Stall (9/28/2010) depth from ground 0 cpt hot Bottom of Hole 10 cpt hot Bottom of Hole 10 cpt hot Bottom of 10 cpt hot Bottom of Hole Cement/Bentonite Grout 1 content of Stand Base 1 cpt hot Bottom Cap 3 bags 40 bs AMOUNT BENTONITE USED: NA Depth of Screen 10 cpt hot Bottom Cap 3 bags 40 bs AMOUNT SAND USED: 7 bags 50 bs 0 cpt hot Bottom of 10 cpt hot Bottom Cap 3 bags 40 bs 10 cpt hot Bottom Cap 10 cpt hot Bottom Cap 11 cpt hot Sand Base 1 cpt hot Sand Pack 1 cpt hot Sand Pack 1 cpt hot Sand Pack 1 cpt hot	SCREEN MATERIAL:	PVC - Schedule 40		- SAND MANUFACTURER:	Unimin	
ISER DIAMETER: 2 (m) Length: 8.95 (t) AMOUNT CEMENT USED: NIA bags its CREEN DIAMETER: 2 (m) Length: 10 (f) AMOUNT SAND USED: 7 bags 50 its OREHOLE DIAMETER: 8.25 (m) ENCOUNTERED WATER: 6.08 ft (9/28/2010) depth from ground RILLING TECHNIQUE: Hollow stem Size: 8.25 (m) ENCOUNTERED WATER: Not Encountered depth from ground Protective Pipe PVC Pipe PVC Pipe PVC Pipe Cound Surface (REFERENCE POINT) Total Depth of Well 16.23 ft 16.23 ft 16.23 ft Cement/Bentonite Grout X2 N B ¹ (protected by 4 bolards) Cement/Bentonite Grout NIA bags its 0 (m) STAILED BY: Total Support Services, Inc. OBSERVED BY: Zahrul Islam	RISER MATERIAL:	PVC - Schedule 40		DRILLING CONTRACTOR	: Total Supp	ort Services, Inc.
CREEN DIAMETER: 2 (m) Length: 10 (t) AMOUNT SAND USED: 7 bags 50 los OREHOLE DIAMETER: 8.25 (m) STATIC WATER: 06.08 ft (9/28/2010) depth from ground RILLING TECHNIQUE: Hollow stem Size: 8.25 (m) ENCOUNTERED WATER: Not Encountered depth from ground Protective Pipe PVC Pipe PVC Pipe PVC Stick-up Height 2.97 ft Dimensions of Concrete Pad: 2* X * X * 0* (protected by 4 bolards) Caround Surface (REFERENCE POINT) HILLION Report of Bentonite 15.98 ft Depth to Top of Bentonite 17.0 ft Length of Screen 10.ft Length of Screen 10.ft Length of Sorden 11.ft Cement/Bentonite Grout Sand Pack First Neat Concrete Data Not Concrete Pack Description of Description of Sand Base 1.ft AQC INSTALLED BY: Total Support Services, Inc. OBSERVED BY: Zahirul Isiam	RISER MANUFACTURER:			AMOUNT BENTONITE US	SED:	3 bags 40 lbs
OREHOLE DIAMETER: 8.25 (in) STATIC WATER: 6.08 ft (9/28/2010) depth from ground RILLING TECHNIQUE: Hollow stem Size: 8.25 (in) ENCOUNTERED WATER: Not Encountered depth from ground Protective Pipe WELL DIAGRAM PVC Stick-up Height Dimensions of Concrete Pad: 2.97 ft Dimensions of Concrete Pad: 2.97 ft Dimensions of Concrete Pad: 2.4 2* x 6* (protected by 4 bollards) Ground Surface (REFERENCE POINT) Image: State of the	RISER DIAMETER:	2 (in) Length:	8.95 (ft)	AMOUNT CEMENT USED	: N/A	bags lbs
RILLING TECHNIQUE Hollow stem Size: 8.25 (m) ENCOUNTERED WATER: Not Encountered depth from ground Protective Pipe PVC Stick-up Height 2.97 ft Dimensions of Concrete Pad: 2'x 2'x 6" (protected by 4 bollards) Ground Surface (REFERENCE POINT) Image: State of the s	SCREEN DIAMETER:	2 (in) Length:	10 (ft)	AMOUNT SAND USED:		7 bags 50 lbs
Protective Pipe PVC Pipe Ground Surface (REFERENCE POINT) Total Depth of Well 17.0 ft Cement/Bentonite Grout MOC INSTALLED BY: Total Support Services, Inc. MCC MCC MCC MCC MCC MCC MCC MC	BOREHOLE DIAMETER:	8.25	(in)	STATIC WATER:	6.08 ft (9/28/20	010) depth from ground
Protective Pipe PVC Stick-up Height <u>2.97 ft</u> <u>Dimensions of Concrete Pad:</u> <u>2 x 2 x 6^o (protected by 4 bollards)</u> <u>2 x 2 x 6^o (protected by 4 bollards)</u> <u>1 ft</u> <u>2 x 2 x 6^o (protected by 4 bollards)</u> <u>3 in</u> Length of Sand Base <u>1 ft</u> <u>2 x 2 x 6^o (protected by 4 bollards)</u> <u>3 in</u> Length of Sand Base <u>1 ft</u> <u>2 x 2 x 6^o (protected by 4 bollards)</u> <u>3 in</u> Length of Sand Base <u>1 ft</u> <u>2 x 2 x 6^o (protected by 4 bollards)</u> <u>3 in</u> Length of Sand Base <u>1 ft</u> <u>2 x 2 x 6^o (protected by 4 bollards)</u> <u>3 in</u> Length of Sand Base <u>1 ft</u> <u>2 x 2 x 6^o (protected by 4 bollards)</u> <u>3 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x </u>	DRILLING TECHNIQUE:	Hollow stem Size:	8.25 (in)	ENCOUNTERED WATER	Not Encour	ntered depth from ground
PVC Pipe Ground Surface (REFERENCE POINT) Cement/Bentonite Grout NSTALLED BY: Total Support Services, Inc. OBSERVED BY: Total Support Services, Inc. PVC Suck-up Height 2.97 ft Dimensions of Concrete Pad: 2.97 ft Dimensions of Concrete Pad: 2.97 ft Dimensions of Concrete Pad: 2.97 ft Depth to Top of Bentonite 1.5 ft Depth to Top of Bentonite 1.5 ft Depth to Top of Sand 4.0 ft Length of Bottom Cap 3 in. Length of Sand Base 1 ft Depth Length of Sand Base 1 ft 1 ft			WELL DI	AGRAM		
Ground Surface (REFERENCE POINT) Immediate (Reference) Imm	Pro	otective Pipe		PVC Stick-u	p Height	
Cround Surface (REFERENCE POINT)	P۱	/C Pipe		}	6 4	
Depth to Bottom of Hole Total Depth of Well 17.0 ft 16.23 ft IT.0 ft Interview Interview Interview	Ground Surface (REFI				Dim	
Depth to Bottom of Hole 15.ft 17.0 ft Total Depth of Well 16.23 ft Image: Second structure 17.0 ft Image: Second structure 16.23 ft Image: Second structure 16.23 ft Image: Second structure 16.23 ft Image: Second structure 17.0 ft Image: Second structure 16.23 ft Image: Second structure 16.23 ft Image: Second structure 17.0 ft Image: Second structure Image: Second structure Image: Second structure 17.0 ft Image: Second structure Image: Second structure Image: Second structure 18.0 ft Image: Second structure 19.0 ft Image: Second structure 10.0 ft Image: Second st		/ 				
Depth to Bottom of Hole Total Depth of Well 17.0 ft 16.23 ft S c r e 0 ft Length of Screen 10 ft Length of Bottom Cap 3 in. Length of Sand Base 1ft Cement/Bentonite Grout Sand Pack Neat Concrete Bentonite Bottom Cap 2 Int				Length of R	liser	
Depth to Bottom of Hole Total Depth of Well 17.0 ft 16.23 ft Total Depth of Well 16.23 ft 17.0 ft 16.23 ft S C r e 0 ft Length of Screen 10 ft Length of Bottom Cap 3 in. Length of Sand Base 1ft Mac INSTALLED BY: Total Support Services, Inc. OBSERVED BY: Zahirul Islam			<u>223</u> 223	5 08 ff		
Depth to Bottom of Hole 1.5 ft 17.0 ft 16.23 ft 17.0 ft 16.23 ft S C r e 10 ft Length of Screen 10 ft Length of Bottom Cap 3 in. Length of Sand Base 1 ft Machine Control (Control (Contro) (Contro) (Control (Control (Control (Control (Control				<u> </u>		
Depth to Bottom of Hole 1.5 ft 17.0 ft 16.23 ft 17.0 ft 16.23 ft S C r e 10 ft Length of Screen 10 ft Length of Bottom Cap 3 in. Length of Sand Base 1 ft Machine Control (Control (Contro) (Contro) (Control (Control (Control (Control (Control					Depth	to Top of Bentonite
Depth to Bottom of Hole 16.23 ft Depth to Top of Sand 17.0 ft 16.23 ft 4.0 ft Length of Screen 10 ft Length of Bottom Cap 3 in. Length of Sand Base 1 ft Cement/Bentonite Grout Sand Pack Neat Concrete Bentonite Bottom Cap AVQC INSTALLED BY: Total Support Services, Inc. OBSERVED BY: Zahirul Islam				\checkmark		
Depth to Bottom of Hole 16.23 ft Depth to Top of Sand 17.0 ft 16.23 ft Length of Screen 17.0 ft 10 ft Length of Bottom Cap 3 in. Length of Sand Base 3 in. Length of Sand Base 1 ft Mark Concrete Bentonite Bottom Cap AVQC INSTALLED BY: Total Support Services, Inc. OBSERVED BY: Zahirul Islam	Тс	otal Depth of Well				<u>1.5 II</u>
17.0 ft 4.0 ft 17.0 ft Length of Screen 10 ft Length of Bottom Cap 3 in. Length of Sand Base 1ft Cement/Bentonite Grout Sand Pack Sand Pack Meat Concrete Bentonite Bottom Cap 1ft Bottom Cap AQC INSTALLED BY: Total Support Services, Inc. OBSERVED BY: Zahirul Islam	Depth to Bottom of				De	pth to Top of Sand
Length of Bottom Cap 3 in. 3 in. Length of Sand Base 1 ft Cement/Bentonite Grout Sand Pack Neat Concrete Bentonite Bottom Cap A/QC INSTALLED BY: Total Support Services, Inc. OBSERVED BY: Zahirul Islam		$\frac{16.23 \text{ ft}}{16.23 \text{ ft}}$	E S			4 0 ft
Length of Bottom Cap 3 in. 3 in. Length of Sand Base 1 ft Cement/Bentonite Grout Sand Pack Neat Concrete Bentonite Bottom Cap A/QC INSTALLED BY: Total Support Services, Inc. OBSERVED BY: Zahirul Islam	<u>17.0 ft</u>		C C			<u>-1.0 R</u>
Length of Bottom Cap 3 in. 3 in. Length of Sand Base 1 ft Cement/Bentonite Grout Sand Pack Neat Concrete Bentonite Bottom Cap A/QC INSTALLED BY: Total Support Services, Inc. OBSERVED BY: Zahirul Islam				Length of S	creen	
Length of Bottom Cap 3 in. 3 in. Length of Sand Base 1 ft Cement/Bentonite Grout Sand Pack Neat Concrete Bentonite Bottom Cap A/QC INSTALLED BY: Total Support Services, Inc. OBSERVED BY: Zahirul Islam			e e	<u>10 ft</u>		
3 in. 3 in. Length of Sand Base 1 ft Cement/Bentonite Grout Sand Pack Neat Concrete Bentonite Bentonite Bottom Cap A/QC INSTALLED BY: Total Support Services, Inc. OBSERVED BY: Zahirul Islam						
3 in. 3 in. Length of Sand Base 1 ft Cement/Bentonite Grout Sand Pack Neat Concrete Bentonite Bentonite Bottom Cap A/QC INSTALLED BY: Total Support Services, Inc. OBSERVED BY: Zahirul Islam						
Length of Sand Base 1 ft Cement/Bentonite Grout Sand Pack Sand Pack Bentonite Bentonite Bottom Cap A/QC INSTALLED BY: Total Support Services, Inc. OBSERVED BY: Zahirul Islam					Len	igth of Bottom Cap
Length of Sand Base 1 ft Cement/Bentonite Grout Sand Pack Sand Pack Bentonite Bentonite Bottom Cap A/QC INSTALLED BY: Total Support Services, Inc. OBSERVED BY: Zahirul Islam						2 in
1 ft Cement/Bentonite Grout Sand Pack A/QC INSTALLED BY: Total Support Services, Inc. OBSERVED BY: Zahirul Islam				4		<u>5 m.</u>
Cement/Bentonite Grout Sand Pack Neat Concrete Bentonite Bottom Cap A/QC INSTALLED BY: Total Support Services, Inc. OBSERVED BY: Zahirul Islam					Ler	igth of Sand Base
A/QC INSTALLED BY: Total Support Services, Inc. OBSERVED BY: Zahirul Islam						<u>1 ft</u>
A/QC INSTALLED BY: Total Support Services, Inc. OBSERVED BY: Zahirul Islam	Cement/Benton	ite Grout Sa	nd Pack	Neat Concrete	Bentonite	Bottom Cap

Geosy		JOB NAN JOB NO.	: TXL0084-03		GB-2
cons	sultants	DATE/TII WELL LO	ME: 8/31/2010 & 9/1/201 DCATION:	0_WELL NO.: FIELD REP:	Zahirul Islam
GROUND SURFACE ELEV	ATION:444	.62 (ft, msl	BENTONITE TYPE:	Western Bentonite	9
TOP OF SCREEN ELEVATI	ION: 435	.60 (ft, msl	MANUFACTURER:	PDS	
BOTTOM OF WELL ELEVA	TION: 425	.60 (ft, msl	CEMENT TYPE: Not	used, sealed with	hydrated bentonite chips
TOP OF PVC RISER ELEVA	ATION: 447	.45 (ft, msl	CEMENT MANUFACTUR	ER: <u>N/A</u>	
NORTHING: 105133	60.72 EASTING:	3349325.82	SAND PACK TYPE AND	SIZE: Silica 2	20/40
SCREEN MATERIAL:	PVC - Schedule 40		SAND MANUFACTURER	: Unimin	
RISER MATERIAL:	PVC - Schedule 40		DRILLING CONTRACTO	R: Total Supp	ort Services, Inc.
RISER MANUFACTURER:			AMOUNT BENTONITE U	SED:	4 bags 40 lbs
RISER DIAMETER:	2 (in) Length:	11.85 (ft	AMOUNT CEMENT USE	D: N/A	bags lbs
SCREEN DIAMETER:	2 (in) Length:	10 (ft	AMOUNT SAND USED:		7 bags 50 lbs
BOREHOLE DIAMETER:	8.25	(ir) STATIC WATER:	7.50 ft (9/22/20	010) depth from ground
DRILLING TECHNIQUE:	Hollow stem Size:	8.25 (ir		: Not Encou	ntered depth from ground
		WELL	HAGRAM		
Pro	otective Pipe		PVC Stick-u	in Height	
P۱	VC Pipe	→ □		priegn	
	***	*******	<u>2.8</u>	<u>3 ft</u>	ensions of Concrete Pad
Ground Surface (REF			<u></u>		
	(R		_ .	<u>4' x 4'x6''</u>
			Length of I	Kiser	
		s e	<u>9.02 ft</u>		
		r 🕺 🤜			
				Dept	h to Top of Bentonite
			\sim		1.5 ft
Тс	otal Depth of Well				<u>1.0 m</u>
Depth to Bottom of				De	pth to Top of Sand
Hole / –	<u>19.27 ft</u>	s			7.0 ft
25.0 ft		c iii			7.0 II
		lie r	Length of S	Screen	
		e e	\geq	£1.	
		e e	(10	<u>IT</u>	
				Ler	ngth of Bottom Cap
					3 in.
	l		7		Э III.
	`			Lei	ngth of Sand Base
					1 ft
					<u>1 IL</u>
Cement/Benton	nite Grout Sa	nd Pack	Neat Concrete	Bentonite	Bottom Cap
QA/QC INSTALLE	D BY: Total Support S	Services. Inc.	OBSERVED BY:	Zahirul Islan	
DATE:	8/31/2010 & 9/1/2		CHECKED BY:	Ed Dolan, P.G.	DATE: 10/14/2010

WATER LEVEL MEASUREMENTS

Site Name: Sandy Creek Energy Station Location: 2161 Rattlesnake Rd, Riesel, TX Sampling Personnel: Darryl Sparks and Ty Brown Field Conditions: Varies

	1				014	
			TOC	Depth to	GW	
			Elevation	Water	Elevation	
ID	Date	Time	(ft msl)	(ft BTOC)	(ft msl)	Field Observations
BW-1	10/6/2015	13:32	485.57	20.80	464.77	N/A
MW-1	10/6/2015	13:22	465.87	13.60	452.27	N/A
MW-2	10/6/2015	13:17	442.15	13.95	428.20	N/A
MW-3	10/6/2015	13:58	430.06	12.60	417.46	N/A
GB-2	10/6/2015	13:12	447.45	13.20	434.25	N/A
BW-1	11/4/2015	13:20	485.57	17.60	467.97	Rain Event 10/23-24/15; Lock installed
MW-1	11/4/2015	13:43	465.87	13.40	452.47	Rain Event 10/23-24/15; Lock installed
MW-2	11/4/2015	13:48	442.15	12.40	429.75	Rain Event 10/23-24/15; Lock installed
MW-3	11/4/2015	13:53	430.06	8.60	421.46	Rain Event 10/23-24/15; Lock installed
GB-2	11/4/2015	13:50	447.45	13.40	434.05	Rain Event 10/23-24/15; Lock installed
BW-1	12/2/2015	N/A	485.57	20.10	465.47	Rain preceding weekend (Approx. 1.5" total)
MW-1	12/2/2015	N/A	465.87	12.50	453.37	Rain preceding weekend (Approx. 1.5" total)
MW-2	12/2/2015	N/A	442.15	12.10	430.05	Rain preceding weekend (Approx. 1.5" total)
MW-3	12/2/2015	N/A	430.06	7.70	422.36	Rain preceding weekend (Approx. 1.5" total)
GB-2	12/2/2015	N/A	447.45	11.80	435.65	Rain preceding weekend (Approx. 1.5" total)
BW-1	1/19/2016	N/A	485.57	20.20	465.37	N/A
MW-1	1/19/2016	N/A	465.87	12.40	453.47	N/A
MW-2	1/19/2016	N/A	442.15	13.50	428.65	N/A
MW-3	1/19/2016	N/A	430.06	8.40	421.66	N/A
GB-2	1/19/2016	, N/A	447.45	11.10	436.35	N/A

Notes:

1. ft msl indicates feet above mean sea level and ft BTOC indicates ft below top of casing*.

2. *Depth is measured from the top of the inner well casing.

3. Monitoring well MW-3 was formerly labeled as piezometer GB-3.

Geosyntec Project No.: TXL0526

APPENDIX C

STATE OF TEXAS WELL REPORTS FOR GROUNDWATER MONITORING WELLS AND PIEZOMETER

STATE OF TEXAS WELL REPORT for Tracking #408218						
Owner:	Sandy Creek Services, LLC	Owner Well #:	BW-1			
Address:	P.O. Box 370 Riesel, TX 76682	Grid #:	39-33-2			
Well Location:	2161 Rattlesnake Rd.	Latitude:	31° 28' 18.65" N			
	Riesel, TX 76682	Longitude:	096° 57' 10" W			
Well County:	McLennan	Elevation:	483 ft. above sea level			
Type of Work:	New Well	Proposed Use:	Monitor			

Drilling Start Date: 9/22/2015

Drilling End Date: 9/22/2015

	Diameter (in.)		Top De	oth (ft.)	Bottom Dept	h (ft.)	
Borehole:	8.25		C		50		
Drilling Method:	Hollow Stem Auger						
Borehole Completion:	Filter Packed						
	Top Depth (ft.) Bottom Depth (ft.) Filter Material					Size	
Filter Pack Intervals:	27.5	39.5		Sa	nd	20/40	
	Top Depth (ft.)	Bottom Depth (ft.)		De	scription (number of sa	cks & material)	
Annular Seal Data:	0	2	24		Cement 1.5 Bags	s/Sacks	
	24	2	6.5		Bentonite 0.5 Bags/Sacks		
	26.5	39	9.5		Sand 10 Bags/	Sacks	
Seal Method: Tre	emie		Dis	stance to Pr	operty Line (ft.): N	o Data	
Sealed By: Dr	iller				c Field or other ntamination (ft.): N	lo Data	
			C	istance to S	Septic Tank (ft.): N	o Data	
				Metho	d of Verification: N	o Data	
Surface Completion:	Surface Slab Ir	nstalled		Si	urface Completion	n by Driller	
Water Level:	20.5 ft. below	land surface	on 2015-10	-13			
Packers:	No Data						
Type of Pump:	No Data						
Well Tests:	No Test Data	Specified					

_

	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysis	Made: No	
	Did the driller	knowingly penetrate any strata contained injurious constitu		
Certification Data:	driller's direct supervi correct. The driller u	hat the driller drilled this well (or ision) and that each and all of the nderstood that failure to comple eturned for completion and result	ne statements he ete the required it	erein are true and
Certification Data: Company Information:	driller's direct supervicorrect. The driller u the report(s) being re	ision) and that each and all of th nderstood that failure to comple sturned for completion and result	ne statements he ete the required it	erein are true and
	driller's direct supervicorrect. The driller u the report(s) being re	ision) and that each and all of th nderstood that failure to comple eturned for completion and result SERVICES, INC.	ne statements he ete the required it	erein are true and
	driller's direct supervi correct. The driller u the report(s) being re BEST DRILLING S P.O. BOX 845	ision) and that each and all of the nderstood that failure to comple eturned for completion and result SERVICES, INC.	ne statements he ete the required it	erein are true and

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	1	NO RECOVERY
1	5	CLAY, It. brown
5	15	CLAY, It. brown
15	20	CLAY, drk. brown
20	35	CLAY, It. brown
35	37.5	CLAYSTONE, drk. gray
37.5	40	CLAY, It. brown
40	50	CLAYEYSTONE, drk. gray

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	40	0	28.5
2	Screen	New Plastic (PVC)	40 0.01	28.5	38.5
2	Bottom Cap	New Plastic (PVC)		38.5	39

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

	STATE OF TEXAS WELL REPORT for Tracking #408201			
Owner:	Sandy Creek Services, LLC	Owner Well #:	MW-1	
Address:	P.O. Box 370 Riesel, TX 76682	Grid #:	39-33-2	
Well Location:	2161 Rattlesnake Rd.	Latitude:	31° 28' 07.21" N	
	Riesel, TX 76682	Longitude:	096° 57' 09.04" W	
Well County:	McLennan	Elevation:	463 ft. above sea level	
Type of Work:	New Well	Proposed Use:	Monitor	

Drilling Start Date: 9/21/2015

Drilling End Date: 9/21/2015

	Diameter ((in.)	Top De	pth (ft.)	Bottom Deptl	h (ft.)
Borehole:	8.25			0		
Drilling Method:	Hollow Stem A	uger				
Borehole Completion:	Filter Packed					
	Top Depth (ft.)	Bottom Depth (i	ft.)	Filter N	Naterial	Size
Filter Pack Intervals:	23	35		Sa	nd	20/40
	Top Depth (ft.)	Bottom De	epth (ft.)	De	scription (number of sa	cks & material)
Annular Seal Data:	0	20.	5		Cement 1 Bags	/Sacks
	20.5	23			Bentonite 0.5 Bags/Sacks	
	23	35			Sand 7 Bags/S	Sacks
Seal Method: Tr	emie		Di	stance to Pr	operty Line (ft.): N	o Data
Sealed By: Dr	iller				ic Field or other ntamination (ft.): N	lo Data
			Γ	Distance to	Septic Tank (ft.): N	o Data
				Metho	d of Verification: N	o Data
Surface Completion:	Surface Slab Ir	nstalled		S	urface Completion	n by Driller
Water Level:	14 ft. below la	nd surface on	2015-10-()3		
Packers:	No Data					
Type of Pump:	No Data					
Well Tests:	No Test Data	No Test Data Specified				

_

	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysis Ma	de: No	
	Did the driller	knowingly penetrate any strata whi contained injurious constituent		
Certification Data:	driller's direct superv correct. The driller u	hat the driller drilled this well (or the ision) and that each and all of the s nderstood that failure to complete t eturned for completion and resubmin	tatements he he required it	rein are true and
Company Information:	BEST DRILLING S	SERVICES, INC.		
Company Information:	BEST DRILLING S P.O. BOX 845 FRIENDSWOOD, 1			
Company Information: Driller Name:	P.O. BOX 845	TX 77549	se Number:	3026

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	1	CLAY, It. brown with gravelly fill
1	5	CLAY, It. brown with some gravelly fill
5	13	CLAY, It. brown to drk. brown
13	31	CLAY, It. brown
31	35	CLAYSTONE with thin strata of It. brown CLAY
35	45	CLAYSTONE, drk. gray

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	40	-3	24
2	Screen	New Plastic (PVC)	40 0.01	24	34
2	Bottom Cap	New Plastic (PVC)		34	34.5

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

	STATE OF TEXAS WELL REPORT for Tracking #408213			
Owner:	Sandy Creek Services, LLC	Owner Well #:	MW-2	
Address:	P.O. Box 370 Riesel, TX 76682	Grid #:	39-33-2	
Well Location:	2161 Rattlesnake Rd	Latitude:	31°28'00.11"N	
	Riesel, TX 76682	Longitude:	096° 57' 14.58" W	
Well County:	McLennan	Elevation:	439 ft. above sea level	
Type of Work:	New Well	Proposed Use:	Monitor	

Drilling Start Date: 9/23/2015

Drilling End Date: 9/23/2015

	Diameter	(in.)	Top De	pth (ft.)	Bottom Deptl	h (ft.)
Borehole:	8.25		(0		
Drilling Method:	Hollow Stem A	luger				
Borehole Completion:	Filter Packed					
	Top Depth (ft.)	Bottom Depth	n (ft.)	Filter N	laterial	Size
Filter Pack Intervals:	8	20.5		Sa	nd	20/40
	Top Depth (ft.)	Bottom I	Depth (ft.)	De	scription (number of sa	cks & material)
Annular Seal Data:	0		6		Cement 1.5 Bags	s/Sacks
	6	8.5			Bentonite 0.6 Baç	js/Sacks
	8.5	20	0.5		Sand 8 Bags/S	Sacks
Seal Method: Tr	emie		Dis	stance to Pr	operty Line (ft.): N	o Data
Sealed By: Dr	iller				c Field or other ntamination (ft.):	lo Data
			C	istance to S	Septic Tank (ft.): N	o Data
				Metho	d of Verification: N	o Data
Surface Completion:	Surface Slab I	nstalled		Su	urface Completion	n by Driller
Water Level:	13.5 ft. below	land surface	on 2015-10	-13		
Packers:	No Data					
Type of Pump:	No Data					
Well Tests:	No Test Data	No Test Data Specified				

_

	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysis Ma	de: No	
	Did the driller	knowingly penetrate any strata whi contained injurious constituent		
Certification Data:	driller's direct superv correct. The driller u	at the driller drilled this well (or the ision) and that each and all of the s nderstood that failure to complete t turned for completion and resubmi	tatements he he required it	rein are true and
Company Information:	BEST DRILLING S	ERVICES, INC.		
	P.O. BOX 845 FRIENDSWOOD, 1	TX 77549		
Driller Name:	Lawrence Tobola	Licen	se Number:	3026

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	5	Gravely fill
5	10	CLAY, drk. brown/black
10	14	CLAY, drk. brown
14	20	CLAY, brown
20	23.5	CLAYSTONE, drk. gray
23.5	25	CLAYSTONE, drk. gray

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	40	0.3	9.5
2	Screen	New Plastic (PVC)	40 0.01	9.5	19.5
2	Bottom Cap	New Plastic (PVC)		19.5	20

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

Page	1	of	2
------	---	----	---

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direc supervision) and that each and all of the statements herein are true and correct. The driller	STATE OF TEXAS WELL REPORT for Tracking #231669						
Riesel , TX Latitude: 31° 27' 57" N Well Location: Same Riesel , TX Latitude: 31° 27' 57" N Well County: McLennan Longitude: 096' 57' 20" W Elevation: No Data GPS Brand Used: No Data Type of Work: New Well Proposed Use: Monitor Drilling Date: Started: 8/30/2010 Completed: 9/3/2010 Monitor Diameter of Hole: Diameter: 8.25 in From Surface To 17 ft Monitor Drilling Method: Hotlow Stem Auger Borehole Other: 20/40 Silica Sand Sorehole Other: 20/40 Silica Sand Completion: Annular Seal Data: 1st Interval: From 0 ft to 2 ft with Concrete (#sacks and material) 2nd Interval: From 0 ft to 2 ft with Bentonite (#sacks and material) 2nd Interval: From 0 ft to 2 ft with Bentonite (#sacks and material) 2nd Interval: From 0 ft to 2 ft with Data Method of Verification: No Data Surface Surface Sizeve Installed Completion: Surface Sizeve Installed Water Level: Static level: No Data Water Level: Static level: No Data Plugging Info: Casing or Cement/Bentonite left in well: No Data Water Quality: Type of Water: No Data <th>Owner:</th> <th>SCPP</th> <th></th> <th>Owner Well</th> <th>#: GB3 (MW-3)</th>	Owner:	SCPP		Owner Well	#: GB3 (MW-3)		
Riesel, TX Longitude: 096° 57' 20" W Well County: McLennan Longitude: 096° 57' 20" W Elevation: No Data GPS Brand Used: No Data Type of Work: New Well Proposed Use: Monitor Drilling Date: Started: 8/30/2010 Completed: 9/3/2010 Monitor Drilling Method: Hollow Stem Auger Borehole Other: 20/40 Silica Sand Borehole Other: 20/40 Silica Sand Sorehole Other: 20/40 Silica Sand Annular Seel Data: 1st Interval: From 0 ft to 2 ft with Concrete (#sacks and material) 2nd Interval: From 0 ft to 4 ft with Bentonite (#sacks and material) 2nd Interval: From 0 ft to 4 ft with Bentonite (#sacks and material) 2nd Interval: From 0 ft to 4 ft with Bentonite (#sacks and material) 2nd Interval: From 0 ft to 4 ft with Bentonite (#sacks and material) 2nd Interval: No Data Method Used: Gravity Commeted By: Crew Distance to Septic Field or other Concentrated Contamination: No Data Surface Surface Siteve Installed Completion: No Data Weter Level: Static level: No Data Attesian flow: No Data Packers: No Data Well Tests: No Data Well Tests: No Data Vell Tests: No Data Well Tests:<	Address:			Grid #:	39-33-2		
Elevation: No Data GPS Brand Used: No Data Type of Work: New Well Proposed Use: Monitor Type of Work: New Well Proposed Use: Monitor Drilling Date: Started: 8/30/2010 Completed: 9/30/2010 Diameter of Hole: Diameter: 8.25 in From Surface To 17 ft Drilling Method: Hollow Stem Auger Borehole Ofther: 20/40 Silica Sand Completion: Annular Seal Data: 1st Interval: From 0 ft to 2 ft with Concrete (#sacks and material) 2rd Interval: From 2 ft to 4 ft with Bentonite (#sacks and material) 3rd Interval: From 2 ft to 4 ft with Bentonite (#sacks and material) 3rd Interval: From 2 ft to 4 ft with Bentonite (#sacks and material) 3rd Interval: From 2 ft to 4 ft with Bentonite (#sacks and material) 3rd Interval: No Data Method Used: Gravity Cernented By: Grew Distance to Septic Field or other Concentrated Contamination: No Data Distance to Septic Field or other Concentrated Contamination: No Data Distance to Septic Field or other Concentrated Contamination: No Data Distance to Septic Field or other Concentrated Contamination: No Data Method Of Verification: No Data Approved by Variance: No Data Approved by Variance: No Data Plugging Info: Casing or Cement/Bentonite left in well: No Data Well Tests: No Data Well Tests: No Data Depth of Strata:	Well Location:		тх	Latitude:	31° 27' 57" N		
Type of Work: New Weil Proposed Use: Monitor Drilling Date: Started: 8/30/2010 Completed: 9/3/2010 Completed: 9/3/2010 Diameter of Hole: Diameter: 8.25 in From Surface To 17 ft Drilling Method: Hotlow Stem Auger Borehole Other: 20/40 Silica Sand Completion: Annular Seal Data: Annular Seal Data: 1st Interval: From 0 ft to 2 ft with Concrete (#sacks and material) 2nd Interval: No Data Method Used: Gravity Cemented By: Crew Distance to Septic Field or other Concentrated Contamination: No Data Method Used: Gravity Cemented By: Crew Distance to Septic Field or other Concentrated Contamination: No Data Approved by Variance: No Data Method of Verification: No Data Approved by Variance: No Data Surface Surface Static level: No Data Packers: No Data Plugging Info: Casing or Cement/Bentonite left in well: No Data Well Tests: No Data Water Quality: Type of Water: No Data Water Quality: Type of Water: No Data Dig the driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that	Well County:	McLenn	an	Longitude:	096° 57' 20'' W		
Drilling Date: Started: 8/30/2010 Completed: 9/3/2010 Diameter of Hole: Diameter: 8.25 in From Surface To 17 ft Drilling Method: Hollow Stem Auger Borehole Other: 20/40 Silica Sand Completion: 1st Interval: From 0 ft to 2 ft with Concrete (#sacks and material) Annular Seal Data: 1st Interval: From 0 ft to 2 ft with Bentonite (#sacks and material) 2nd Interval: No Data Method Used: Gravity Cemented By: Crew Distance to Septic Field or other Concentrated Contamination: No Data Distance to Septic Field or other Concentrated Contamination: No Data Method of Verification: No Data Method of Verification: No Data Method of Verification: No Data Surface Surface Sleeve Installed Completion: Static level: No Data Water Level: Static level: No Data Packers: No Data Plugging Info: Casing or Cement/Bentonite left in well: No Data Well Tests: No Data Welter Quality: Type of Water: No Data Deptin of Strata: No Data Chemical Analysis Made: No Data Deptin of Strata: No Data Chemical Analysis Made: No Data Welt Tests: No D	Elevation:	No Data		GPS Brand (Jsed: No Data		
Completed: 9/3/2010 Diameter of Hole: Diameter: 8.25 in From Surface To 17 ft Drilling Method: Hollow Stem Auger Borehole Other: 20/40 Silica Sand Completion: 1st Interval: From 0 ft to 2 ft with Concrete (#sacks and material) 2nd Interval: From 2 ft to 4 ft with Bentonite (#sacks and material) 3rd Interval: From 2 ft to 4 ft with Bentonite (#sacks and material) 3rd Interval: No Data Method Used: Gravity Cemented By: Crew Distance to Sprice Field or other Concentrated Contamination: No Data Distance to Property Line: No Data Approved by Variance: No Data Surface Completion: Surface Sleeve Installed Surface Surface Sleeve Installed Completion: Static level: No Data Artesian flow: No Data Water Level: Static level: No Data Artesian flow: No Data Water Surface Casing or Cement/Bentonite left in well: No Data Ype Of Pump: No Data Well Tests: No Data Water Quality: Type of Water: No Data Did the driller knowingly perietrate any strata which contained undesirable constituents: No Data Water Quality: Type of Water: No Data Did the driller confiled that the driller drilled this well (or the well was drilled under the driller's dried supervision) and that each and all of the statements herein are true and correct. The driller completion and resubmittal.	Type of Work:	New We]]	Proposed Us	e: Monitor		
Drilling Method: Hollow Stem Auger Borehole Other: 20/40 Silica Sand Completion: Annular Seal Data: 1st Interval: From 0 ft to 2 ft with Concrete (#sacks and material) 2nd Interval: No Data Method Used: Gravity Cemented By: Crew Distance to Septic Field or other Concentrated Contamination: No Data Distance to Property Line: No Data Method of Verification: No Data Approved by Variance: No Data Surface Completion: Water Level: Static level: No Data Artesian flow: No Data Packers: No Data Plugging Info: Casing or Cement/Bentonite left in well: No Data Type Of Pump: No Data Method Type of Water: No Data Distance to Data Plugging Info: Casing or Cement/Bentonite left in well: No Data Type Of Pump: No Data Method Data Distance: No Data Distance to Data Chemical Analysis Made: No Data Dister Quality: Type of Water: No Data Dist due driller contified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller's direct supervision) and that each and all of the statements herein are true and correct. The driller's direct supervision) and that each and all of the statements herein are true and correct. The driller's direct supervision) and that each and all of the statements herein are true and correct. The driller's direct supervision) and that each and all of the statements herein are true and correct. The driller's direct supervision and that each and all of the statements herein are true and correct. The driller's direct complete the required items will result in the log(s) being returned for corruptedion and resubmittal.	Drilling Date:			***************************************			
Borehole Completion: Other: 20/40 Silica Sand Annular Seal Data: 1st Interval: From 0 ft to 2 ft with Concrete (#sacks and material) 2nd Interval: No Data Method Used: Gravity Cemented By: Crew Distance to Septic Field or other Concentrated Contamination: No Data Distance to Septic Field or other Concentrated Contamination: No Data Distance to Septic Field or Data Method of Varification: No Data Approved by Variance: No Data Surface Completion: Surface Sleeve Installed Water Level: Static level: No Data Artesian flow: No Data Plugging Info: Casing or Cement/Bentonite left in well: No Data Distrate: No Data Well Tests: No Data Did the driller continue left in well: No Data Did the driller continue left in well: No Data Did the driller continue left in well: No Data Water Quality: Type of Water: No Data Did the driller continue the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and resubmittal.	Diameter of Hole	e: Diau	meter: 8.25 in From Surface To	o 17 ft			
Completion: Annular Seal Data: 1st Interval: From 0 ft to 2 ft with Concrete (#sacks and material) 2nd Interval: No Data Method Used: Gravity Cemented By: Crew Distance to Septic Field or other Concentrated Contamination: No Data Distance to Septic Field or other Concentrated Contamination: No Data Distance to Property Line: No Data Method of Verification: No Data Approved by Variance: No Data Surface Surface Sleeve Installed Completion: Static level: No Data Artesian flow: No Data Water Level: Static level: No Data Artesian flow: No Data Plugging Info: Casing or Cement/Bentonite left in well: No Data Plugging Info: Casing or Cement/Bentonite left in well: No Data Well Tests: No Data Water Quality: Type of Water: No Data Depth of Strata: No Data Vater Quality: Type of Water: No Data Did the driller knowingly perterate any strata which contained undesirable constituents: No Data Vater Guality: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and resubmittal. Company Total Support Services	Drilling Method:	Holi	ow Stem Auger				
2nd Interval: From 2 ft to 4 ft with Bentonite (#sacks and material) 3rd Interval: No Data Method Used: Gravity Cemented By: Crew Distance to Property Line: No Data Method of Verification: No Data Approved by Variance: No Data Artesian flow: No Data Artesian flow: No Data Artesian flow: No Data Plugging Info: Casing or Cement/Bentonite left in well: No Data Type Of Pump: No Data Well Tests: No Data Water Quality: Type of Water: No Data Chemical Analysis Made: No Data Chemical Analysis Made: No Data Did the driller knowingly penetrate any strata which contained undesirable constituents: No Data Did the driller knowingly penetrate any strata which contained undesirable constituents: No Data Certification Data: The driller certified that the drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller		Oth					
Completion: Water Level: Static level: No Data Artesian flow: No Data Packers: No Data Plugging Info: Casing or Cement/Bentonite left in well: No Data Type Of Pump: No Data Well Tests: No Data Water Quality: Type of Water: No Data Depth of Strata: No Data Water Quality: Type of Water: No Data Depth of Strata: No Data Chemical Analysis Made: No Data Did the driller knowingly pertertate any strata which contained undesirable constituents: No Data Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and resubmittal. Company Total Support Services	Annulai Seai Da	2nd 3rd Meti Cen Dist Dist Meti	2nd Interval: From 2 ft to 4 ft with Bentonite (#sacks and material) 3rd Interval: No Data Method Used: Gravity Cemented By: Crew Distance to Septic Field or other Concentrated Contamination: No Data Distance to Property Line: No Data Method of Verification: No Data				
Artesian flow: No Data Packers: No Data Plugging Info: Casing or Cement/Bentonite left in well: No Data Type Of Pump: No Data Well Tests: No Data Water Quality: Type of Water: No Data Depth of Strata: No Data Depth of Strata: No Data Did the driller knowingly pernetrate any strata which contained undesirable constituents: No Data Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and resubmittal. Company Total Support Services		Sur	ace Sleeve Installed				
Plugging Info: Casing or Cement/Bentonite left in well: No Data Type Of Pump: No Data Well Tests: No Data Water Quality: Type of Water: No Data Depth of Strata: No Data Depth of Strata: No Data Depth of Strata: No Data Did the driller knowingly penetrate any strata which contained undesirable constituents: No Data Chemical Analysis Made: No Data Did the driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and resubmittal. Company Total Support Services	Water Level:						
Type Of Pump: No Data Well Tests: No Data Water Quality: Type of Water: No Data Depth of Strata: No Data Depth of Strata: No Data Chremical Analysis Made: No Data Did the driller knowingly perietrate any strata which contained undesirable constituents: No Data Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and resubmittal. Company Total Support Services	Packers:	No I	No Data				
Well Tests: No Data Water Quality: Type of Water: No Data Depth of Strata: No Data Chremical Analysis Made: No Data Did the driller knowingly penetrate any strata which contained undesirable constituents: No Dat Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and resubmittal. Company Total Support Services	Plugging Info:	Casi	Casing or Cement/Bentonite left in well: No Data				
Water Quality: Type of Water: No Data Depth of Strata: No Data Chemical Analysis Made: No Data Did the driller knowingly penetrate any strata which contained undesirable constituents: No Dat Did the driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and resubmittal. Company Total Support Services	Type Of Pump:	No I	No Data				
Depth of Strata: No Data Chemical Analysis Made: No Data Did the driller knowingly penetrate any strata which contained undesirable constituents: No Dat Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and resubmittal.	Well Tests:	No í	Data				
supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and resubmittal. Company Total Support Services	Water Quality:	Dept Chrei	th of Strata: No Data mical Analysis Made: No Data	any strata which contained	undesirable constituents: No Dat		
	Certification Data: The driller certified supervision) and the understood that fa		rvision) and that each and all o rstood that failure to complete	f the statements herein are	true and correct. The driller		

	Austin , TX 78708	
Driller License Number:	54611	
Licensed Well Driller Signature:	Brian Kern	
Registered Driller Apprentice Signature:	No Data	
Apprentice Registration Number:	No Data	
Comments:	No Data	

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking number (Tracking #231669) on your written request.

Texas Department of Licensing & Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

DESC. & COLOR OF FORMATION MATERIAL

From (ft) To (ft) Description 0 to 16 Tan and Gray Clay 16 to 17 Gray Shale

CASING, BLANK PIPE & WELL SCREEN DATA

Dia. New/Used Type Setting From/To 2 New PVC Riser 0/6 Sched. 40 2 New PVC Screen 6/16 0.010 Slotted

Owner:	SCPP	Owner Well #:	GB2			
Address:	2161 Rattlesnake Rd. Riesel , TX	Grid #:	39-33-2			
Well Location:	Same Riesel , TX	Latitude:	31° 28' 01" N			
Well County:	McLennan	Longitude:	096° 57' 22" W			
Elevation:	No Data	GPS Brand Used:	No Data			
Type of Work:	New Well	Proposed Use:	Monitor			
Drilling Date:	Started: 8/30/2010 Completed: 9/3/2010					
Diameter of Hole	e: Diameter: 8.25 in From Surface	• To 20 ft				
Drilling Method:	Hollow Stem Auger					
Borehole Completion:	Other: 20/40 Silica Sand					
Annular Seal Da	2nd Interval: From 2 ft to 7 ft wi 3rd Interval: No Data Method Used: Gravity Cemented By: Crew Distance to Septic Field or other Distance to Property Line: No Data Method of Verification: No Data Approved by Variance: No Data	Method Used: Gravity Cemented By: Crew Distance to Septic Field or other Concentrated Contamination: No Data Distance to Property Line: No Data Method of Verification: No Data				
Surface	Surface Sleeve Installed					
Completion:						
	Static level: No Data Artesian flow: No Data					
Water Level:						
Water Level: Packers:	Artesian flow: No Data	in well: No Data				
Water Level: Packers: Plugging Info:	Artesian flow: No Data No Data	in well: No Data				
Completion: Water Level: Packers: Plugging Info: Type Of Pump: Well Tests:	Artesian flow: No Data No Data Casing or Cement/Bentonite left	in well: No Data				
Water Level: Packers: Plugging Info: Type Of Pump: Well Tests:	Artesian flow: No Data No Data Casing or Cement/Bentonite left No Data No Data Type of Water: No Data Depth of Strata: No Data Chemical Analysis Made: No Data		able constituents: No Dat			
Water Level: Packers: Plugging Info: Type Of Pump:	Artesian flow: No Data No Data Casing or Cement/Bentonite left No Data No Data Type of Water: No Data Depth of Strata: No Data Chemical Analysis Made: No Dat Did the driller knowingly penetrat a: The driller certified that the driller supervision) and that each and a	ta	d under the driller's directed of a correct. The driller			

Austin, TX 78708 **Driller License** 54611 Number: Licensed Well Brian Kern Driller Signature: **Registered** Driller No Data Apprentice Signature: Apprentice No Data Registration Number: Comments: No Data

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking number (Tracking #231667) on your written request.

Texas Department of Licensing & Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

DESC. & COLOR OF FORMATION MATERIAL

From (ft) To (ft) Description 0 to 19 Tan and Gray Clay 19 to 20 Gray Shale CASING, BLANK PIPE & WELL SCREEN DATA

Dia. New/Used Type Setting From/To 2 New PVC Riser 0/9 Sched. 40 2 New PVC Screen 9/19 0.010 Slotted

APPENDIX D SURVEY DATA

OCTOBER 13, 2015

GEOSYNTEC CONSULTANTS, INC. 8217 SHOAL CREEK BLVD., SUITE 200 AUSTIN, TEXAS 78757

RE: SANDY CREEK ENERGY STATION WELL CONSTRUCTION DIAGRAMS

TO WHOM IT MAY CONCERN:

I HEREBY CERTIFY THE COORDINATES AND ELEVATIONS SHOWN IN THE TABLE BELOW ARE BASED UPON STATE PLANE COORDINATE SYSTEM, NAD 83, TEXAS CENTRAL ZONE, NAVD 88 AND REFERENCED TO BM-1 MONUMENT (NORTHING=10512746.62, EASTING 3349242.64, ELEV.=426.81) AS SHOWN ON THE PLANS PROVIDED BY GEOSYNTEC CONSULTANTS, INC., DATED DECEMBER 9, 2013, FOR THE SANDY CREEK ENERGY STATION.

Monitoring Well	Ground Surface Elevation	Top of PVC Riser Elevation	Northing	Easting
BW-1	482.70	485.57	10515061.29	3350322.30
MW-1	462.85	465.87	10513907.71	3350439.78
MW-2	439.18	442.15	10513176.91	3349982.33
GB-2	444.62	447.45	10513360.72	3349325.82
MW-3/GB-3	427.09	430.06	10512867.54	3349455.27
GB-6	453.39	N/A	10513492.63	3349684.20
GB-7	440.87	N/A	10513175.55	3349950.07

SINCERELY,

MARTY PAUL PO LK. R.P.L.S. 6031

PROJ NO. 1-02580 REVISED: DECEMBER 3, 2015

600 AUSTIN AVENUE, SUITE 20 • WACO, TEXAS • 76701 PHONE: 254-714-1402 • FAX: 254-714-0402 T.B.P.L.S. REGISTRATION NO. 10032500

APPENDIX E

SUPPLEMENTAL DOCUMENTATION

- Geotechnical Design Report (B&V, 2009)
 - Section 4.0: Subsurface Investigation
 - Section 5.0: Subsurface Conditions
 - Figure 6-2: Atterberg Limit Data vs. Depth, All Data
 - Figure 6-3: Atterberg Limit Classification, All Data
- Engineering Report (B&V, 2010)
 - Section 3.0: Site Geology and Hydrogeology
 - Figure 3-1: Subsurface Investigation Boring Location and Insitu Test Plan
 - Figure 5-1: Solid Waste Disposal Facility (SWDF) Area Cross Section
 - Appendix A: Boring, Piezometer, and Test Pit Logs
 - BV-101 thru BV-111; PZ-107; and TP-4
 - Appendix C: Laboratory Test Results
 - Hydraulic conductivity test for BV-102
- Geosyntec Boring Logs
 - GB-1 and GB-4 to GB-7
- Geotechnical Laboratory Test Data for Geosyntec Borings

Sandy Creek Energy Station Riesel, Texas

Geotechnical Design Report Revision 0

> SCPP Project 149060 SCPP File No. 52.0106

> > April 2009

Contents

1.0	Introc	luction1-1
	1.1	Limitations 1-1
2.0	Sumn	nary
3.0	Site C	Conditions
	3.1	Site Location
	3.2	Site Description
	3.3	Proposed Facility
4.0	Subsu	rface Investigation
	4.1	Field Testing Program
		4.1.1 Soil Test Borings
		4.1.2 Rock Coring
		4.1.3 Piezometers
		4.1.4 Test Pits
		4.1.5 Geophysical Exploration
		4.1.6 Pressuremeter Testing
		4.1.7 Soil Electrical Resistivity Tests
	4.2	Laboratory Testing Program
	4.3	Previous Investigation
5.0	Subsu	rface Conditions
	5.1	Regional Geology
	5.2	Site-Specific Geology
	5.3	Geological Hazards5-2
	5.4	Seismicity
		5.4.1 Probabilistic Seismicity
		5.4.2 Deterministic Seismicity
	5.5	Site-Specific Ground Conditions 5-4
		5.5.1 Site Stratigraphy5-4
		5.5.2 Groundwater Conditions
6.0	Geote	chnical Design Recommendations6-1
	6.1	Engineering Design Properties6-1
	6.2	Shallow Foundations
		6.2.1 Spread and Strip Footings
		6.2.2 Tank Foundations
	6.3	Deep Foundations
	6.4	Deep Foundation Test Program
		6.4.1 ACIP Pile and Drilled Pier Test Installation

		6.4.2	Axial Compression Load Test Setup	
		6.4.3	Axial Compression Load Test Results	
		6.4.4	Lateral Load Test Results	
		6.4.5	Axial Tension Pile Load Test	
	6.5	Chimn	ey Pile Design and Production Installation	
		6.5.1	Chimney Production Pile Design	
		6.5.2	Chimney Production Pile Installation	
	6.6	Swellin	ng Soils	
	6.7	Liquef	action Potential Analysis	
	6.8	Frost H	Ieave	
	6.9	Lateral	Earth Pressures	
	6.10	Corros	ion Potential	
	6.11	Soil Th	nermal Resistivity	
7.0	Geote	chnical (Construction Considerations	
	7.1	Site Pr	eparation	
	7.2	Earthw	·ork	
	7.3	Tempo	rary/Permanent Excavations	
	7.4	Dewate	ering	
	7.5	Tempo	rary/Permanent Slopes	
	7.6	Landfi	Il and Runoff Ponds	
8.0	Refere	ences		
Apper	ndix A.			Boring Logs
Apper	ndix B.			Piezometer Logs
Apper	ndix C.			Test Pit Logs
Apper	ndix D.			Geophysical Test Report
Apper	ndix E .			Field Test Results
Apper	ndix F			Laboratory Test Results
Apper	ndix G.		Drilled Pier Test Report & Crossho	ble Sonic Logging Reports

Appendix H..... ACIP Test Pile Logs and PIR

Tables

Table 4-1	Subsurface Investigation Locations
Table 4-2	Electrical Resistivity Locations
Table 5-1	Regional Latest Recorded Significant Earthquakes (USGS, 2007)5-3
Table 6-1	Design Geotechnical Properties - Power Block Area
Table 6-2	Design Geotechnical Properties - Cooling Tower Area
Table 6-3	Design Geotechnical Properties - Coal Handling Facilities
Table 6-4	Dynamic Soil Properties
Table 6-5	Axial Compression and Tension Pile Capacity (tons) & Pile Tip Elevation (feet) - Air Quality Control / Duct Support Area
Table 6-6	Axial Compression and Tension Pile Capacity (tons) & Pile Tip Elevation (feet) - Boiler / Turbine / Transformer Area
Table 6-7	Lateral Pile Capacity (tons)
Table 6-8	Mobilized Soil Resistance, 16 and 24 inch ACIP Piles (tsf)
Table 6-9	Mobilized Soil Resistances, Drilled Piers (tsf)
Table 6-10	Modification Coefficients for Soil Properties
Table 6-11	Engineering Properties for Lateral Pile Analysis
Table 6-12	Soil Chemical Analysis Results
Table 6-13	Soil Thermal Resistivity Results

Figures

	Figure 3-1	Site Location
	Figure 4-1	Subsurface Investigation Plan, Boring Locations, Initial Site Arrangement
	Figure 4-2	Subsurface Investigation Plan, Resistivity Locations, Initial Site Arrangement
	Figure 4-3	Subsurface Investigation Plan, Boring Locations, Current Site Arrangement
	Figure 5-1	Power Block Cross Section
	Figure 5-2	Cooling Tower Cross Section
	Figure 5-3	Coal Handling Area Cross Section
	Figure 6-1	Standard Penetration Test N Values vs. Depth, Power Block Area
Γ	Figure 6-2	Atterberg Limit Data vs. Depth, All Data
L	Figure 6-3	Atterberg Limit Classification, All Data
	Figure 6-4	Pressuremeter Modulus vs. Depth, Power Block Area
	Figure 6-5	Soil Strength Data Correlated from Pressuremeter Testing vs. Depth,
		Power Block Area
	Figure 6-6	Unconfined Compression (UNC) Testing Shear Strengths vs. Depth,
		Power Block Area

4.0 Subsurface Investigation

The subsurface investigation was performed to determine the site stratigraphy and geotechnical engineering parameters of the soils that underlie the proposed site area. The subsurface investigation was developed to gather detailed design information for use with data obtained from a previous geotechnical investigation.

The subsurface investigation was contracted to Professional Service Industries, Inc. (PSI) of Houston, Texas, under the geotechnical engineering direction of Sandy Creek Power Partners (SCPP). The exploration work consisted of soil borings with minimal rock coring, piezometer installations and test pits. Additional field work included pressuremeter testing, soil electrical resistivity field testing, double ring infiltrometer testing, in-situ shear vane testing, dynamic cone penetrometer testing, and crosshole seismic testing.

The initial subsurface location plan with the preliminary site layout is presented on Figures 4-1 and 4-2. The updated site and plant layout is shown in Figure 4-3, which includes movement of the cooling tower, removal of retaining ponds, and an updated arrangement of the rail line, among other minor changes. Planning, field supervision, and subsurface logging were performed by an SCPP geotechnical engineer. Fieldwork was completed in September 2007.

4.1 Field Testing Program

The subsurface investigation included 51 soil borings to depths of up to 100 feet, 4 test pits to 16 feet, 4 double-ring infiltrometer (DRI) tests, 4 piezometers to depths of 29.5to 49.0 feet, and 40 electrical resistivity tests. Pressuremeter and shear vane tests were performed in situ during drilling. Two crosshole seismic tests were performed at locations of rotating-mass equipment.

The investigation was performed through July, August, and September of 2007. PSI was contracted to perform all drilling, sampling, and testing of soil and rock obtained during the investigation.

Initial surveying and staking of points was performed by Sherwood Surveying, LLC of Spring Branch, Texas. Coordinates were transformed from state plane to latitude and longitude for use with global positioning system (GPS) location equipment. Mean Sea Level (MSL) elevations were used for the investigation. Table 4-1 lists the coordinates, ground surface elevations, and depths for the soil borings, test pits, and piezometer locations, along with remarks identifying the particular field testing conducted within the boring as listed in Figure 4-3. Table 4-2 lists the coordinates and elevations for the soil electrical resistivity tests as listed in Figure 4-2.

Г

T

	Table 4-1							
Subsurface Investigation Locations								
Location	Plan	t Grid		Plane	Depth			
Number		eet)	,	eet)	(feet)	Remarks		
BV-1	5372.69	9138.98	10516296.99	3348576.40	41	PMT		
BV-2	5302.16	9402.55	10516252.73	3348801.76	75	PMT		
BV-3	5258.34	9704.39	10516244.84	3349106.65	46	VST		
BV-4	5247.51	9930.16	10516260.72	3349332.13	46	PMT		
BV-5	5210.50	9085.63	10516124.33	3348497.86	8	DCP		
BV-6	5153.86	9495.83	10516116.47	3348911.88	73	THERM		
BV-7	5123.01	9879.53	10516131.11	3349296.54	48	PIEZ		
BV-8	5122.58	9207.76	10516051.43	3348629.51	68	VST		
BV-9	5010.34	9654.83	10515969.98	3348895.34	50	VST		
BV-10	5047.43	9815.58	10516029.54	3349082.33	63	VST		
BV-11	5004.06	9940.97	10516005.45	3349247.07	85	PMT		
BV-12	5066.09	9998.74	10516081.83	3349364.26	48	ERS		
BV-13	5020.13	9998.74	10516043.01	3349427.06	46	VST		
BV-14	4982.05	9228.74	10516005.20	3349431.55	83	PMT		
BV-15 A,B,C	4989.27	9228.63	10515921.52	3348665.96	108	CST		
BV-16	4967.44	9653.13	10515949.92	3349090.07	52	PMT		
BV-17 A,B,C	4934.12	9937.68	10515950.40	3349376.57	99	CST		
BV-18	4941.61	9057.00	10515853.94	3348501.16	48	PMT		
BV-19	4882.26	9372.41	10515832.21	3348821.37	68	VST		
BV-20	4882.26	9524.72	10515850.18	3348972.62	78	THERM		
BV-21	4838.92	9223.59	10515771.61	3348678.70	78	ERS / PIEZ		
BV-22	4751.65	9954.93	10515771.24	3349415.22	8	DCP		
BV-23	5570.30	8223.48	10516379.91	3347599.29	38			
BV-24	6061.39	9280.50	10516992.27	3348590.98	78	PMT		
BV-25	5046.39	8790.72	10515926.57	3348224.38	8	DCP		
BV-26	5741.22	9237.12	10516669.21	3348585.69	37	VST		
BV-27	5788.27	9772.89	10516779.15	3349112.17	48			
BV-28	5781.05	9971.82	10516795.44	3349310.56	38			
BV-29	5968.82	10854.20	10517086.00	3350164.62	33	PIEZ		
BV-30	6207.80	11475.28	10517396.58	3350753.17	8	DCP		
BV-31	5400.92	9503.72	10516362.74	3348890.57	77	PMT		
BV-32	5517.78	9763.70	10516509.46	3349134.95	43			
BV-33	5512.53	9967.23	10516528.26	3349337.67	48			
BV-34	5331.33	10191.76	10516374.81	3349582.02	79	ERS		
BV-35	5507.28	10741.94	10516614.44	3350107.59	45	PMT		
BV-36	4875.69	10816.78	10515996.09	3350256.42	45	VST		
BV-37	4244.12	11462.80	10515445.14	3350972.45	8	DCP		
BV-38	4580.25	13097.57	10515971.80	3352556.14	8			
BV-39	6025.94	16242.36	10516038.78	3355508.42	8	DCP		

Table 4-1 Subsurface Investigation Locations							
Location Number							
BV-101	4026.14	8999.50	10514938.08	3348552.06	43	PIEZ	
BV-102	3335.46	9470.07	10514307.74	3349100.83	48		
BV-103	4055.68	10248.88	10515114.81	3349789.23	50		
BV-104	3609.90	9868.75	10514627.29	3349464.35	73		
BV-105	3689.96	10523.55	10514784.05	3350105.13	50		
BV-106	2448.49	9621.23	10513444.80	3349355.58	43		
BV-107	3101.00	10663.00	10514216.41	3350313.15	28	PIEZ	
BV-108	2345.42	10497.71	10513445.85	3350238.09	37		
BV-109	2338.85	10190.45	10513403.08	3349933.75	50		
BV-110	2550.91	10393.32	10513637.59	3350110.19	38		
BV-111	2739.34	10464.88	10513833.14	3350159.02	50		
TP-1	5625.45	8352.16	10516449.85	3347720.56	13	TEST PIT	
TP-2	5642.52	9813.60	10516639.22	3349169.78	15	TEST PIT	
TP-3	5913.13	10663.96	10517008.25	3349982.28	15	TEST PIT	
TP-4	2344.08	10330.80	10513424.83	3350072.50	14	TEST PIT	

Abbreviations:

PMT= Pressuremeter Test

VST= In-situ Shear Vane Test

DCP= Dynamic Cone Penetrometer Test

ERS= Electrical Soil Resistivity Samples

PIEZ= Piezometer Installation

THERM= Thermal Resistivity Samples

CST= Crosshole Seismic Test

	E 1	Table 4				
	Elect	rical Resistiv	vity Locations			
	Plant	Grid	State	Plane		
Location	(f	t)	(f	t)		
Number	North	East	North	East		
TSR1	8497	1827	10517084.64	3348669.69		
TSR2	8085	1364	10516492.21	3348487.08		
TSR3	7670	1010	10515953.85	3348399.41		
TSR4	7587	677	10515710.31	3348157.58		
TSR5	7453	1041	10515784.10	3348538.16		
TSR6	7006	1292	10515531.89	3348984.52		
TSR7	7119	1680	10515829.57	3349257.86		
TSR8	7461	1740	10516153.00	3349132.26		
TSR9	7663	2319	10516625.80	3349523.28		
TSR10	7100	2178	10516070.79	3349693.67		
TSR11	5861	1926	10514880.77	3350120.15		
TSR12	6597	2494	10515804.44	3350225.15		
TSR13	7519	3019	10516865.23	3350196.03		
TSR14	7160	4167	10517152.97	3351363.42		
TSR15	6014	4686	10516441.52	3352401.37		
TSR16	5749	3341	10515517.74	3351388.68		
TSR17	4520	2285	10513919.80	3351121.83		
TSR18	8017	-25	10515713.31	3347333.81		
MSR1	7831	1532	10516291.45	3348816.19		
MSR2	6897	2812	10516243.94	3350164.22		

4.1.1 Soil Test Borings

Fifty one borings were performed using a combination of rotary wash and solid and hollow stem auger. Borings BV-1 through BV-22 were located within the power block and tank areas. BV-23, 27, 28, 29, 32, and 33, were located within the storm water, wastewater, and coal pile ponds on the northern portion of the site. BV-5, 25, 30, 37, 38, and 39 were performed along the rail loop to the east of the power block area. BV-24 and 26 were located along the cooling tower alignment. BV-34, 35, and 36 were drilled in the coal handling and storage pile vicinity. Borings BV-101 through BV-111 were located in the proposed landfill and leachate pond areas. A test pit was performed in each of the four pond locations around the site, in accordance with TCEQ regulations

Borings were advanced with either a 4-1/2 inch solid stem auger, 8 inch outside diameter hollow stem auger, or 3-7/8 inch step bit using a bentonite slurry as drilling fluid. Borings were advanced to depths of 30 to 100 feet. The hollow stem auger was used in Borings BV-3, 8, 9, 10, 13, 19, 26, and 36 for in situ shear vane testing and Central Mine Equipment Company (CME) continuous barrel sampling. The 4-1/2 inch flighted auger was used for Borings BV-25, 30, 37, 38, and 39 because of ease of mobilization and shallow sampling depth. The remaining borings were performed with rotary wash techniques, including borings in which pressuremeter testing was included. Dual Shelby tube samplings were often used to create cavities for the wash bit that was brought on site to perform the pressuremeter tests. A 2-7/8 inch downward flow pressuremeter testing cavity was created in clays that refused a Shelby tube sampler.

Sampling of the in situ materials included the standard penetration test (SPT) that utilized a standard 2.0 inch outside diameter split spoon sampler, driven with a CME auto hammer and thin-walled Shelby tubes advanced with hydraulic down pressure from the rig. Continuous barrel sampling was also performed during hollow stem drilling, replacing the center bit.

Rotary-wash drilling was used for the majority of the borings, each piezometer, and for advancement of the pressuremeter. Hollow stem augers were used for identifying groundwater bearing seams and performing shear vane testing. Continuous sampling was utilized in the borings for the shear vane testing by pushing a CME barrel sampler ahead of the augers.

Borings were backfilled with bentonite chips through the open hole. An SCPP geotechnical engineer logged the borings and provided field classification of samples during the drilling work. The boring logs are presented in Appendix A.

4.1.2 Rock Coring

Five feet of rock coring was performed in BV-11, from 80 to 85 feet in the marl formation. An 1-7/8 inch core size, 5 foot long, NQ core barrel was used to cut and retrieve the sample, with thin bentonite mud as drilling fluid. Rock coring was not utilized at any other location during the investigation, as samples were obtainable with SPTs or tubes.

4.1.3 Piezometers

Four piezometers were installed in borings BV-7, 23, 21, and 107 to depths of 49.5, 39.0, 52.5, and 29.5 feet, respectively. The locations covered the landfill pond, power block, northern pond, and cooling tower area. As noted in Section 4.1, the piezometers were constructed in holes drilled by rotary wash methods and bentonite mud as fluid. Each borehole was flushed with 500 gallons of clear water prior to piezometer construction. Each piezometer was constructed with 10 foot sections of 2 inch diameter polyvinyl chloride (PVC) riser pipe and a 10 foot screen pipe with 0.010 inch slots, set to the bottom of the drilled hole. The interface of the yellow-brown clay with the hard gray clay was monitored, with water likely seeping in the sand-filled clay fissures located above and below the interface. Filter material consisting of medium to fine silica sand was installed along the screen and above to ensure adequate monitoring of the sand seams. The riser pipe was extended to 3 feet above the ground surface. The piezometer was developed by first surging, then bailing the well nearly dry with a manual bailer. Expelled water was initially dark and full of suspended solids, but became relatively clear as the hole was bailed to within 4 feet of the bottom. A dry hole was not immediately obtainable because of the inflow of water, but the water clarity became stable as the hole was emptied. Piezometer logs are included in Appendix B.

4.1.4 Test Pits

Four test pits were excavated within the site and were located in the proposed storm pond, wastewater pond, coal runoff pond, and landfill runoff pond, as preliminarily located in June 2007. The pits were excavated by Brazos Valley Excavating, Inc., (subcontracted by PSI) with a CAT 325 hydraulic trackhoe. Pits were dug to between 13 and 16 feet and logged by a SCPP engineer/geologist. Bag samples were obtained from each test pit. Each pit was subsequently backfilled and hoe-tamped to protect the livestock in the area. Additionally, shallow (1.5 to 3.0 foot deep) pits were dug to prepare a bed for DRI testing, which was required to provide a suitable test platform without large surficial cracks. Test pit logs are included in Appendix C.

4.1.5 Geophysical Exploration

Two seismic crosshole tests were performed at opposite ends of the power block, near Borings BV-15 and BV-17. The tests were performed on three 100 foot cased borings spaced at 15 feet. The initial intent was to use 10 foot spacings for the borings, but it was determined during sampling that the anticipated shear wave velocity of the clay necessitated the use of greater spacings. Five foot vertical testing intervals were utilized to sample each soil layer, to a maximum depth of 100 feet. Verticality of each casing was determined with a 2DVA-1000 deviation probe.

During testing, limited grading and grubbing activities occurred with a D-6 dozer, which induced some vibrations into the test. Overhead transmission lines are located approximately 200 yards from the site, which also added minor irregularity into the test. The high swelling nature of the clay made for difficulties in properly grouting the casings.

A refraction microtremor (ReMi) test was performed at the contractor's choice as a check between the two test locations. All testing was performed by PSI geoscientists. The geophysical report is included in Appendix D.

4.1.6 Pressuremeter Testing

Pressuremeter tests were performed in Borings BV-1, 2, 4, 11, 14, 16, 18, 24, 31, and 35 to determine in situ deformation properties of the soil strata. Pressuremeter testing was performed by sampling between SPT samples and Shelby tube samples at 5 foot intervals. Tests were conduced in the holes created by two Shelby tube samples where feasible in clay material. Tests were conducted in the clayshale layer by using rotary wash techniques and a downward flow bit, with bentonite slurry as drilling fluid to produce a smooth-walled hole. In several instances, the hole drilled for the probe was either too small or too large in diameter and was rejected for testing. Pressuremeter test results are provided in Appendix E

4.1.7 Soil Electrical Resistivity Tests

Soil electrical resistivity testing was performed over the property in strategic locations to efficiently model the site for grounding design. Twenty-six topsoil resistivity arrays were completed, along with four mid-soil resistivity arrays. Arrays were performed over the power block area, coal and cooling tower sites, and proposed railroad loop area. MSR-2 was offset 200 feet south to avoid deep ravines and inaccessible areas of the site. Electrical resistivity test results are provided in Appendix E.

Additional field test results are provided in Appendix E. Those included in Appendix E are Pressuremeter Tests, Electrical Resistivity Tests, Summary of Vane Shear Tests, Dynamic Cone Penetrometer Tests, and the Double Ring Infiltrometer Test.

4.2 Laboratory Testing Program

Numerous laboratory tests were assigned for the samples collected. A laboratory testing program was performed to classify and characterize the soils encountered during the investigation and to estimate relevant engineering properties of the soils. Triaxial tests included unconsolidated-undrained and consolidated-undrained. Remolded and recompacted soil was mixed with calculated amounts of cement or lime and used with unconsolidated-undrained testing.

The laboratory testing program was developed by B&V and performed by PSI and subcontractors. The laboratory tests included the following:

- Moisture Content--To determine the in situ water content of soil samples.
- Atterberg Limits--To determine the relative plasticity of the soil samples and to assist in classifying the fine-grained portion of the sample.
- California Bearing Ratio (CBR)--To determine suitability of a subgrade for use under a foundation or roadway.
- Clay Fraction--To determine the percentage of clay within a sample.
- Consolidation--To determine the compressibility of cohesive deposits.
- CU-Bar (Consolidated-Undrained with Pore Pressure Measurements) Triaxial Compression--To determine total and effective stress strength parameters.
- Grain Size Analyses--To determine the relative proportions of fine-grained soil particles and sand gradation found in the soil samples.
- Falling Head Permeability--To determine permeability of landfill and pond liner material.
- Lime Percentage--To determine the optimum amount of lime for soil modification.
- UU (Unconsolidated-Unconfined) Triaxial Compression--To determine representative undrained shear strengths of clay deposits under in situ confining stresses.
- UNC (Unconfined) Compression--To determine representative undrained compressive strengths of clay with no confining stress.
- Standard Proctor Tests--To determine the maximum dry density and optimum moisture contents of fill material.
- Soil Box Electrical Resistivity--To determine the resistivity of borrow sources.

- Swell Test--To determine free swell percentages and maximum swell pressures.
- Chemical Analysis--To determine the corrosive potential of foundation soils by measuring the pH, chloride, and sulfate content of foundation soils.

All laboratory testing was performed in general accordance with established American Society for Testing and Materials (ASTM) procedures. Results from the laboratory testing program are included in Appendix F.

4.3 **Previous Investigation**

A previous investigation was performed by Morris-Flood and Associates in 2006 (Reference 5). During the investigation, eight soil borings were completed, along with a limited array of laboratory testing. Five borings were performed in the proposed power block area, two in the pond and landfill location, and one in the proposed railroad alignment. Borings were terminated at depths ranging from 30 to 60 feet. The boring logs indicated materials encountered as firm to hard, high plasticity clay. The SPT N values (and consistency) of the clay increased with depth, to over 50 blows per foot. A layer of Marl was identified under several of the deeper borings, past depths of 50 feet. The majority of deep clay samples were reported as sampled by thin-walled tube pushes, which was not reproduced by the sampling methods used for this investigation.

5.0 Subsurface Conditions

5.1 Regional Geology

The project site lies in the Blackland Prairies province of the Texas Gulf Coastal plains. They are the most inland Gulf Coast plains, located northeast of the Central Texas uplift, and consist of chalks and marls that weather to deep, black clay soils (Physiographic Map of Texas 1996).

Two integrated geologic formations of the Upper Cretaceous period lie below the site. The Lower Taylor Marl Formation (Ozan) grades upward to the Wolfe City Formation, of which both were sampled during the investigations. The Wolfe City formation is historically known to reach thicknesses of 300 feet, but based on its exposed width at the surface, a rough estimate of its thickness at the site would be 150 feet. The Wolfe City Formation consists of marl, sand, sandstone, and clay interbedded with thin sandstone and un-cemented sand lenses, and containing glauconite, phosphate and hematite nodules. It is generally dark gray to light gray and brown. (Geologic Atlas of Texas, Waco Sheet, Texas Bureau of Economic Geology, 1970.).

The geology of the Gulf Coastal Plains is complex due to cyclic deposition of sedimentary facies. Sediments were deposited under a fluvial-deltaic to shallow marine environments during the Miocene to the Pleistocene periods. Repeated sea-level changes and natural basin subsidence produced discontinuous beds of sand, silt, clay, and gravel (Chowdhury and Turco, 2005).

The formations directly underlying the site are considered to be a confining unit of the local aquifer. A local recharge zone of sandy deposits is located just northwest of the site running northeast to southwest. The most shallow principal aquifer beneath the site is the Trinity Aquifer, which would likely be encountered at least 1,000 feet below the ground surface. (*Groundwater Atlas of the United States*, USGS, Reston, VA, 1996.)

5.2 Site-Specific Geology

Three distinct soil layers are found within the site. A high plasticity, overconsolidated, firm, brown clay with fluvial gravel and cobble is underlain by a stiff, high plasticity, overconsolidated, yellow-brown clay. The yellow-brown clay grades to a hard, high plasticity, gray clayshale deposit. The clayshale layer is a completely weathered-decomposed layer of shale. Also encountered was a clayey rock locally termed marl, consisting of highly cemented plant and bone fragments with frequent sandstone, limestone, and gypsum nodules. The marl was encountered in only one boring, and no limits or extent of the material could be determined.

An approximate 6 inch topsoil layer overlies the site and contains organics. The yellow-brown clay ranges in thickness from 5 feet to 40 feet, and the gray clayshale has been measured in thickness from 20 to 40 feet. Frequent secondary mineralization and deposits of gypsum and fine sand are apparent to depths of up to 40 feet. Overconsolidation of the clays found onsite is from variations in historical water levels, sediment deposits over geologic history, and desiccation.

5.3 Geological Hazards

Liquefaction is not a concern at the site because of low seismic potential and no loose granular materials found onsite.

The majority of clays found in the upper 35 feet have a high potential for swelling. Seasonal shrink-swell patterns commonly leave 1.5 inch wide fissures in the upper 5 to 10 feet of soil. Swelling of the clays under lightly loaded structures built on shallow foundations and paved roads will have to be mitigated by techniques detailed in Section 7.2.

Land subsidence is not a concern at the site. Sinkholes are not common to the area, as the underlying rock is not prone to dissolution by surface water infiltration.

The majority of clay in the upper 35 feet is lightly to moderately overconsolidated. Below 35 feet, to the top of rock, the majority of clay sampled was highly overconsolidated. There is no risk of soil collapse caused by under consolidated deposits.

The nearest Cretaceous-aged fault is located more than 15 miles from the project area. There have been no recent geologic data that indicated any seismic-related ground surface movement in recent geologic history.

The average proposed elevation of the power block area is 480 feet (MSL). The lowest proposed plant elevation is 445 feet at the storm water retention pond berm. The Federal Emergency Management Agency (FEMA) 100 year flood elevation is approximately 425 feet. The site is not prone to flooding.

The risk of landslides is minimal at the current site. Some moderately steep hills exist, but consist of stiff clay that is sufficiently strong to withstand any driving forces from the natural slopes. Proposed earthwork plans indicate the removal of most steep valleys and hills, which would further eliminate any landslide or slope failure risk.

5.4 Seismicity

Seismic activity is generally not considered a hazard in the site area. The maximum peak ground acceleration for a 50 year event is 6.0 percent gravity (0.06g).

5.4.1 Probabilistic Seismicity

The site area has a low potential for seismic activity. The soil is classified as Site Class C based on the average soil properties for the upper 100 feet of the soil profile, as defined by the requirements in the 2003 International Building Code (IBC). Seismic design parameters are as follows (IBC 2003):

- Mapped spectral acceleration for 0.2 second short period $(S_S) = 10.1$ percent, based on Site Class C.
- Mapped spectral acceleration for 1 second period $(S_1) = 4.3$ percent, based on Site Class C.
- Seismic Importance Factor (IE) = 1.25.
- Structure Category = Category III.
- Seismic Use Group = Group II.
- Design spectral acceleration for 0.2 second short period $(S_{DS}) = 8.1$ percent.
- Design spectral acceleration for 1.0 second short period $(S_{D1}) = 5.6$ percent.

5.4.2 Deterministic Seismicity

Geologic evidence indicates very low risk for seismic movement or hazards. The United States Geological Survey (USGS, 2007) states, "The gulf-margin normal faults in Texas are assigned as Class B structures because of their low seismicity and because they may be decoupled from underlying crust, making it unclear if they can generate significant seismic ruptures that could cause damaging ground motion."

Few earthquakes are recorded in southern Texas history, with even fewer creating much damage. The latest recorded significant earthquakes to impact the region are listed in Table 5-1 (USGS, 2007).

Regional Latest	Table 5-1 Recorded Significant Ear	thquakes (USGS, 2007)											
Modified Mercalli													
Occurrence Date	Magnitude	Location											
09/15/2007	2.7	100 miles NE of Austin											
11/02/1981	3.2	90 miles NE of Austin											
2/15/1974	4.5	Texas Panhandle											
5/12/1969	3.3/3.4	El Paso											
06/20/1966	4.8	Texas Panhandle											

5.5 Site-Specific Ground Conditions

5.5.1 Site Stratigraphy

Three major layers have been identified under the site. Cross sections for the Power Block, Cooling Tower, and Coal Handling areas are shown in Figures 5-1, 5-2, and 5-3, respectively. Not all of the soil borings are included in the cross sections.

Layer 1: Brown Clay

Layer 1 is a high plasticity, soft-to-firm clay with trace amounts of rounded sand and gravel of fluvial deposits. It contains organics in the top 6 inches and sustains wild plant growth. This layer is typically 1 to 12 feet thick and is found in every boring sampled onsite. Thinner deposits are found on the top and sides of hills, with thicker deposits up to 12 feet thick located in bottom valley areas. The upper 8 feet (where deposited) is highly desiccated from seasonal drying and exhibits vertical cracking up to 2 inches wide and 6 feet deep in the dry season. This layer is prone to substantial swelling. Average SPT N values were 5 blows per foot (bpf), with an average shear strength of 1.5 ksf. The average moisture content, liquid limit, and plastic limit were 30, 70, and 28 percent, respectively. The overconsolidation ratio ranged from 1.5 to 4.0.

Layer 2: Yellow-Brown Clay

Layer 2 is a high plasticity, firm-to-stiff clay with trace amounts of subrounded sand and gravel. This layer ranges in depth from 10 feet to 45 feet and is found in every boring sampled onsite. The SPT N values ranged from 15 to 45, and increased linearly with depth. Shear strengths increased from 2.5 ksf at shallow depths to 4 ksf near the interface with clayshale. Occasional horizontal seams of fine gray sand were common in the upper elevations, while horizontal and vertical deposits of gypsum were identified within this layer. Free water was commonly encountered within the sand layers at depths greater than 20 feet. This layer is prone to swelling when exposed to excess water. At lower elevations, this layer grades to gray with no change in strength properties. Three sublayers were created for analysis to accurately capture the increasing strength of the deposit. The average moisture content, liquid limit, and plastic limits are 25, 68, and 25 percent, respectively. The overconsolidation ratio ranged from 2.0 to 4.0.

Layer 3: Clayshale

Layer 3 is a moist-to-dry, high plasticity, hard, residual intermediate geomaterial typically found below depths of 50 feet in the upper hills and 25 feet in the bottom valleys. It was classified as a decomposed residual shale that had been weathered to a clay material. It is characterized as having a distinct horizontal fabric structure (fissile).

Fine sand layers were found infrequently, and typically were observed with iron oxide staining. Very infrequently fissures and joints were found with angles of 45 to 60 degrees. Average SPT N values were over 50 bpf, with occasional refusal on unweathered nodules. The average shear strength from unconfined compression and unconsolidated undrained triaxial tests was 7 ksf. The average moisture content, liquid limit, and plastic limits are 20, 67, and 25 percent, respectively. The overconsolidation ratio was estimated at over 6, due to a lack of quality undisturbed samples recovered.

Marl

Clayey limestone (Marl) was identified in one deep boring, BV-11 at a depth of 78.0 feet (elevation 404 feet). It was characterized as a soft rock with clay origins and random cemented inclusions with less than 10 percent gypsum content. The layer was identified by SPT refusal and required coring equipment for sampling. The average unconfined compressive strength was 40 ksf (280 pounds per square inch, psi) from rock core samples.

5.5.2 Groundwater Conditions

Groundwater was encountered in all eight borings advanced with hollow stem augers, and in all piezometers installed onsite. Water strikes were encountered from 22 to 43 feet below ground surface (elevation 454 feet and 442 feet, respectively) in the power block area (Borings BV-7 and BV-11), and 14 feet below ground surface (elevation 411 feet) near the storm runoff pond (Boring BV-23). It was determined that the water flowed from cracks and fissures in the stiff clay. The majority of the fissures were in-filled with sand and gypsum, indicating secondary mineralization and water flow at certain depths. Iron oxide staining and secondary mineralization in near-surface soil indicates vertical water movement in recent history.

The water encountered is considered transient or perched, is not connected to the local aquifer, and is not expected to be found in large quantities. The nearest freshwater aquifer is located at a depth of over 1,000 feet below ground surface.

The permeability and infiltration rate of clays onsite were determined by both laboratory and in situ tests. Falling head permeability tests and DRI testing resulted in close agreement of the hydraulic properties. The infiltration rates during the DRI tests indicate the swelling nature of the high plasticity clay, with the initial inflow rates as much as 10 times those at the end of the test. This indicates that the system either became saturated or swelled and fissures closed during testing, with the latter verified by visual inspection. All soil encountered onsite was mostly clay with high plasticity. The natural permeability of these soils is generally very low (k< 10⁻⁸ centimeters per second).

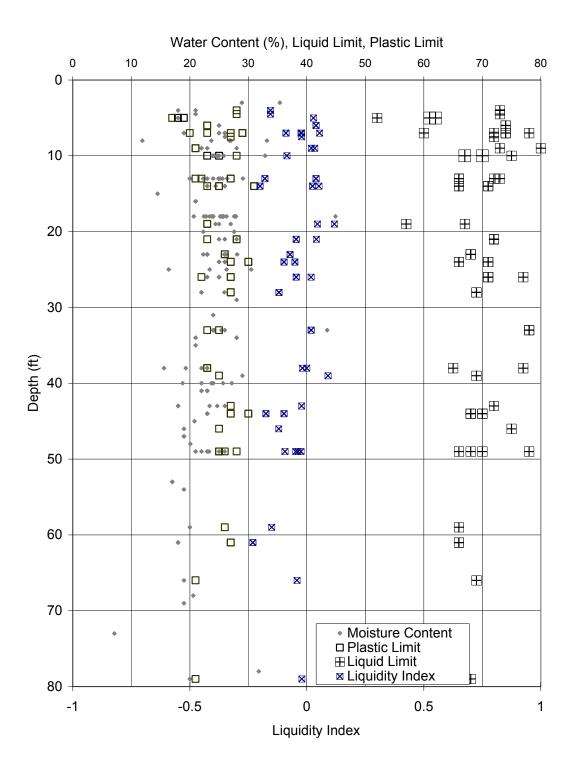


Figure 6-2 Atterberg Limit Data vs. Depth, All Data

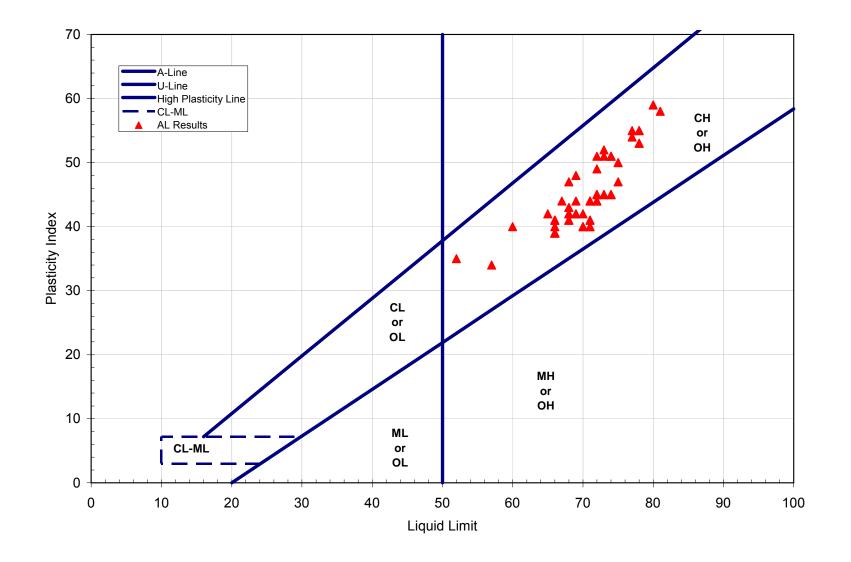


Figure 6-3 Atterberg Limit Classification, All Data

Sandy Creek Services, LLC

Sandy Creek Energy Station Solid Waste Disposal Facility

Engineering Report

Revision 1

SCPP Project No. 149060 SCPP File No. 52.0206

October 18, 2010

Sandy Creek Power Partners, L.P.

Table of Contents

1.0	Introdu	ıction
	1.1	Limitations 1-2
2.0	Site De	escription
	2.1	Site Location
	2.2	Site Description
	2.3	Site Development
3.0	Site Ge	eology and Hydrogeology 3-1
	3.1	Regional Geology
	3.2	Site-Specific Geology
	3.3	Subsurface Investigation
		3.3.1 Field Testing Program
		3.3.2 Laboratory Testing Program
		3.3.3 Previous Investigations
	3.4	Site-Specific Ground Conditions
		3.4.1 Site Stratigraphy
	3.5	Groundwater Conditions
4.0		eparation
	4.1	Site Preparation
	4.2	Roads
5.0	-	ering Design
	5.1	Engineering Design Properties
	5.2	Slope Stability
		5.2.1 Byproduct Material Properties
		5.2.2 Slope Stability Results
F O	5.3	Settlement Analysis
6.0		Water Management
	6.1	General
	6.2	Active Cell Contact Storm Water
	6.3	Stormwater Runoff Pond
	6.4	Non-Contact Storm Water
7.0		Erosion Control
7.0		luct Storage Volumes
8.0		e Area Closure
9.0	Referen	nces
Anna	ndiv A	Boring and Piezometer Logs
Anne	ndix R	Field Permeability Test Report
		Laboratory Test Results
Appe	ndix D	
		Drawdown Drainage Pipe Calculation
1 PPC	1101/1 11	Druwdown Drumuge i ipe Culculution

Tables

Table 2-1	Combustion Byproduct Storage Area Drawings	2-2
Table 5-2	Subsurface Soil and Byproduct Design Parameters	5-3
Table 7-1	Storage area Stage Volumes	7-1

Figures

Figure 1-1	Facility Map
Figure 2-1	General Site Arrangement
Figure 3-1	Subsurface Investigation – Boring Location and Insitu Test Plan
Figure 5-1	Solid Waste Disposal Facility (SWDF) Area Cross Section
Figure 5-2	SPT N-values with Elevation

Drawings

As listed in Table 2-1 - Solid Waste Disposal Facility Drawings

3.0 Site Geology and Hydrogeology

3.1 Regional Geology

The project site lies in the Blackland Prairies province of the Texas Gulf Coastal plains. They are the most inland Gulf Coast plains, located northeast of the Central Texas uplift, and consist of chalks and marls that weather to deep, black clay soils (Physiographic Map of Texas 1996).

Two integrated geologic formations of the Upper Cretaceous period lie below the site. The Lower Taylor Marl Formation (Ozan) grades upward to the Wolfe City Formation, of which both were sampled during the investigations. The Wolfe City formation is historically known to reach thicknesses of 300 feet, but based on its exposed width at the surface, a rough estimate of its thickness at the site would be 150 feet. The Wolfe City Formation consists of marl, sand, sandstone, and clay interbedded with thin sandstone and un-cemented sand lenses, and containing glauconite, phosphate and hematite nodules. It is generally dark gray to light gray and brown. (Geologic Atlas of Texas, Waco Sheet, Texas Bureau of Economic Geology, 1970.).

The geology of the Gulf Coastal Plains is complex due to cyclic deposition of sedimentary facies. Sediments were deposited under a fluvial-deltaic to shallow marine environments during the Miocene to the Pleistocene periods. Repeated sea-level changes and natural basin subsidence produced discontinuous beds of sand, silt, clay, and gravel (Chowdhury and Turco, 2005).

The formations directly underlying the site are considered to be a confining unit of the local aquifer. A local recharge zone of sandy deposits is located just northwest of the site running northeast to southwest. The most shallow principal aquifer beneath the site is the Trinity Aquifer, which would likely be encountered at least 1,000 feet below the ground surface. (Groundwater Atlas of the United States, USGS, Reston, VA, 1996.)

3.2 Site-Specific Geology

Three distinct soil layers are found within the site. A high plasticity, overconsolidated, firm, brown clay with fluvial gravel and cobble is underlain by a stiff, high plasticity, overconsolidated, yellow-brown clay. The yellow-brown clay grades to a hard, high plasticity, gray clayshale deposit. The clayshale layer is a completely weathered-decomposed layer of shale. Also encountered was a clayey rock locally termed marl, consisting of highly cemented plant and bone fragments with frequent sandstone, limestone, and gypsum nodules. The marl was encountered in only one boring, and no limits or extent of the material could be determined.

An approximate 6 inch topsoil layer overlies the site and contains organics. The yellowbrown clay ranges in thickness from 5 feet to 40 feet, and the gray clayshale has been measured in thickness from 20 to 40 feet. Frequent secondary mineralization and deposits of gypsum and fine sand are apparent to depths of up to 40 feet. Overconsolidation of the clays found onsite is from variations in historical water levels, sediment deposits over geologic history, and desiccation.

3.3 Subsurface Investigation

The subsurface investigation was performed to determine the site stratigraphy and geotechnical engineering parameters of the soils that underlie the proposed site area. The subsurface investigation was developed to gather detailed design information for use with data obtained from a previous geotechnical investigation.

The subsurface investigation was contracted to Professional Service Industries, Inc. (PSI) of Houston, Texas, under the geotechnical engineering direction of SCPP. The exploration work within the storage area footprint consisted of soil borings, piezometer installations, and test pits.

3.3.1 Field Testing Program

The field investigation consisted of a total of eleven (11) soil borings, of which a piezometer was set in one (1) of the borings located on the southeast corners of the solid waste disposal facility site. The borings were 28 to 73 feet deep with most of the borings terminating in the clayshale layer. One (1) test pit was excavated to a depth of 16 feet in the stormwater runoff pond area. Field tests within the SWDF and stormwater runoff pond area are discussed in the following subsections.

The subsurface investigation locations are provided on Figure 3-1 (SCPP Drawing 149060-DS-0001, Revision C). Initial surveying and staking of points was performed by Sherwood Surveying, LLC of Spring Branch, Texas. Coordinates were transformed from state plane to latitude and longitude for use with global positioning system (GPS) location equipment. Mean Sea Level (MSL) elevations were used for the investigation. Table 3-1 lists the coordinates, ground surface elevations, and depths for the soil borings, test pits, and piezometer locations, along with remarks identifying the particular field testing conducted within the boring as listed in Figure 3-1.

		Sut	Tab osurface Inves	le 3-1 stigation Loca	ations									
Location Number														
BV-101	V-101 4026.14 8999.50 10514938.08 3348552.06 43 473.2													
BV-102	3335.46	9470.07	10514307.74	3349100.83	48									
BV-103	4055.68	10248.88	10515114.81	3349789.23	50	493.2								
BV-104	3609.90	9868.75	10514627.29	3349464.35	73	490.3								
BV-105	3689.96	10523.55	10514784.05	3350105.13	50	464.0								
BV-106	2448.49	9621.23	10513444.80	3349355.58	43									

		Sut	Tab osurface Inves	le 3-1 stigation Loca	ations									
Location Number														
BV-107	BV-107 3101.00 10663.00 10514216.41 3350313.15 28 PIEZ													
BV-108	2345.42	10497.71	10513445.85	3350238.09	37	443.7								
BV-109	2338.85	10190.45	10513403.08	3349933.75	50	441.6								
BV-110	2550.91	10393.32	10513637.59	3350110.19	38	439.6								
BV-111	2739.34	10464.88	10513833.14	3350159.02	50	446.0								
TP-4	2344.08	10330.80	10513424.83	3350072.50	14	438.0	TEST PIT							

Abbreviations:

PIEZ= Piezometer Installation

3.3.1.1 Soil Test Borings

Eleven soil borings were performed using rotary wash technique. Borings BV-101 through BV-107 were located within the SWDF areas. Borings BV-108 through BV-111 and test pit TP-4, were located within the stormwater runoff pond area.

Borings were advanced with 3-7/8 inch step bit using bentonite slurry as drilling fluid. Sampling of the in situ materials included the standard penetration test (SPT) that utilized a standard 2.0 inch outside diameter split spoon sampler, driven with a CME auto hammer and thin-walled Shelby tubes advanced with hydraulic down pressure from the rig. Borings, with the exception of piezometer borings, were backfilled with bentonite chips through the open hole. An SCPP geotechnical engineer logged the borings and provided field classification of samples during the drilling work. The boring logs are presented in Appendix A.

3.3.1.2 Piezometers

One piezometer was installed in boring BV-107 at a depth of 19.0 feet, with a 10 foot screen. As noted in Section 3.3.1.1, the piezometer was constructed in borehole drilled by rotary wash methods and bentonite mud as fluid. The borehole was flushed with 500 gallons of clear water prior to piezometer construction. Each piezometer was constructed with 10 foot sections of 2 inch diameter polyvinyl chloride (PVC) riser pipe and a 10 foot screen pipe with 0.010 inch slots, set to the bottom of the drilled hole. The interface of the yellow-brown clay with the hard gray clay was monitored, with water likely seeping in the sand-filled clay fissures located above and below the interface. Filter material consisting of medium to fine silica sand was installed along the screen and above to ensure adequate monitoring of the sand seams. The riser pipe was extended to 3 feet above the ground surface. The piezometer was developed by first surging, then bailing the well nearly dry with a manual bailer. Expelled water was initially dark and full of suspended solids, but became relatively clear as the hole was bailed to within 4 feet of the bottom. A dry hole was not immediately obtainable because of the inflow of water, but the water clarity became stable as the hole was emptied. Piezometer log is included in Appendix A.

3.3.1.3 Field Permeability Tests

The permeability and infiltration rate of clays onsite were determined by compacting the in situ material to the clay liner specifications in 3 lifts. Falling head permeability tests on samples from each lift and double ring infiltrometer (DRI) testing resulted in close agreement of the hydraulic properties. The infiltration rates during the DRI tests indicate the swelling nature of the high plasticity clay, with the initial inflow rates as much as 10 times those at the end of the test. This indicates that the system either became saturated or swelled and fissures closed during testing, with the latter verified by visual inspection. All soil encountered onsite was mostly clay with high plasticity. The natural permeability of these soils is generally very low (k < 10 -8 centimeters per second). Field permeability tests data and interpretation is provided in Appendix B.

3.3.1.4 Test Pits

One test pit was excavated within the stormwater runoff pond area. The pits were excavated by Brazos Valley Excavating, Inc., (subcontracted by PSI) with a CAT 325 hydraulic trackhoe. The test pit was dug to a depth of 13 feet and logged by a SCPP engineer/geologist. Bag samples were obtained from the test pit. The pit was subsequently backfilled and hoe-tamped to protect the livestock in the area. Test pit logs are included in Appendix A.

3.3.2 Laboratory Testing Program

Numerous laboratory tests were assigned for the samples collected. A laboratory testing program was performed to classify and characterize the soils encountered during the investigation and to estimate relevant engineering properties of the soils. Triaxial tests included unconsolidated-undrained and consolidated-undrained. Remolded and recompacted soil was mixed with calculated amounts of cement or lime and used with unconsolidated-undrained testing.

The laboratory testing program was developed by SCPP and performed by PSI and subcontractors. The laboratory tests included the following:

- Moisture Content--To determine the in situ water content of soil samples.
- Atterberg Limits--To determine the relative plasticity of the soil samples and to assist in classifying the fine-grained portion of the sample.
- California Bearing Ratio (CBR)--To determine suitability of a subgrade for use under a foundation or roadway.
- Clay Fraction--To determine the percentage of clay within a sample.
- CU-Bar (Consolidated-Undrained with Pore Pressure Measurements) Triaxial Compression--To determine total and effective stress strength parameters.
- Grain Size Analyses--To determine the relative proportions of fine-grained soil particles and sand gradation found in the soil samples.
- Variable Head Permeability--To determine permeability of landfill and pond liner material.
- UU (Unconsolidated-Unconfined) Triaxial Compression--To determine representative undrained shear strengths of clay deposits under in situ confining stresses.

• Standard Proctor Tests--To determine the maximum dry density and optimum moisture contents of fill material.

All laboratory testing was performed in general accordance with established American Society for Testing and Materials (ASTM) procedures. Results from the laboratory testing program are included in Appendix C.

3.3.3 Previous Investigations

A previous investigation was performed by Morris-Flood and Associates in 2006. During the investigation, eight soil borings were completed, along with a limited array of laboratory testing. Two of the borings were performed in the proposed SWDF area. Borings were terminated at depths ranging from 30 to 60 feet. The boring logs indicated materials encountered as firm to hard, high plasticity clay. The SPT N values (and consistency) of the clay increased with depth, to over 50 blows per foot. A layer of Marl was identified under several of the deeper borings, past depths of 50 feet. The majority of deep clay samples were reported as sampled by thin-walled tube pushes, which were not reproduced by the sampling methods used by SCPP for this investigation.

3.4 Site-Specific Ground Conditions

3.4.1 Site Stratigraphy

Three major layers have been identified under the site.

3.4.1.1 Brown Clay

Layer 1 is a high plasticity, soft-to-firm clay with trace amounts of rounded sand and gravel of fluvial deposits. It contains organics in the top 6 inches and sustains wild plant growth. This layer is typically 1 to 12 feet thick and is found in every boring sampled onsite. Thinner deposits are found on the top and sides of hills, with thicker deposits up to 12 feet thick located in bottom valley areas. The upper 8 feet (where deposited) is highly desiccated from seasonal drying and exhibits vertical cracking up to 2 inches wide and 6 feet deep in the dry season. This layer is prone to substantial swelling. Average SPT N values were 5 blows per foot (bpf), with an average shear strength of 1.5 ksf. The average moisture content, liquid limit, and plastic limit were 30, 70, and 28 percent, respectively. The overconsolidation ratio ranged from 1.5 to 4.0.

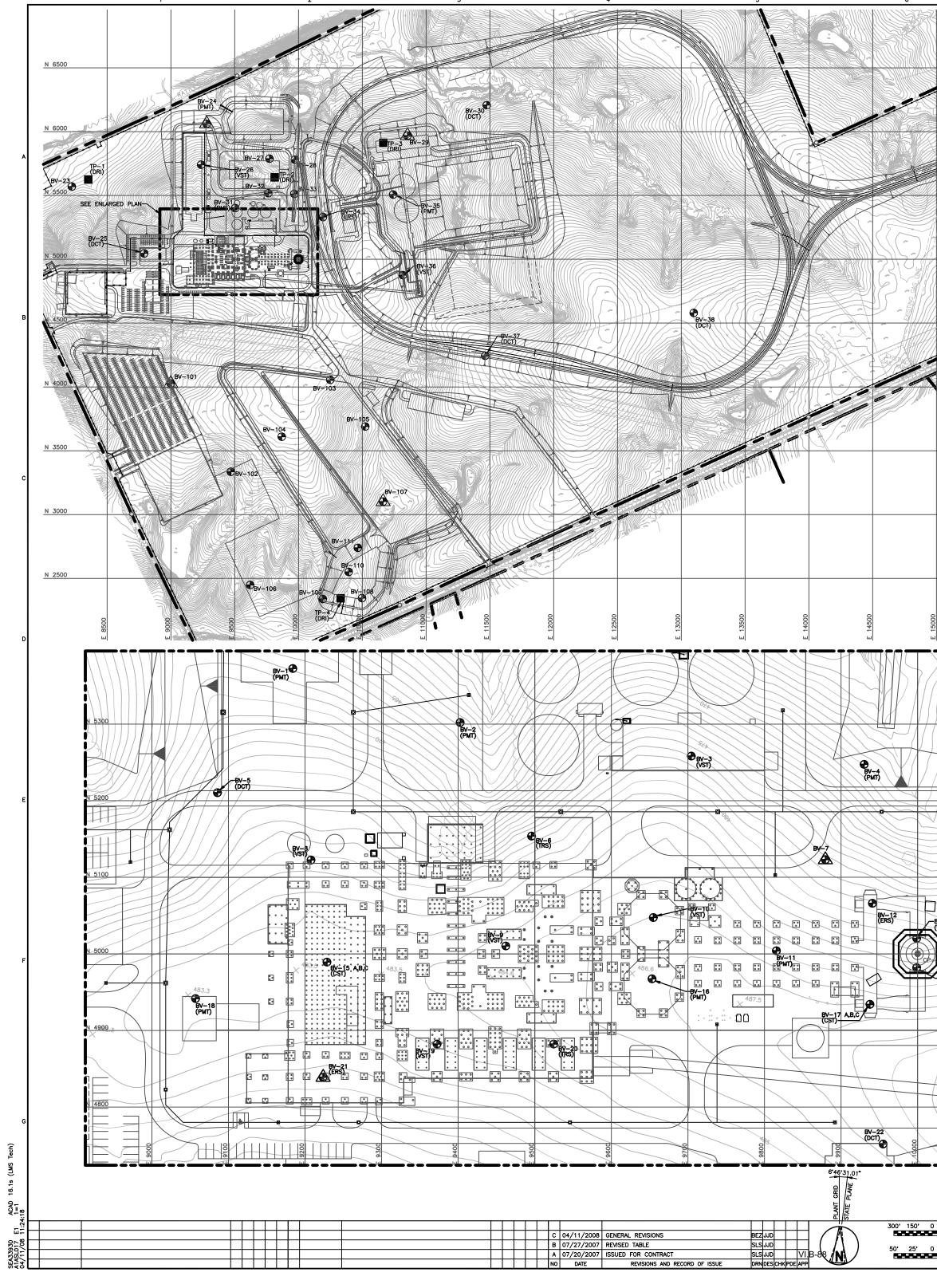
3.4.1.2 Yellow-Brown Clay

Layer 2 is a high plasticity, firm-to-stiff clay with trace amounts of subrounded sand and gravel. This layer ranges in depth from 10 feet to 45 feet and is found in every boring sampled onsite. The SPT N values ranged from 15 to 45, and increased linearly with depth. Shear strengths increased from 2.5 ksf at shallow depths to 4 ksf near the interface with clayshale. Occasional horizontal seams of fine gray sand were common in the upper elevations, while horizontal and vertical deposits of gypsum were identified within this layer. Free water was commonly encountered within the sand layers at depths greater than 20 feet. This layer is prone to swelling when exposed to excess water. At lower elevations, this layer grades to gray with no change in strength properties. Three sublayers were created for analysis to accurately capture the increasing strength of the

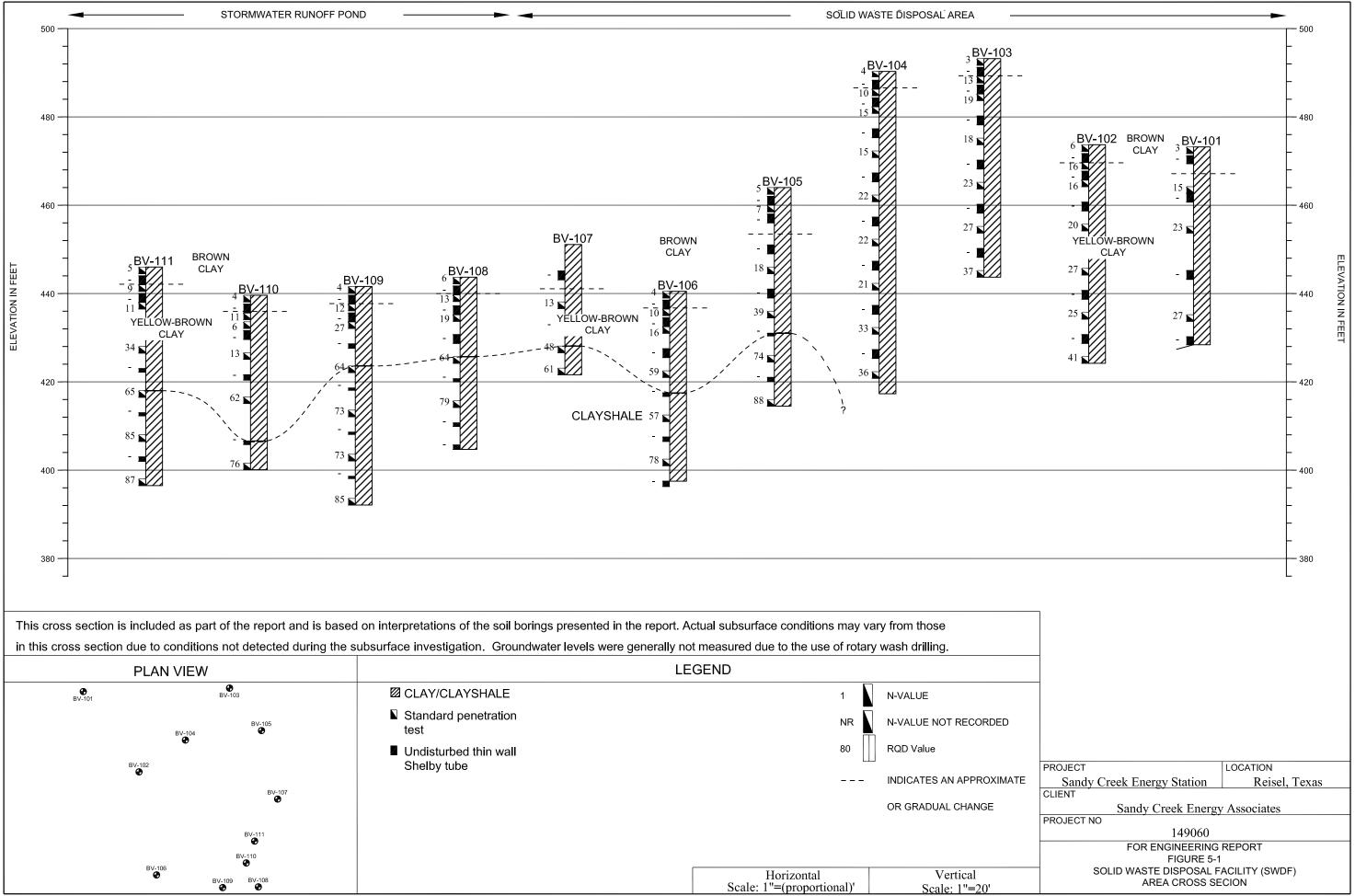
deposit. The average moisture content, liquid limit, and plastic limits are 25, 68, and 25 percent, respectively. The overconsolidation ratio ranged from 2.0 to 4.0.

3.4.1.3 Clayshale

Layer 3 is a moist-to-dry, high plasticity, hard, residual intermediate geomaterial typically found below depths of 50 feet in the upper hills and 25 feet in the bottom valleys. It was classified as decomposed residual shale that had been weathered to a clay material. It is characterized as having a distinct horizontal fabric structure (fissile). Fine sand layers were found infrequently, and typically were observed with iron oxide staining. Very infrequently fissures and joints were found with angles of 45 to 60 degrees. Average SPT N values were over 50 bpf, with occasional refusal on unweathered nodules. The average shear strength from unconfined compression and unconsolidated undrained triaxial tests was 7 ksf. The average moisture content, liquid limit, and plastic limits are 20, 67, and 25 percent, respectively. The overconsolidation ratio was estimated at over 6, due to a lack of quality undisturbed samples recovered.


3.4.1.4 Marl

Clayey limestone (Marl) layer was not identified in SWDF borings to the depths explored. Based on the extent of this layer elsewhere in the power block area, the layer was characterized as a soft rock with clay origins and random cemented inclusions with less than 10 percent gypsum content. The layer was identified by SPT refusal and required coring equipment for sampling. The average unconfined compressive strength was 40 ksf (280 pounds per square inch, psi) from rock core samples.


3.5 Groundwater Conditions

Groundwater was not encountered in the SWDF area borings. In the power block area, groundwater was encountered in eight borings advanced with hollow stem augers, and in all piezometers installed onsite. Water strikes were encountered from 22 to 43 feet below ground surface (elevation 454 feet and 442 feet, respectively) in the power block area (Borings BV-7 and BV-11), and 14 feet below ground surface (elevation 411 feet) near the stormwater runoff pond (Boring BV-23). It was determined that the water flowed from cracks and fissures in the stiff clay. The majority of the fissures were in-filled with sand and gypsum, indicating secondary mineralization and water flow at certain depths. Iron oxide staining and secondary mineralization in near-surface soil indicates vertical water movement in recent history.

The water encountered is considered transient or perched, is not connected to the local aquifer, and is not expected to be found in large quantities. The nearest freshwater aquifer is located at a depth of over 1,000 feet below ground surface.

7	,	8				9			10
			PLANT	GRID	STATE		LOCATIO SOIL DRILLING	NS ROCK/MARL DRILLING	
		LOCATION NO. BV-1 BV-2	NORTHING 5372.69 5302.16	EASTING 9183.98 9402.55	NORTHING 10516296.99 10516252.73	EASTING 3348576.40 3348801.76	(FT) 50 50	(FT) TOP 30	REMARKS PRESSUREMETER TESTING PRESSUREMETER TESTING
		BV-2 BV-3 BV-4	5258.34 5247.51	9704.39 9930.16	10516244.84 10516260.72	3349106.65 3349332.13	50 50 50	TOP TOP	VANE SHEAR TEST PRESSUREMETER TESTING
		BV-5 BV-6	5210.50 5153.86	9085.63 9495.83	10516124.33 10516116.47	3348497.86 3348911.88	10 50	- 30	DYNAMIC CONE TEST THERMAL RESISITIVITY SAMPLE
		BV-7 BV-8 BV-9	5123.01 5122.58 5010.34	9879.53 9207.76 9462.12	10516131.11 10516051.43 10515969.98	3349296.54 3348629.51 3348895.34	50 50 50	TOP 30 30	PIEZOMETER VANE SHEAR TEST VANE SHEAR TEST
	EV-39 (ocr)	BV-10 BV-11	5047.43 5004.06	9654.83 9815.58	10516029.54 10516005.45	3349082.33 3349247.07	50 50	30 30	VANE SHEAR TEST PRESSURE METER TEST
	80	BV-12 BV-13 BV-14	5066.09 5020.13 4982.05	9940.97 9998.74 9998.74	10516081.83 10516043.01 10516005.20	3349364.26 3349427.06 3349431.55	50 50 50	TOP TOP 30	ELECTRICAL RESISTIVITY SAMPLE A VANE SHEAR TEST PRESSUREMETER TESTING
		BV-15 A,B,C BV-16	4989.27 4967.44	9228.63 9653.13	10515921.52 10515949.92	3348665.96 3349090.07	50 50	50 50 TOP	CROSSHOLE SEISMIC TEST; SAMPLE BORING "A" PRESSUREMETER TESTING
		BV-17 A,B,C BV-18 BV-19	4934.12 4941.61 4882.26	9937.68 9057.00 9372.41	10515950.40 10515853.94 10515832.21	3349376.57 3348501.16 3348821.37	50 50 50	50 TOP TOP	CROSSHOLE SEISMIC TEST; SAMPLE BORING "A" PRESSUREMETER TESTING VANE SHEART TEST
		BV-20 BV-21	4882.26 4838.92	9524.72 9223.59	10515850.18 10515771.61	3348972.62 3348678.70	50 50 50	30 30	THERMAL RESISTIVITY SAMPLE ELECTRICAL RESISTIVITY SAMPLE
		BV-22 BV-23 BV-24	4751.65 5570.30 6061.39	9954.93 8223.48 9280.50	10515771.24 10516379.91 10516992.27	3349415.22 3347599.29 3348590.98	10 60 50	- TOP 30	DYNAMIC CONE TEST PRESSUREMETER TESTING; PIEZOMETER
		BV-25 BV-26	5046.39 5741.22	8790.72 9237.12	10515926.57 10516669.21	3348224.38 3348585.69	10 50	- TOP	DYNAMIC CONE TEST VANE SHEAR TEST
		BV-27 BV-28 BV-29	5788.27 5781.05 5968.82	9772.89 9971.82 10854.20	10516779.15 10516795.44 10517086.00	3349112.17 3349310.56 3350164.62	50 50 50	TOP TOP TOP	PIEZOMETER B
		BV-29 BV-30 BV-31		11475.28 9503.72	10517396.58 10516362.74	3350753.17 3348890.57	10 50	- 30	PIEZOMETER B DYNAMIC CONE TEST PRESSUREMETER TESTING
		BV-32 BV-33	5517.78 5512.53	9763.70 9967.23	10516509.46 10516528.26	3349134.95 3349337.67	50 50	TOP TOP	
		BV-34 BV-35 BV-36	5507.28	10191.76 10741.94 10816.78	10516374.81 10516614.44 10515996.09	3349582.02 3350107.59 3350256.42	50 50 50	30 TOP 30	ELECTRICAL RESISTIVITY SAMPLE PRESSUREMETER TESTING VANE SHEAR TEST
		BV-37 BV-38	4580.25	11462.80 13097.57	10515445.14 10515971.80	3350972.45 3352556.14	10 10	-	DYNAMIC CONE TEST DYNAMIC CONE TEST DYNAMIC CONE TEST
		BV-39 BV-101	6025.94 4026.14	16242.36 8999.50	10517778.39 10514938.08	3355508.42 3348552.06	10 50	- TOP	DYNAMIC CONE TEST PIEZOMETER
		BV-102 BV-103	3335.46 4055.68	9470.07 10248.88	10514307.74 10515114.81	3349100.83 3349789.23	50 50	TOP TOP	
		BV-104 BV-105 BV-106	3609.90 3689.96 2448.49	9868.75 10523.55 9621.23	10514627.29 10514784.05 10513444.80	3350105.13	50 50 50	TOP TOP TOP	c
		BV-107 BV-108	3101.00 2345.42	10663.15 10497.71	10514216.41 10513445.85	3350313.15 3350238.09	50 50	TOP TOP	PIEZOMETER
		BV-109 BV-110 BV-111	2550.91	10190.45 10393.32 10464.88	10513403.08 10513637.59 10513833.14	3350110.19	50 50 50	TOP TOP TOP	
		TP-1	5625.45	8352.16	10516449.85		15	-	
		TP-2 TP-3 TP-4	5642.52 5913.13 2344.08	9813.60 10663.96 10330.80	10516639.22 10517008.25 10513424.83	3349982.28	15 15 15		
\$5						L	EGEND		
		BV-1	BORING LOCATI	ON					
		TP-1	BORING WITH F	PIEZOMETER	LOCATION				
		(РМТ)	TEST PIT LOCAT						E
		(VST) (CST)	VANE SHEAR TI CROSSHOLE SE			IC. "A"			
		(DCT)	DYNAMIC CONE		SAMPLE BONN				
		(TRS) (ERS)	THERMAL RESIS						
		(DRI)	DOUBLE RING I	INFILTROMETE	ER				
BV-13 (VST)									
						١	NOTES		F
EV-14 (PMT)		BORING.							S OF 2', 4', 10', 15', 20', 30', AND BOTTOM OF
									PURCHASER. SAMPLE TO BE PLACED IN SEALED 5
			funn	\cdots	~~~~~	~~~~	~~~~~	······	mm
			Ę		FOR E			REPORT	·
			ξ B	ORINO	G LOCA		RE 3-1 ND INS	SITU TES	
			Eur	uu	uuu	uuu	·····	uuu	······································
10100									
									USED
									RUCTION
0 300' 600' I HEREBY C	CERTIFY THAT THIS DOCUMENT WAS BY ME OR UNDER MY DIRECT SUPER- THAT I AM A DULY REGISTERED PRO- ENGINEER UNDER THE LAWS OF THE	BLACK & VEAT	[™] SCPP	SAN	NDY CR			STATION	PROJECT DRAWING NUMBER REV
0 50' 100' STATE OF SIGNED	TEXAS		SANDY CREEK ENERGY STATION DRAWN SLS		SUBS	UNIT	1 /ESTIGATION		149060-DS-0001 C
1"=50' DATE	REG NO	CHECKED	DATE	[BORING LOC	ATION AND	ISITU TES	I PLAN	AREA

Appendix A

Boring and Piezometer Logs

₽,	
BLACK & VEATCH	
CLIENT	

BORING LOG

BORING NO. BV-101 SHEET 1 OF 2

		, or	VE/	AIC	п					DUR	ING LOG SHEET 1 OF
CLIE	NT	~			• - !	-				_	PROJECT PROJECT NO.
	IFCT		and	iy Cr	eek	⊢ner	<u>gy A</u>		ociate RDINA	S TFS	Sandy Creek Energy Station 149060 GROUND ELEVATION (DATUM) TOTAL DEPTH
rkU				ля Геха	c				26.0'	163	E 8990.0' 473.2 ft (MSL) 44.8 (feet)
SUR		CON			3			i 4 0	<u>20.0</u>		COORDINATE SYSTEM DATE START DATE FINISHED
	-			d cov	er						PLANT 08/08/2007 08/08/2007
				PLINC			LOG	GE) BY		CHECKED BY APPROVED BY
щ.	щК	ES	ES	ES		щŸ		,	JJ	Deeke	n V Bhadriraju BL Christensen
SAMPLE TYPE	SAMPLE NUMBER	SET 6 INCHES	2ND 6 INCHES	3RD 6 INCHES	N VALUE	SAMPLE RECOVERY	F	ЪЕ	(FEET)	Ð	
		ROC	<u>k CO</u>	RING	i		DEPTH (FEET)	Σ	NO	L CO	CLASSIFICATION OF MATERIALS REMARKS
CORE SIZE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	RQD RECOVERY	PERCENT RECOVERY	RQD		SAMPLE TYPE	ELEVATION (FEET)	GRAPHIC LOG	
SPT	1	2	1	2	3	0.2	0		- 472		CLAY; brown; soft; moist; low plasticity; w/some sand & gravel (6" Topsoil) w/rotary wash using 3-7/8" s
тw	2	1.8	-	-	-	1.5	2 - - 4 -	-	- - 470 -		grading yellow-brown; stiff; w/some gypsum seams; trace cemented clay seams fluid. SPT performed w/ autohammer.
							6 -	-	- 468		@4' PP=4.5 ts
							8-	-	— 466 -		
SPT	3	6	7	8	15	1.5	- 10 -		- 464		grading w/1/4" cemented clay nodules
тw	4	2.0	-	-	-	2.0	12 -	-	- 462		cemented clay nodules grades out
							- 14 –	-	- 460		
							- 16 -		- 458		
							- 18 -		- 456 -		grading w/some cementation
SPT	5	7	11	12	23	1.5	20		- 454		
							22 -	-	- 452		
							24		- 450		
							26 -	-	- 448		
							- 28 -		- 446		grading mottled gray
тw	6	2.0	-	-	-	1.4	-		- 444		VI.B-91

		TW		SPT					CORE SIZE	SAMPLE TYPE	щ	Side	SURF	PRO	CLIE	LA
		8		7					RUN NUMBER	SAMPLE NUMBER		e of ł		JECT	NT	CK
		1.8		10					RUN LENGTH	ROC		nill; v	Reis	LOC		&
		-		13					RUN RECOVERY	O 6 INCHES		veed	sel, T	and ATIO	、 .	VE/
		-		14					RQD RECOVERY	3RD 6 INCHES	PLING	l cov	exa	y Cr N	•	ATC
		-		27					PERCENT RECOVERY	N VALUE			s	еек		H
		1.8		1.5					RQD	SAMPLE RECOVERY	ЕRY			Ener	_	
48 - 	46 -		40 - - 42 -	38 -	36 -	34 -	32 -	30 -	DEPTH (FEET)	ET)	LOG		N	<u>gy A</u> C		
								- - -	SAMPLE TYPE	ΥΡΕ	GED		402	<u>SSO</u> OOR		
- 424 - 422 - 422 - 420 - 418 416	- 428 - - 426	- 430	- 432	- 434	- 436	- 438	- 440	- 442	ELEVATION (FEET)	N (FEET)			26.0'	ciate DINA		
									GRAPHIC LOG	POG	Deeker			<u>s</u> ГЕ S		BOR
		gradi		gradi							۱					ING
		ling da		ling ve								PLAN	E		PRO	LO
		ark gray;≐		ery stiff						CLASSIF	CHECKE	١T	8990.0'	Sand	JECT	G
		fissile								CATION	<mark>⊅ в</mark> ү √ Bhadr		VOTEM	GROU		
										OF MA	iraju		473.		_	
										TERIA			2 ft (N	gy St EVATIO	0	
										LS	APPROVE	3/08/2007	<u>MSL)</u> START	ation ON (DATUM)		
Dent	@ 44 level reco back									R	D BY <u>Christe</u>	08/		TOTAL	PROJE	NG NO She
onite chips	rded. Borir filled w/									EMARKS	nsen	08/2007	.8 (feet) INISHED	<u>49060</u> DEPTH		ET 2 OF

		(&	VE/	ATC	ж					BORIN					DOININ	G NO. BV-102
CLIE	ENT					-	A			_	PRO	JECT			4:	PROJECT NO.
PRC	JECT		Sand ATIC	iy Cr DN	еек	Ener			ciate			Sand	y Creek En GROUND E	ergy Sta ELEVATIO	N (DATUM)	149060 TOTAL DEPTH
		Reis	sel, ⁻	Геха	s				35.0'	-		9470.0'			. ,	49.5 (feet)
					~							RDINATE S	YSTEM		START	DATE FINISHED
Hig		eds; Soil				t 150	LOG	St GFF	BY		Plan	CHECKEI) BY		8/3/07 APPROVED	8/3/07 BY
ш		1	-			۳Ÿ				Deeken			/ Bhadrirajı	u		Christensen
SAMPLE TYPE	SAMPLE NUMBER	SET 6 INCHES	2ND 6 INCHE	3RD 6 INCHES	N VALUE	SAMPLE RECOVERY	6	ш					•			
		ROC	ксо	RING				T T	NO	C LO		CLASSIFI	CATION OF N	IATERIAL	.S	REMARKS
CORE SIZE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	RQD RECOVERY	PERCENT RECOVERY	RQD	DEPTH (FEET)	SAMPLE TYPE	ELEVATION (FEET)	GRAPHIC LOG						
SPT	1	3	3	3	6	0.9	0 		- 472		<u>CLAY</u> : bro (6" Topsol		moist; high	plasticity		Boring advanced w/rotary wash using 3-7/8" step - bit & bentonite
TW	2	2.0	-	-	-	2.0	4-		- 470		1" subrou	nded grav	-brown; very el	y stiff; w/s	some sand &	mud as drilling
SPT	3	7	8	8	16	1.5	6-		- 468		sand grad	es out				@4' PP>4.5 tsf
τw	4	2.0	-	-	-	2.0	8-		- 466							
SPT	5	7	8	8	16	1.3	- 10 -		- 464							
							12 -	-	- 462							
тw	6	2.0	-	-	-	2.0	14		- 460							
							- 16 -	-	- 458							
SPT	7	7	9	11	20	1.5	18 -		- 456		grading m	ottled yell	ow-brown-g	ray		
							20 -		- 454							
							22 -		- 452							
тw	8	2.0	-	-	-	2.0	24 -		- 450							
							26 -	-	- 448							
SPT	9	10	12	15	27	1.5	28 -		- 446 -		grading w	occasion/	al white cerr	nented cla	ay seams	

	PT			ΓW		PT			TW		CORE		SAMPLE TYPE		-	PRO		
	13			12		11			10		RUN NUMBER		SAMPLE NUMBER	(FACE			NT
	15			2.0		9			2.0		RUN LENGTH		SET 6 INCHES	SOIL		LOC	S	, or
	18			-		11			-		RUN RECOVERY	к со	2ND 6 INCHES	SAM	NDITI		Sand	
	23			-		14			-		RQD RECOVERY	RING ≿	3RD 6 INCHES	PLINC	ONS	on Fexa	ly Cr	ATC
	41			-		25			-		PERCENT RECOVERY	i	N VALUE	3		c	eek	
	1.5			2.0		1.5			2.0		RQD		SAMPLE RECOVERY	t 150			Ener	
52 54 56	- 50 -	48 -	46	44	42	40	- 38 -	36 -	34 –	32 –	8 DEPTH (FEET)	(FEET		LOG			gy A	
											SAMPLE TYPE	ЕТҮР	ш	St GEE			ssc	
- 422 - 420 - 418	- 424 -	- 426	- 428	- 430	- 432	- 434	- 436	- 438	- 440	- 442	ELEVATION (FEET)	TION (Feet) <u> </u>		00.0	2010A 35.0'	ciate	
		grading h											<u> </u>	Plan	COOF	F		NG LO
		ard										CLASSIFI		CHECKE	RDINATE S	9470.0'		JECT
												CATION OF N	/ Bhadrirajı		YSTEM	GROUND E	<u>y Creek En</u>	
												IATERIA	J		DATE	LEVATI	ergy St	
												LS	<u> BL</u>	8/3/07 APPROVED		ON (DATUM)	ation	
recorded. Borir backfilled w/ bentonite chips	Bottom of borin at 49.5'. Water level not											REMARKS	Christensen		DATE FINISHED	TOTAL DEPTH 49.5 (feet)	149060	SHEET 2 OF

1	Ξ	2
BLACK	&	VEATCH

BORING LOG

BORING NO. BV-103 SHEET 1 OF 2

		Q	VE/	AIC	п					DUK	ING LOG SHEET 1 0
CLIE	NT	~) on cl		مماد	-				•	PROJECT PROJECT NO.
	JECT		Sand ATIC	iy Cr N	еек	∟ner	gy A		ociate RDINA	S TES	Sandy Creek Energy Station 149060 GROUND ELEVATION (DATUM) TOTAL DEPTH
				Геха	s				56.0'	. 20	E 10249.0' 493.2 ft (MSL) 49.5 (feet)
SUR					5			<u>-</u>	00.0		COORDINATE SYSTEM DATE START DATE FINISHED
				weed	ls						Plant 8/1/07 8/1/07
		SOIL	SAMI	PLINC	3		LOG	GE			CHECKED BY APPROVED BY
щ.,,	ШЖ	ES	ES	ES	ш	ERY			JJ	Deeke	n JJ Deeken BL Christensen
SAMPLE TYPE	SAMPLE NUMBER	SET 6 INCHES				SAMPLE RECOVERY	Ê	Ш	(FEET)	g	
		ROC	K CO	RING			Ë	Σ	NO	LC	CLASSIFICATION OF MATERIALS REMARKS
CORE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	RQD RECOVERY	PERCENT RECOVERY	RQD	DEPTH (FEET)	SAMPLE TYPE	ELEVATION (FEET)	GRAPHIC LOG	
SPT	1	2	2	1	3	0.8	0		- 492		<u>CLAY</u> : brown; soft; moist; high plasticity (6" Topsoil) Boring advar using 3-7/8"
тw	2	2.0	-	-	-	2.0	2 - 4		- 490		grading stiff - bit & bentonin mud as drillir fluid. SPT performed w/ autohammer
SPT	3	2	5	8	13	1.5	6		- 488		grading yellow-brown & gray seams @2' PP=2.0 @4' PP=2.5 @6' PP=4.5
тw	4	2.0	-	-	-	1.6	8-		- 486		
SPT	5	5	8	11	19	1.5	- 10 –		- 484		grading very stiff Reacts w/HC
							12 -		- 482		
тw	6	2.0	_	-	-	2.0	- 14 –		- 480		[–] PP=4.5 tsf
-	1						16 -		- 478 -		
							- 18 –		- 476 -		
SPT	7	6	8	10	18	1.5	20		- 474		
							22		- 472		
тw	8	2.0	-	-	-	2.0	- 24 —		- 470		
							- 26 —		- 468		
							- 28		- 466		grading w/quartz seams
SPT	9	7	11	12	23	1.5	-		- 464		VI.B-95

		8	VE.	ATO	CH					BOR	ING		G JECT					IG NO. BV-10 SHEET 2 OF PROJECT NO.
	IN I	c	Sand	1. C	rook	Enor	·		vointo	c		PRO			Eno	av St	ation	149060
PRO	JECT			<u>Jy C</u> DN	leek	Ellei	<u>gy P</u>	OOF	ociate RDINA	5 FES			Sanu	y Creel		<u>gy Si</u> EVATIO	ON (DATUM)	TOTAL DEPTH
		Reis	sel.	Теха	as				56.0'			E 1	10249.0'			.2 ft (I	• •	49.5 (feet)
SUR	FACE	E COI	NDIT	IONS	1								DINATE S	YSTEM			START	DATE FINISHED
Roll	ing ł	nills,	tall	wee	ds							Plant					8/1/07	8/1/07
	5	SOIL		_			LOG	GE	DBY				CHECKE				APPROVED	
щ	()	SET 6 INCHES	2ND INCHES	3RD 6 INCHES	и	SAMPLE RECOVERY			JJ	Deeker	۱			JJ Dee	eken		BL	Christensen
SAMPLE TYPE	SAMPLE NUMBER	발호		l R S	VALUE	MP V			Ē									
SA	NU NU	9	9	<u>ت</u> ا	; >	REC	6	ш	Ē	с								
		ROC	ксс	RING	G		DEPTH (FEET)	SAMPLE TYPE	ELEVATION (FEET)	GRAPHIC LOG			CLASSIFI	CATION	OF MA	TERIA	LS	REMARKS
	딾	- E	l Y				H (F	ц Ш	Ĕ	2 년								
CORE	RUN NUMBER	RUN LENGTH		l B Z		RQD	Ē	MPI	_ ∧	API								
ũν	ЯŇ	۳ ۳	RUN RECOVERY	RQD RECOVERV	PERCENT	L R	DEI	SAI	E	GR								
					-		30 -		-									
							-		400									
									- 462									
						1	32 -	1	-									
						1	-		- 460		arad	ina ira	on oxide s	tainina				PP=4.5 tsf
									- 400		grau	ing inc		stanning				FF-4.5 (SI
τw	10	2.0	-	-	-	2.0	34 –		-									
							-		- 458									
									430									
							36 -		-		@ 36	6.0' գւ	uartz sea	ms grad	les out			
							-	-	- 456									
									400									
							38 -		-									
SPT	11	7	12	15	27	1.5	-		- 454									
							40		-10-1									
							40 -		-									
							-	-	- 452									
							42 -											
							72		-									
							-		- 450		grad	ing bl	ue-gray					PP=4.5 tsf
тw	12	2.0	-	-	-	2.0	44 -	-			0	0	0,					
		2.0				2.0			-									
							-		- 448									
							46 -											
									-									
							-		- 446									
							48 -		_		arad	ing ha	ard					
SPT	13	11	17	20	37	1.5					grau	ing ne						
_	_				_		-		- 444									
							50 -		_									Bottom of bori at 49.5'. Water
																		level not
							-		- 442									recorded. Bori
							52 –		-									backfilled with
							_											bentonite chip
									- 440									
						1	54 –		_									
						1	-											
						1			- 438									
							56 -	1	_									
						1	.		400									
						1			- 436									
						1	58 -	1	-									
						1	-		- 434									
						1			-104		VI.B	00						

		a	VE/	410	[,] n					BORIN						SHEET 1 OF 3
		c	ond		ook	Enor			ociates		FRU		Crook En	arou Sta	tion	149060
RO	JECT	LOC		<u>y Cr</u> N	CCK	LIIEI	yy /	OOR	DINAT	ES		Sanu	Creek Ene GROUND E	LEVATIC	N (DATUM)	TOTAL DEPTH
-				exa	s				09.0'	-	E	9869.0'		D.3 ft (N	. ,	73.0 (feet)
SUR	FACE				•						COOF	RDINATE S	YSTEM		START	DATE FINISHED
Гор	of h										Plan				8/1/07	8/1/07
				PLINO	-			GE	DBY			CHECKED			APPROVED	
ч	щк	S	2ND 6 INCHES	3RD 6 INCHES	ш	SAMPLE RECOVERY			JJ	Deeken		V	' Bhadriraju		BL (Christensen
SAMPLE	SAMPLE NUMBER	SET INCHES	S T T T T	l T T T T	N VALUE	MPI			Ē							
ξ Η	A S N	° 2 9	. e	°∎ 9	>	SA		ш	ELEVATION (FEET)	<u>ں</u>						
	I	ROCI	< co	RING	i			ΥP	ž	Ĕ		CLASSIFIC	CATION OF M	ATERIAL	S	REMARKS
			RY	RY	₽₽		DEPTH (FEET)	SAMPLE TYPE	E	GRAPHIC LOG						
SIZE	RUN NUMBER	RUN ENGTH	RUN RECOVERY	RQD RECOVERY	PERCENT RECOVERY	RQD	ΗĔ	JPL	A V	4						
500	л М Л	ыЩ	EC R	l a n	12.2	۲ ۲	Ē	3AN		3R/						
			R	Ř	<u> </u>				ш - 490	_	1 1 1		noist: bish -	lacticity		Boring odvances
рт	1	2	2	2	4	1.2			- 490		<u>LAY</u> : bro " Topso		noist; high p	iasticity		Boring advanced w/rotary wash
							-		-		10030	" <i>'</i>				using 3-7/8" step
							2 -		400		ading st	liff				bit & bentonite
									- 488		aung St					mud as drilling
rw	2	2.0	-	-	-	1.7	-		-							fluid. SPT
							4 -									_ performed w/
эрт	3	2	4	6	10	1.5			- 486							autohammer. @2' PP=1.75 tsf
• •	Ŭ	-	-	Ū			-		-	gi	ading ye	ellow-brow	n & occasio	hal gray	clay seams	@4' PP=2.0 tsf
							6-				5.7			5,	•	
									- 484							
w	4	2.0	-	-	-	2.0	-									
							8-									
	_	_	~	~	4-	4-			- 482							PP>4.5 tsf
PT	5	5	6	9	15	1.5	-									
							10 -									
							'0 -		- 480							
							-									
							42									
							12 -		- 478							
							-									
_{-،،} ,	ç	2				20										
ſW	6	2.0	-	-	-	2.0	14 -		- 476							
							.									
							16 -	1	- 474							
							.									
									-							
							18 -		- 472							
PT	7	6	6	9	15	1.5	.									
									-							
							20 -	1	- 470							
							.									
									-							
							22 -		- 468							
									-100							
									-	gi	ading fis	ssile				
w	8	2.0	-	-	-	2.0	24 -		- 466							
									+00							
							.		-							
							26 -	$\left \right $								
									- 464							
							-	1	-							
							28 -				adina w	any atiff w	1/4" quartz s			
					1	1	1	A	- 462	r// 91	auling Ve	ວາγ່ຽແ⊞,W/	1/4 UUdILZ S	callis		1
PT	9	7	10	12	22	1.5					0	, ,	1			

	5	2
BLACK	&	VEATCH

BORING LOG

BORING NO. BV-104 SHEET 2 OF 3

		a	VE/	AIC						DURI							SHEET 2 OF
CLIE	NT	_		~		-	-	_		_	PRO	JECT			o,		PROJECT NO.
	IFOT	5	Sand	y Cr	eek	⊢ner	<u>gy A</u>		ciate	S FER		Sand	y Creek		Static		149060
RO		LOC			_					IES	-	0000 01	GROU	ND ELEVA			TOTAL DEPTH
				exa	S			36	09.0'		E COOL	<u>9869.0'</u>	VOTEM	490.3 ft			73.0 (feet)
													ISIEN		TE ST		DATE FINISHED
100				eeds PLING			LOG	GEL	BY		Plant		אר			1/07 Approved	8/1/07
					-	. <u>≻</u>		JEL		Deeken			/ Bhadr	iraiu			Christensen
SAMPLE TYPE	SAMPLE NUMBER	SET 6 INCHES	2ND 6 INCHES	3RD 6 INCHES	N VALUE	SAMPLE RECOVERY		ш						naju	I		
			ксо			<u> </u>		μ	U N	Lo		CLASSIFI	CATION	OF MATEF	RIALS		REMARKS
			R	Ϋ́			Ë,	Щ	Ð	2							_
CORE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	RQD RECOVERY	PERCENT RECOVERY	RQD	DEPTH (FEET)	SAMPLE TYPE	ELEVATION (FEET)	GRAPHIC LOG							
							30		- 460								
							32 –		- 458								
тw	10	2.0	-	-	_	2.0	34 -		_		grading w	/some 1/8	" quartz	grains			PP>4.5 tsf
	10	2.0					-		- 456 -								
							36 -		- 454								
							38 -		- 452		grading irc	on oxide s	taining				
SPT	11	7	10	12	22	1.5	-		-				.9				
							40		- 450								
							42 -		- 448								
TW	12	2.0	-	-	-	2.0	44 -		- 446								PP>4.5 tsf
							46 -		- 444								
SPT	13	8	9	12	21	1.5	48 -		- 442								
							50 -		- 440								
							52 -		- 438								
TW	14	2.0	-	-	-	2.0	54 -		- 436								
							56 -		- 434								
SPT	15	10	14	19	33	1.5	58 -		- 432		grading ha	ard; w/occ	asional	quartz se	ams		
051	10	10	14	19	33	1.5	-		_		VI.B-98						

BL	AC	8	Z. VE	ΔΤΟ	н					BORI	NG LO	G			BORIN	G NO. BV-104 SHEET 3 OF 3
	ENT											JECT				PROJECT NO.
		ę	Sand	ly Cr	eek	Ener	gy A	Asso	ociate	s			y Creek Ene	ergy Sta	tion	149060
PR	OJEC.	T LOC	CATIC	ĎŇ			C	OOF		TES			GROUND E	LEVATIO	N (DATUM)	TOTAL DEPTH
6111	RFAC	Reis	<u>sel,</u>		S			1 36	09.0'			9869.0'	49(VSTEM	0.3 ft (M	ISL) START	73.0 (feet) DATE FINISHED
	p of h										Plant				3/1/07	8/1/07
10		SOIL					LOG	GEI	DBY		- Turi	СНЕСКЕ) BY		APPROVED	
щ	ще	ES	ES	ES		SAMPLE RECOVERY			JJ	Deeker		١	/ Bhadriraju		BL	Christensen
SAMPLE	SAMPLE	SET	2ND INCHE	3RD 6 INCHES	N VALUE	MPL			Ê							
SA	S N	° <u>≥</u>	~	6	>	REC		ш	Ë	σ						
		ROC	ксо	RING	i		DEPTH (FEET)	SAMPLE TYPE	ELEVATION (FEET)	GRAPHIC LOG		CLASSIFI	CATION OF M	ATERIAL	S	REMARKS
ш	RUN NUMBER	1 F	RUN RECOVERY	RQD RECOVERY	PERCENT RECOVERY		L H	Ë	ATIC	H						
CORE		RUN LENGTH	N N N	1 B S S S	122	RQD	H H	M	Ň	AP						
	Ĩź		 	L H	22		B	SA	Ш							
							60 -		- 430							
							-		_							
							62 -									
									- 428							
							-		-				yellow-brow	n seams	; quartz	PP>4.5 tsf
ТW	16	2.0	-	-	-	2.0	64 -		- 426		seams gra	ides out				
							.		420							
									-							
							66 -		- 424							
							-									
							68 -		[
SPI	17	14	16	20	36	1.5			- 422							
1351		14		20	30	1.5	-		-							
							70 -]							
									- 420							
									-							
							72 -		- 418							
									_							Bottom of borin
									-							at 73.0'. Water
							74 -		- 416							level not
							-		-							recorded. Borin
							76 -									backfilled w/ bentonite chips
									- 414							
							-		-							
							78 -		- 412							
									F							
							80 -	1	- 410							
							-		ļ							
							82 -	1								
		1							- 408							
							-	1	-							
							84 -	-	- 406							
									400							
									-							
							86 -	1	- 404							
							-	-								
							88 -									
		1							- 402							
1		1					•	1	L							

	7	R		
BLACK 8	\$	VE/	TC	н

BORING LOG

BORING NO. BV-105 SHEET 1 OF 2

	111 - 2 - 1	a	VE/	410	п_					BORIN							SHEET 1 OF 2
CLIE	IN I	c	and	v C-		Enor	· · · · · ·		oioto	-	PRO		V Crock	Enor	av Sta	tion	PROJECT NO. 149060
	JECT	LOC		y Ur N	CCK	Ener		00R	ciate DINA	S TES		29110	V Creel		yy Sia Evatini	tion N (DATUM)	TOTAL DEPTH
				exa	2				90.0'	-0	⊏ 1	0524.0'			0 ft (M	• •	49.5 (feet)
SUR					J			1.00	50.0			DINATE S		+04.			DATE FINISHED
		tall									Plant					3/1/07	8/1/07
				PLINC	3		LOG	GED	BY			CHECKE	D BY			APPROVED	
щ	щĸ	ΞS	ES	ES		шҮй		·	JJ	Deeken		,	V Bhad	riraju		BL	Christensen
SAMPLE TYPE	SAMPLE NUMBER	SET 6 INCHES	2ND 6 INCHES	3RD 6 INCHES	N VALUE	SAMPLE RECOVERY	6	ш	(FEET)	U							
		ROCI	ксо	RING				F	ž	2		CLASSIF	CATION	OF MA	TERIAL	s	REMARKS
CORE SIZE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	RQD RECOVERY	PERCENT RECOVERY	RQD	DEPTH (FEET)	SAMPLE TYPE	ELEVATION (FEET)	GRAPHIC LOG							
SPT	1	2	<u>⊮</u> 2	<u>⊮</u> 3	5 5	0.8	0		464		: <u>LAY</u> : bro 6" Topsoi		moist; h	nigh pla	asticity		Boring advanced w/rotary wash
T \A/	2	2.0				4 5	2 -		- 462	g	rading sti	ff					using 3-7/8" step bit & bentonite mud as drilling
TW	2	2.0	-	-	-	1.5											fluid. SPT performed w/
SPT	3	3	3	4	7	1.5	4-		- 460	g	rading firi	m					@2' PP=2.0 tsf @3.5' PP=2.0 tsf
тw	4	2.0	_	_	_	1.7	6 -		- 458	g	rading ye	llow-bro	vn & gra	iy sean	ns; very	∕ stiff	@6' PP=2.8 tsf
	•						8 -		- 456								
							10		- 454								
							- 12 -		- 452								
тw	5	2.0	-	-	-	2.0	- 14 -		- 450	g	rading fis	sile					PP>4.5 tsf
							- 16 -		- 448								
SPT	6	6	8	10	18	1.5	- 18 -		- 446								PP>4.5 tsf
	0	0	υ	10	10	1.0	20 –		- 444								
							22 –		- 442								
тw	7	2.0	-	-	-	1.8 24 440 grading w/occasional o				al ceme	ented q	uartz se	eams	[–] PP>4.5 tsf			
							- 26 –		- 438								
SPT	8	12	15	24	39	1.5	- 28 -		- 436	g	rading blu	ue-gray;	hard; gr	ay sea	ms grad	des out	- PP>4.5 tsf

		&	VE/	ATC	ж					BOR	ING						BORIN	G NO. BV-10 <u>SHEET 2 OF</u> PROJECT NO.
		ç	Sand	lv Cr	eek	Ener	αν Δ	1981	ciate	s				y Creek	Fner	av Sta	tion	149060
PRO	JECT	LOC		DN	CCK		y r	00F	DINA	S TES			Janu	GROU	ND ELI	EVATIO	N (DATUM)	TOTAL DEPTH
		Reis	sel. 1	Геха	s		N	136	90.0'			E 10	0524.0'			.0 ft (M	• •	49.5 (feet)
SUR	FACE	E CON	NDÍTI	ONS								COORI	DINATE S	YSTEM			START	DATE FINISHED
Side		, tall										Plant				8	3/1/07	8/1/07
	5	SOIL		-	-		LOG	GE				0	CHECKEI				APPROVED	
Щ.,,	빌뜺	ES	IES	ES	ш	щĚ			JJ	Deeker	1		\	/ Bhadr	riraju		BL (Christensen
SAMPLE TYPE	SAMPLE NUMBER	SET 6 INCHES	2ND 6 INCHES	3RD 6 INCHES	N VALUE	SAMPLE RECOVERY	Ē	Е	(FEET)	ğ								
		ROC	ксо	RING	ii		Ш	TYF	Z	Ľ		(CLASSIFI	CATION	OF MA	TERIAL	S	REMARKS
CORE SIZE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	RQD RECOVERY	PERCENT RECOVERY	RQD	DEPTH (FEET)	SAMPLE TYPE	ELEVATION (FEET)	GRAPHIC LOG								
							30 -	_	434									
							32 -		- 432								33.	
τw	9	0.6	-	-	-	0.6	34 –		- 430		<u>CLA`</u>	YSHAL	<u> </u>	hard; m	noist; h	nigh pla	sticity; fissile	TW refusal
							36 -	-	- 428									
SPT	10	21	32	42	74	1.5	38 -		- 426		gradi	ing w/f	requent	cemetat	ions			
51 1	10	21	02	12		1.0	40 -		- 424									
							42 -	-	- 422									
TW	11	0.9	-	-	-	0.9	44 —	-	- 420									 Thick walled tube driven 10 blows
							46 —	-	- 418									
SPT	12	32	42	46	88	1.5	48 -		- 416									
							50 -		- 414									Bottom of bori at 49.5'. Water level not
							52 –		- 412									recorded. Borin backfilled w/ bentonite chips
							54 –		- 410									
							56 -		- 408									
							58 -		- 406									

₽.	
& VEATCH	

BORING LOG

BORING NO. BV-106 SHEET 1 OF 2

	111 - Y	Ň.	VE/	AIC	H					ROKI								SHEET 1 OF 2
CLIE	NT	~	·			-			alat	_	P	ROJ		ما ب			4' a .a	PROJECT NO.
	IFCT		and	y Cr	еек	⊢ner	gy A		ciate DINA	S res			Sand		Creek Ene Ground el	rgy Sta		149060 TOTAL DEPTH
PRO					_					IE9		-	0004 0		GROUND EL	EVAIIO	N (DATUM)	
<u> </u>		Reis CON	<u>iei, l</u>		S			1 24	48.0'		0		9621.0 DINATE	0 eve	TEM		START	44.2 (feet) DATE FINISHED
														313				
vall		all w		s Pling	2		LOG	GEL) RV			ant	CHECKE		ay	<u> </u>	3/3/07 APPROVED	8/3/07
					-	<u> ≻</u>		JEL		Deeken					3 Bhadriraju			Christensen
SAMPLE TYPE	SAMPLE NUMBER	SET 6 INCHES	2ND 6 INCHES	3RD 6 INCHES	4	SAMPLE RECOVERY	—							VE	Jiauilaju			
₩F	₩ N	SE'	N SN	NC SR	VALUE	MA N N N N			Ē									
<u>v</u> .	จีฮ	61	9	9	>	RES	6	ш	Ë	Q								
		ROCI	ксо	RING	ì			Ľ٤	Z	2		0	LASSIF	FICA	TION OF MA	ATERIAL	S	REMARKS
	ĸ	Ξ	RY	RY	₽₽		E E	щ	Ĕ	우								
CORE	RUN NUMBER	RUN LENGTH	RUN COVE	182	152	RQD	ΙĘ	ЧЫ	N N	API								
ũω	R D	Ē	RUN RECOVERY	RQD RECOVERY	PERCENT RECOVERY	Ř	DEPTH (FEET)	SAMPLE TYPE	ELEVATION (FEET)	GRAPHIC LOG								
			~	<u> </u>	<u> </u>		0	<u> </u>	_			hro	vn: coff	. m	oist; high pl	acticity	w/trace	Boring advance
SPT	1	2	2	2	4	1.0			- 440						/el (6" Tops		windce	w/rotary wash
							'		_		500130	Jail	a can g	9.01		,511)		using 3-7/8" ste
							2 -				grading	+i4	f					- bit & bentonite
	_								- 438		grading	ງຣແ	1					mud as drilling
TW	2	2.0	-	-	-	1.1	-		L									fluid. SPT
							4-											_ performed w/
SPT	3	2	5	5	10	0.1	'		- 436									autohammer.
ו יינ	З	2	Э	5	10	0.1	-											@4' PP=2.2 tsf Gravel in SPT3
							6-		-									
							"		- 434		grading	g da	'k gray;	; w/s	some grave			
тw	4	2.0	-	-	-	2.0	-											
									-									
							8-		- 432		grading	g vei	y stiff					Gravel in SPT5
SPT	5	4	6	10	16	0.1	.		- 432									
									-									
							10 -											
									- 430									
									_									
							12 -											
									- 428									
							-		_									PP>4.5 tsf
тw	6	2.0	-	-	-	1.8	14 -											
	-								- 426									
							-											
							16 -		-									
									- 424									
							-											
							4		-									
						. –	18 -		- 422						ent light gra			
SPT	7	14	26	33	59	1.5	-				occasio	onal	cement	ted	clay seams	s; gravel	grades out	
									-									
							20 -	1	- 400									
							.		- 420									
									-									
							22 -											
									- 418									A
тw	8	0.8	-	-	-	0.8	'		_		CLAYS	SHAI	E; grav	y; ha	ard; moist:	high pla	sticity; fissile	9
							24 -						, ე.∝,	,,	. , ,	J.: p.u	,,	
									- 416									
							-	1	_									
							26 -											
									- 414									
							-											
									_									
	_		<u> </u>				28 -		- 412									
SPT	9	20	25	32	57	1.5	28 -		- 412									

BL	ACK		8	ATO	ж					BORIN	G LO	G			BORIN	IG NO. BV-10 SHEET 2 OI
CLIE			1111		1515							JECT				PROJECT NO.
		S	Sanc	ly Cr	eek	Ener	<u>'gy</u> A	Asso	ociate	s		Sand	ly Creek E	nergy Sta	ation	149060
PRO	JECI				_					TES	_			ELEVATIO	ON (DATUM)	TOTAL DEPTH
SUR	FACE	Reis E COI	SEI, NDIT	Texa Ions	S			124	48.0'			<u>9621.0'</u> RDINATE S		DATE	START	44.2 (feet) DATE FINISHED
	ey, t										Plan				8/3/07	8/3/07
		SOIL	SAM	PLIN	-		LOG	GEI	DBY			CHECKE			APPROVED	
۳۳	빌띲	SET INCHES	2ND INCHES	3RD 6 INCHES	<u>ш</u>	SAMPLE RECOVERY			JJ	Deeken			V Bhadrira	iju	BL	Christensen
SAMPLE TYPE	SAMPLE NUMBER	E S S	N S N	NC N	VALUE	AMP COV			Ē							
S.		9	9			RES	Ē	Щ	ELEVATION (FEET)	9						
			K CC		; ∣.≻		DEPTH (FEET)	SAMPLE TYPE	NOI	GRAPHIC LOG		CLASSIFI	CATION OF	MATERIA	LS	REMARKS
Ш	RUN NUMBER	RUN LENGTH	RUN RECOVERY	RQD RECOVERY	PERCENT RECOVERY		Ξ	P.	AT /	H						
CORE	NUM	D ² N	₽°	a Si	LO CO	RQD	L L L	MM	Ē	RA						
	2		8					S	ш							
							50		- 410							
									-							
							32 -									
							.		- 408							
ΓW	10	1.0	-	-	-	1.0			-							Thick walled tube pushed
							34 -		- 406							then driven 2
							36 -		-							
									- 404							
									_							
							38 -									
PT	11	26	35	43	78	1.5			- 402							
									4							
							40 -		- 400							
							42 -		-							
									- 398							Thick walled tube pushed
۲\۸/	12	12	-	_	-	12			_							then driven 1
W	12	1.2	-	-	-	1.2	44 -									
									- 396							Bottom of bo at 44.2' Wat
									-							level not
							46 -		- 394							recorded. Bo
									004							backfilled w/ bentonite chi
							48 -		-							
									- 392							
									_							
							50 -									
									- 390							
									-							
							52 -		- 388							
							54 -		-							
									- 386							
							· ·	1	-							
							56 -	-								
							.		- 384							
									-							
							58 -	1	- 382							
									-		B-103					

		&	VE/	ATC	H					BORIN)G DJECT			Bortint	G NO. BV-107 <u>SHEET 1 OF</u> PROJECT NO.
		ç	and	v Cr	eek l	Ener	av A		ciate				ly Creek Ene	rav St	ation	149060
PRO	JECT	LOC		<u>y Cr</u> N	CCK		y r	OOR	DINA	, ES		Janu	GROUND EL	EVATIO	ON (DATUM)	TOTAL DEPTH
5				Texa	s				01.0'		F	10663.0'			, , ,	29.5 (feet)
SUR	FACE				-							RDINATE S	SYSTEM	DATE	START	DATE FINISHED
<u>Nat</u>						ush q	<u>cove</u>	r			Plar			08	8/09/2007	08/09/2007
		SOIL	SAM	PLINC	}		LOG	GED				CHECKE			APPROVED	
щ.]	щĸ	ES	ES	ES		SAMPLE RECOVERY		,	JJ	<u>Deeken</u>		<u> </u>	V Bhadriraju		_ BL (Christensen
SAMPLE TYPE	SAMPLE NUMBER	SET 6 INCHES	2ND 6 INCHES	3RD 6 INCHES	N VALUE	MPI			E.							
AR S⊢	SA	° ¶9	۳ <u>م</u>	<u>و</u> کر ا	∛	SA SA	~	ш	E	σ						
			ксо	RING		<u> </u>	ËT	μ	U N	Ľ		CLASSIFI	ICATION OF MA	TERIA	LS	REMARKS
			RY	Ϋ́	₽₽		DEPTH (FEET)	SAMPLE TYPE	ELEVATION (FEET)	GRAPHIC LOG						
CORE	ABE ABE	N D	۲×	ا م بخ	N S S	RQD	Ę	ЪГ	٨A	4						
ប្តន្ន	RUN NUMBER	RUN LENGTH	RUN RECOVERY	RQD RECOVERY	PERCENT RECOVERY	8	Щ	NA NA		3R/						
	_		R		- - - - - - - - - -		0	0	ш -		1 AV. L.	0.WP: P22:-	t high alasti -	t	omo gravali	Doring odvore-
										<u>c</u> tr	<u>LAY;</u> Dr	own; mois d (6" Tops	t; high plastici	ty; w/s	ome gravel;	Boring advance w/rotary wash
							-		- 450		वर्ण्ड उवा		5017			using 3-7/8" ste
							2 –		-							bit & bentonite
																mud as drilling
							-		- 448							fluid. SPT
							4 -		-							performed w/ autohammer.
							-		- 446							
							6 -		-		rading v	ery stiff				PP=2.5 tsf
т\ л ,	4	20									. aaniy v	Siy Sull				
TW	1	2.0	-	-	-	1.2	-		- 444							
							8 –		-							
							-		- 442							
							10 —		-							
							_		- 440							
							12 –		-							
							_		400							
207	n	4	6	-	12			N I	- 438	9	rading n	nottled yel	low-brown-gra	ıy; stiff		
SPT	2	4	6	7	13	1.5	14 –		-							
							-		- 420							
									- 436							
							16 -		-							
							-		_ 43.4							
								[- 434							
							18 —		-		rading d	lark grav:	moist; slightly	fissile:	w/some	TW refusal @
тw	3	1.2	-	-	-	1.2	-		- 422				ms & gravel	,	-	19.2'
									- 432			-	-			
							20 –		-							
							_		100							
							-		- 430							
							22 –		-							
							_		100						<u></u>	L
	4	10	00	00	40		-		- 428				; hard; moist; ł	nigh pl	asticity; fissile	Harder drilling
SPT	4	16	20	28	48	1.5	24 –		-		/some g		. ,	- '		
							_		- 426							Bottom of boring
							26 -		-							at 29.5'. Water
																level not recorded.
							-		- 424							Piezometer
							28 –		-							installed on 08/
SPT	5	19	25	36	61	1.5										09/07.
	-		-	1		- T			- 422							1

₽,	
BLACK & VEATCH	

BORING LOG

BORING NO. BV-108 SHEET 1 OF 2

		ă	VE/	ATC	H					BOR	ING LOG SHEET 1 OF
CLIE	NT	-		~		-	-	_		_	PROJECT PROJECT NO.
	IFCT	LOC	and	iy Cr	eek	⊢ner	<u>gy A</u>		ociate RDINA	S TES	Sandy Creek Energy Station 149060 GROUND ELEVATION (DATUM) TOTAL DEPTH
rκυ				ля Геха	\$				45.0'	123	E 10497.0' 443.7 ft (MSL) 39.0 (feet)
SUR					3			120	-10.0		COORDINATE SYSTEM DATE START DATE FINISHED
	wee										Plant 08/02/2007 08/02/2007
,	5	SOIL		PLING	-		LOG	GE) BY		CHECKED BY APPROVED BY
щ	빌쭚	ES	ES	ES	ш	ШÅ			JJ	Deeker	N V Bhadriraju BL Christensen
SAMPLE TYPE	SAMPLE NUMBER	SET 6 INCHES	2ND 6 INCHES	3RD 6 INCHES	N VALUE	SAMPLE RECOVERY	F	щ	(FEET)	9	
		ROC		RING			Ш.	Σ	N	LC	CLASSIFICATION OF MATERIALS REMARKS
CORE SIZE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	RQD RECOVERY	PERCENT RECOVERY	RQD	DEPTH (FEET)	SAMPLE TYPE	ELEVATION (FEET)	GRAPHIC LOG	
SPT	1	3	3	3	6	1.2	0		- 442		CLAY; brown; firm; moist; high plasticity; w/some sand & 1" gravel (6" Topsoil) Using 3-7/8" steel bit of the steel
тw	2	2.0	-	-	-	2.0	2-		- - 440		grading yellow-brown - bit & bentonite mud as drilling fluid. SPT performed w/
SPT	3	3	6	7	13	1.5	4-		-		grading stiff autohammer. TW-2 disturbed @2' PP=3.2 tsf
							6-		- 438		@4' PP=3.2 tsf TW4 PP=4.0 ts
τw	4	2.0	-	-	-	2.0	8 -		- 436		grading very stiff; w/some quartz sand
SPT	5	7	9	10	19	1.5	10 -		- 434		
							12 -		- 432		
тw	6	2.0	-	-	-	2.0	14 –		- 430		grading mottled dark gray
							- 16 -		- 428		
							- 18 -		- 426		<u>CLAYSHALE;</u> gray; hard; moist; high plasticity; fissile; PP>4.5 tsf
SPT	7	16	26	38	64	1.5	20 -		- 424		 @ 19.5' grading dark gray
							22 -		- 422		
TW	8	0.7	-	-	-	0.7	24 –		- - 420 -		[–] PP>4.5 tsf
							26 -		— 418 -		
SPT	9	20	33	46	79	1.5	28 -		- 416		[–] PP>4.5 tsf
571	9	20	33	40	19	1.5	-		- 414		VI.B-105

	IEN	т	&										JECT					SHEET 2 OF PROJECT NO.
			ç	Sand	lv Cr	reek	Ener	rav A	Asso	ociate	s	FRU		ly Creek E	Enero	ıv Sta	ition	149060
PR	OJE	ЕСТ	LOC	ATIC	DN	001		Ċ	OOF	RDINA	res		Curia	GROUNI	DELE	VATIO	N (DATUM)	TOTAL DEPTH
					Теха			N	123	45.0'			10497.0'		443.7	<u>7 ft (N</u>	ISL)	39.0 (feet)
				NDIT	IONS								RDINATE S	SYSTEM			START	DATE FINISHED 08/02/2007
	I, V	vee		SAM	PLIN	G		LOG	GE) BY		Plan		D BY		00/	02/2007	
ш	_ u			-			۳Ž				Deeken			V Bhadrir	aju			Christensen
SAMPLE		SAMPLE	SET INCHES	2ND 6 INCHES	3RD 6 INCHES	N VALUE	SAMPLE RECOVERY			(L:					-			
SA A	- 0	8 D	° 2 9	° ₹	≊ °	\$	SA		ш	ELEVATION (FEET)	J							
	_		ROC	ксс	RING				ТҮР	N (P		CLASSIFI	CATION OF	F MAT	ERIAL	.S	REMARKS
ш.		К	Ŧ	RUN RECOVERY	RQD RECOVERY	PERCENT RECOVERY		DEPTH (FEET)	SAMPLE TYPE	ATIC	GRAPHIC LOG							
CORE			RUN LENGTH	NDS NDS			RQD	Ē	MP	Ē	AP							
_		ž	- 5			L L L			S₽	EL	5							
								30 -		_								
								-										
								32 -		- 412								
										-								
Т٧	' ·	10	0.8	-	-	-	0.8			- 410								
								34 -		•								
								-		-								
								36 -		- 408								
										-								
								-										
								38 -		- 406								
Т٧	<u> </u>	11	1.0	-	-	-	1.0			-								Dettern of horiz
										- 404								Bottom of borin @ 39.0'. Water
								40 -		_								level not
								-										recorded. Borir backfilled w/
								42 -	-	- 402								bentonite chips
										-								
										- 400								
								44 –		-100								
								-	-	-								
								46 -		- 398								
										_								
						1		-	1									
						1		48 -		- 396								
						1		.		-								
										- 394								
						1		50 -	1									
						1		-										
						1		52 -		- 392								
						1				-								
						1		-	1	_ 200								
						1		54 -		- 390								
								.		F								
								6		- 388								
						1		56 -	1									
						1		-										
						1		58 -		- 386								
						1				_								
						1		-		_ 384								

	Ξ	2.
BLACK	&	VEATCH

BORING LOG

BORING NO. BV-109 SHEET 1 OF 2

		a	VE/	AIC	<i>п</i>					DUK	ING LOG SHEET 1 OF
CLIE	:NT		مەر		o e l -	C				•	PROJECT PROJECT NO.
	JECI	LOC		iy Cr N	еек	⊏ner	<u>gy</u> A		ociate RDINA	<u>ร</u> TES	Sandy Creek Energy Station 149060 GROUND ELEVATION (DATUM) TOTAL DEPTH
	5-01			Геха	s				39.0'	. 20	E 10190.0' 441.6 ft (MSL) 49.5 (feet)
SUR	FACE	E COI			5			0	50.0		COORDINATE SYSTEM DATE START DATE FINISHED
Vall	<u>ey; t</u>	all w	reeds	S							Plant 08/02/2007 08/02/2007
		SOIL	SAMI	PLIN			LOG	GE	D BY		CHECKED BY APPROVED BY
Чш	Щщ	LES	ES	ES	<u>ш</u>	ĒRY				Deekei	n V Bhadriraju BL Christensen
SAMPLE TYPE	SAMPLE NUMBER	SET 6 INCHES	2ND 6 INCHES	3RD 6 INCHES	N VALUE	SAMPLE RECOVERY	- -	Ĕ	(FEET)	g	
		ROC	K CO	RING	;		Ш.	ТҮР	NC	LC	CLASSIFICATION OF MATERIALS REMARKS
CORE SIZE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	RQD RECOVERY	PERCENT RECOVERY	RQD	DEPTH (FEET)	SAMPLE TYPE	ELEVATION (FEET)	GRAPHIC LOG	
SPT	1	3	2	2	4	1.1	0 - 2 -		- 440		CLAY; brown; soft; moist; high plasticity Boring advance (6" Topsoil) w/rotary wash using 3-7/8" ste bit & bentonite
TW	2	2.0	-	-	-	1.0	4-		- 438		grading yellow-brown bit & bentonite mud as drilling fluid. SPT performed w/ autohammer.
SPT	3	3	6	6	12	1.4	6 -		- 436		PP=2.0 tsf
TW	4	2.0	-	-	-	2.0	8-		- 434		grading very stiff
SPT	5	8	12	15	27	1.5	- 10 -		- 432		
							12 -		- 430 -		
TW	6	1.0	-	-	-	1.0	14 -		- 428 -		grading dark gray
							16 -		- 426 -		
SPT	7	17	27	37	64	1.5	18 -		- 424 - - 422		<u>CLAYSHALE;</u> gray; hard; moist; high plasticity; fissile; w/frequent cemented clay seams
							20 -		- 420		
TW	8	0.5	-	-	-	0.5	24 –		- 418		
							26 -		- 416		
SPT	9	21	32	41	73	1.5	28 -		- 414		
						-			- 412		VI.B-107

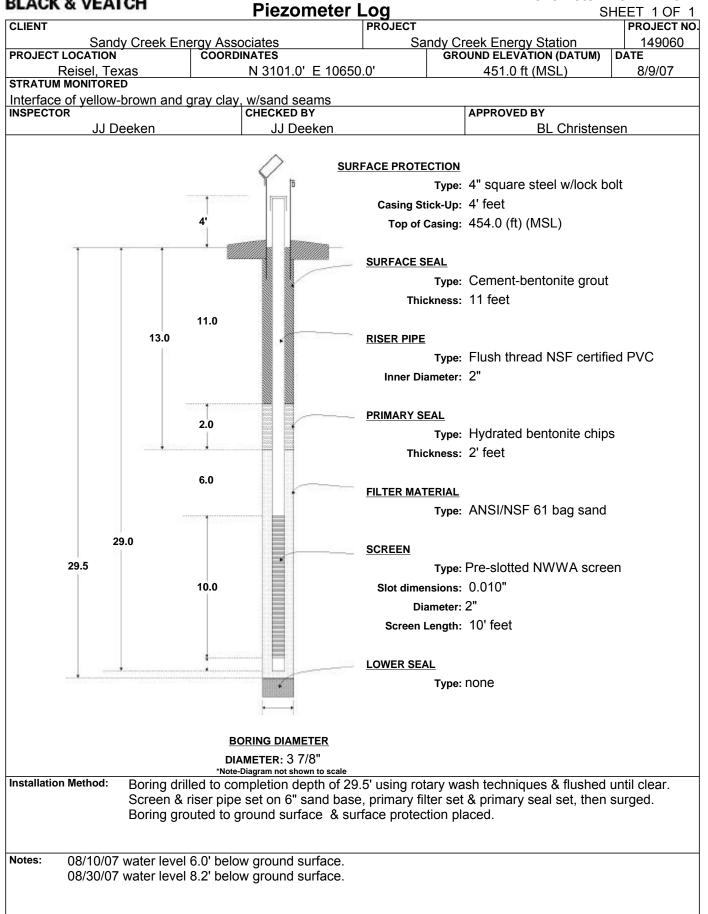
BLACK & VEATCH BORING LOG SHEET 2 CLIENT Sandy Creek Energy Associates Sandy Creek Energy Station PROJECT NO PROJECT NO CARTON COORDINATES Sandy Creek Energy Station PROJECT NO SURFACE CONDITIONS N 2339.0' E 1010.0' 441.6 ft (MSL) DATE STATT SURFACE CONDITIONS N 2339.0' E 000RDINATE SYSTEM DATE STATT DATE STATT SOL SAMFLING LOGGED BY CHECKED BY APPROVED BY OB/02/2007 08/02/2007 SOL SAMFLING BURGED BY LOGGED BY CHECKED BY APPROVED BY OB/02/2007 OB/0			Ę													BORIN	G NO. BV-109
Sandy Creek Energy Station 14906(GROUND ELEVATION (OATUM) 14006(GROUND ELEVATION (OATUM) 14006(441.6 ft (MSL) SURFACE CONDITIONS N 2339.0' E 10190.0' 441.6 ft (MSL) 49.5 (fee 49.5 (fee			(&	VE/	ATC	ж					BORING						SHEET 2 OF 2
PROJECT LOCATION COORDINATES GROUND ELEVATION (DATUM) TOTAL DEPT (MISS) SUPRACE CONDITIONS N 2339.0' E 10190.0' 441.6 ft (MSL) 49.5 (fec MORDINATE SYSTEM DATE FINISH (MORDIZ2007) DATE FINISH (MORD		NT	ç	Sand	lv Cr	ook	Ener	av A	امور	ociate	c	PRO		v Creek Ene	rav Sta	tion	
SUPERACE CONDITIONS COORDINATE SYSTEM DATE Finisher Valley: tall weeds CIGGED BY CHECKED BY APPROVED BY Image: Image in the system	PROJ		T LOO	CATIC	ĎŇ			C	OOF	RDINA ⁻	TES	_		GROUND EL	EVATIO	N (DATUM)	TOTAL DEPTH
Valley, tall weeds Plant 08/02/2007 08/02/2007 08/02/2007 Solt SAMPLING UGGED BY CHECKED BY APPROVED BY APPROVED BY With Stage Stage USAMPLING USAMPLING USAMPLING USAMPLING With Stage Stage USAMPLING USAMPLING <td>SURF</td> <td>FACE</td> <td>Reis</td> <td>sel, [–] NDITI</td> <td>Texa ons</td> <td>S</td> <td></td> <th><u> </u> N</th> <td>123</td> <td>39.0'</td> <td></td> <td></td> <td></td> <td>441</td> <td>.6 ft (M</td> <td><u>SL)</u> start</td> <td>49.5 (feet)</td>	SURF	FACE	Reis	sel, [–] NDITI	Texa ons	S		<u> </u> N	123	39.0'				441	.6 ft (M	<u>SL)</u> start	49.5 (feet)
JJ Decken V Bhadriraju BL Christensen Harder 13000 1400 0 1400 0 1400 0 1400 0 1400 0 1400 0 1400 0 1400 0 1400 0 1400 0 1400 0 1400 0 1400 0 1400 0 1400 0 1400 0 14000 1400 1400 1	1												t			02/2007	08/02/2007
NOR NOR Normalized Nor	<u> </u>		1	-	-		∠ ∖		GEE		Dookon						
NOR NOR <td></td> <td>PLE BER</td> <td>L S H</td> <td></td> <td>10 H</td> <td>Щ</td> <td>PLE</td> <th></th> <td></td> <td></td> <td>Беекеп</td> <td></td> <td>`</td> <td><u> </u></td> <td></td> <td></td> <td></td>		PLE BER	L S H		10 H	Щ	PLE				Беекеп		`	<u> </u>			
NOR NOR Normalized Nor	SAM	SAM	e N S	0 NC	8 NG	AL N	SAM			Ë							
TW 10 0.5 - - 0.5 30 - 410 32 - - 0.5 - - 0.5 - - 10 - - 10 -				ксо		i i			LYPI	N (F			CLASSIFI	CATION OF MA	TERIAL	s	REMARKS
Image: Weight of the second		_ H	_E	ER	ERV	ĒRY		H (F	Щ	АТІС	HC HC						
Image: Weight of the second	SIZE	RUN	RUN	N ² S		CO CE	RQD	EPT	AMF	Ľ	RAF						
TW 10 0.5 - - 0.5 32- -410 -408 -409 -402 -409 -402 <td></td> <td>Z</td> <td></td> <td>2</td> <td>2</td> <td>22</td> <td></td> <th></th> <td>S</td> <td>ш</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Z		2	2	22			S	ш	5						
TW 10 0.5 - - - 0.5 32										_							
TW 10 0.5 - - 0.5 - - 0.5 - - 0.6 - - - 0.6 - - - 0.6 - - - 0.6 - - - 0.6 - - - 0.6 - - - - 0.6 - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <th>22</th> <td></td> <td>- 410</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								22		- 410							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								32-		_							
SPT 11 22 32 41 73 1.5 34	тw	10	0.5	-	-	-	0.5	· ·		- 108							
SPT 11 22 32 41 73 1.5 36 404 40 402 40 402 40 402 40 402 TW 12 0.5 - - 0.5 44 398 44 398 SPT 13 27 39 46 85 1.5 50 392 Bottom of fill SPT 13 27 39 46 85 1.5 50 392 Bottom of fill								34 -		400							crushed.
SPT 11 22 32 41 73 1.5 36 404 40 402 40 402 40 402 40 402 TW 12 0.5 - - 0.5 44 398 44 398 SPT 13 27 39 46 85 1.5 50 392 Bottom of fill SPT 13 27 39 46 85 1.5 50 392 Bottom of fill									-	-							
SPT 11 22 32 41 73 1.5 38 Mo - - 402 - - 402 Mo - - 402 - - 402 TW 12 0.5 - - 0.5 -								36 -		- 406							
SPT 11 22 32 41 73 1.5 38 Mo - - 402 - - 402 Mo - - 402 - - 402 TW 12 0.5 - - 0.5 -										-							
SPT 11 22 32 41 73 1.5 402 TW 12 0.5 - - 0.5 - - - 398 SPT 13 27 39 46 85 1.5 - - - 392 Bottom of H - <										- 404							
TW 12 0.5 - - 0.5 - - 0.5 40^{-402} 42^{-400} 42^{-40} 42^{-40} 42^{-40} 42^{-40} 42^{-40} 42^{-40} 42^{-40} 42^{-40} 42^{-40} 42^{-40} 42^{-40} 42	ODT	44	00		44	70	4.5	38 -		_							
TW 12 0.5 0.5 $40 400$ 42 400 44 398 46 396 46 396 48 396 48 396 48 396 48 396 48 396 48 396 48 396 48 396 60	501	11	22	32	41	/3	1.5			402							
TW 12 0.5 - - 0.5 42 44 - 398 - 46 - 398 SPT 13 27 39 46 85 1.5 392 Bottom of M $@$ 49.5'. W								40 -		- 402							
TW 12 0.5 - - 0.5 42 44 - 398 - 46 - 398 SPT 13 27 39 46 85 1.5 392 Bottom of M $@$ 49.5'. W										-							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								42 -		- 400							
SPT 13 27 39 46 85 1.5 50 50 50 392 Bottom of b										-							
SPT 13 27 39 46 85 1.5 50 50 392 Bottom of b @ 49.5'. W	TW	12	0.5	-	-	-	0.5			- 398							
SPT 13 27 39 46 85 1.5 50 50 392 Bottom of b 0 0 0 50								44 -		_							
SPT 13 27 39 46 85 1.5 50 50 392 Bottom of b 0 0 0 50																	
SPT 13 27 39 46 85 1.5 48 - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><th>46 -</th><td>-</td><td>- 396</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								46 -	-	- 396							
SPT 13 27 39 46 85 1.5 48 - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><th></th><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										-							
SPT 13 27 39 46 85 1.5								48 -		- 394							
50 - - 392 Bottom of b 0 49.5'. W 0 100 -	SPT	13	27	39	46	85	15	40		-							
		10			-10		1.0			- 392							Bottom of boring
52 -390 Image: second								50 -									@ 49.5'. Water
52 - 390 backfilled v 51 - -									-	-							
bentonite c								52 -		- 390							backfilled w/
										-							bentonite chips.
										- 388							
								54 -	1	_							
										200							
								56 -	$\left \right $	- 200							
								.	$\left \right $	-							
								58 -		- 384							
								.		_							
F 382 VI.B-108										- 382		_109_					

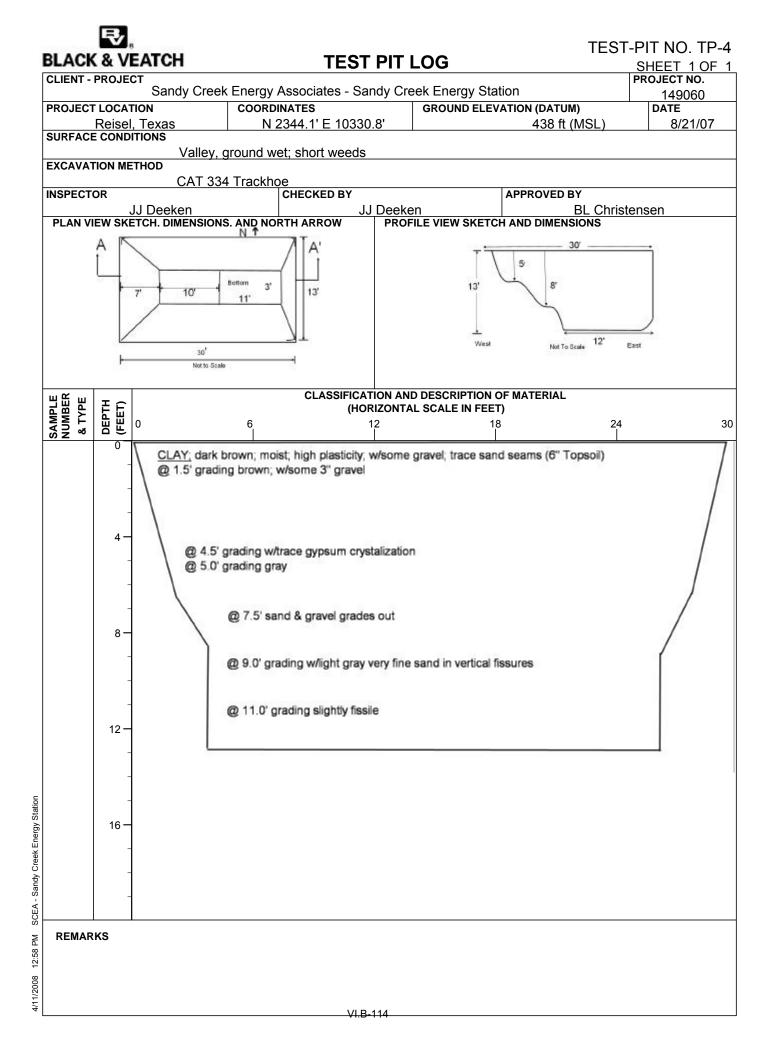
CLIE		OK I	VE/	ATC	_					BOR	INC		DJECT							<u>EET 1 OF</u> CT NO.
OLIE	IN I	c	hne	v Cr	ook I	Enor	av A		ociates	-		PRC		ndv	Creek E	noro	w Stati	on		49060
PRO	JECT	LOC	ATIO	<u>y Cr</u> N	CERI		<u>yy</u> C	OOF	DINAT	S TES			Ja		GROUND	D ELE	VATION	(DATUM)		<u>49000</u> . DEPTH
				exa	s		N	25	51.0'				10393.				6 ft (MS			.5 (feet)
														ESY	STEM		DATE S			FINISHED
Valle		<u>II we</u>					LOG					Plan	t CHEC		BV			/3/07 Approved		8/4/07
						Σ	LOG	GEL		Campbe	الم				Bhadrira				Christe	ncon
SAMPLE TYPE	SAMPLE NUMBER	SET 6 INCHES	2ND INCHES	3RD 6 INCHES	빙	SAMPLE RECOVERY				Jampbe				V	Dilaunia	aju		DL		
₹F		S S	6 INC	RN	N VALUE	AM														
						<u> </u>	Ē	Ъ	E	90										
			<u>∖ co</u> ≿	RING ∑	∟≿		Ē	Ē	<u>o</u>	L C			CLASS		ATION OF		ERIALS			EMARKS
CORE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	RQD RECOVERY	PERCENT RECOVERY	RQD	DEPTH (FEET)	SAMPLE TYPE	ELEVATION (FEET)	GRAPHIC LOG										
						1.0	0		_		CLA	<u>\Y</u> : bro	own; sc	oft; m	oist; high	n plas	sticity; v	v/trace	Bori	ng advanc
SPT	1	wон	2	2	4	1.2	-				sub	round	ed red	fine	gravel (6	" Тор	osoil)		w/ro	tary wash
							2 -		- 438											g 3-7/8" sto bentonite
_	~								-										mud	as drilling
TW	2	2.0	-	-	-	1.1	-		- 436											. SPT
							4 -		-100		ara	ding st	tiff							ormed w/ hammer.
SPT	3	3	4	7	11	1.0	-		-		9.0								@2'	PP=1.5 tst
									- 434											
							6 -				gra	ding ye	ellow-b	rown	; firm					
SPT	4	3	3	3	6	1.3	-		-											
							-		- 432											
							8 -		-											
тw	5	2.0	-	-	-	2.0	-													
							10 -		- 430		-									
							10		-		@ 1	10.0' g	rading	mott	led gray				PP=	2.25 tsf
							-													
							12 -		- 428											
							_		-											
SPT	6	3	5	8	13	1.3			- 426		gra	ding w	/trace of	ceme	entation;	grave	el grade	es out		
	0	3	5	0	13	1.3	14 -													
							-		-											
									- 424											
							16 -													
							-													
							18		- 422											
rw	7	1.2	-	-	-	1.2			-		gra	ding g	ray							
							-		400											
							20 -		- 420											
									-											
							-		- 418											
							22 –													
							-		-			din e k	ord				had =!-			
SPT	8	18	26	36	62	1.5			- 416		gra	ung h	aru; w/	ucca	sional ce	ment	ieu clay	seams		
	5		_0				24 –													
							-													
							26		- 414											
							20-													
							-													
							28 -		- 412											
1																			1	

		Ę														BORIN	G NO. BV-110
BL/	ACK	8	VE/	ATC	H					BOR	lN					DOMIN	SHEET 2 OF 2
CLIE	ENT)			F	A		:	_		PRC	JECT		01	-tion	PROJECT NO.
PRO	JECI		Sand CATIC	iy Cr DN	еек	Ener	<u>gy A</u> C	ASSC OOF	ociate RDINA	<u>S</u> TES			Sand	y Creek Er	ELEVATI	ation ON (DATUM)	149060 TOTAL DEPTH
			sel, 1		s		N	1 25	51.0'				10393.0'	43	39.6 ft (I	MSL)	39.5 (feet)
	FACE ley/ta											Plan	RDINATE S	SYSTEM	DATE	8/3/07	DATE FINISHED 8/4/07
vai			SAM		3		LOG	GEI	DBY			Fian		D BY		APPROVED	
щ	щК	ES	ES	ES	ш	щŸ			DE	Campt	pell		, v	/ Bhadriraj	u	BL (Christensen
SAMPLE TYPE	SAMPLE NUMBER					SAMPLE RECOVERY	F	Ш	(FEET)	9							
	-	-	<u>к со</u>	RING	; ∣.≻	1		1	NO	C L C			CLASSIFI	CATION OF I	MATERIA	LS	REMARKS
CORE SIZE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	RQD RECOVERY	PERCENT RECOVERY	RQD	DEPTH (FEET)	SAMPLE TYPE	ELEVATION (FEET)	GRAPHIC LOG							
							30 -		- 408								
TW	9	0.8	-	-	_	0.8	32 -		- 406		СІ	AYSHA	ALE: grav	hard: moist	t: hiah pl	asticity; fissile	Tube end
							34 -	-	-				ementatio		- 5 F	,	' crushed.
							36 -		- 404								
SPT	10	22	34	43	76	1.5	38 -		- 402								
							40 -		- 400								Bottom of boring @ 39.5'. Water level not
							42 -		- 398								recorded. Boring backfilled w/ bentonite chips.
							44 —		- 396								
							46 -		- 394								
							48 -		- 392								
							50		- 390								
;							52		- 388								
							54 –		- 386								
							56		- 384								
							- 58	-	- 382								
							-		- 380			B-110					

	Ξ	2.
BLACK	&	VEATCH

BORING LOG

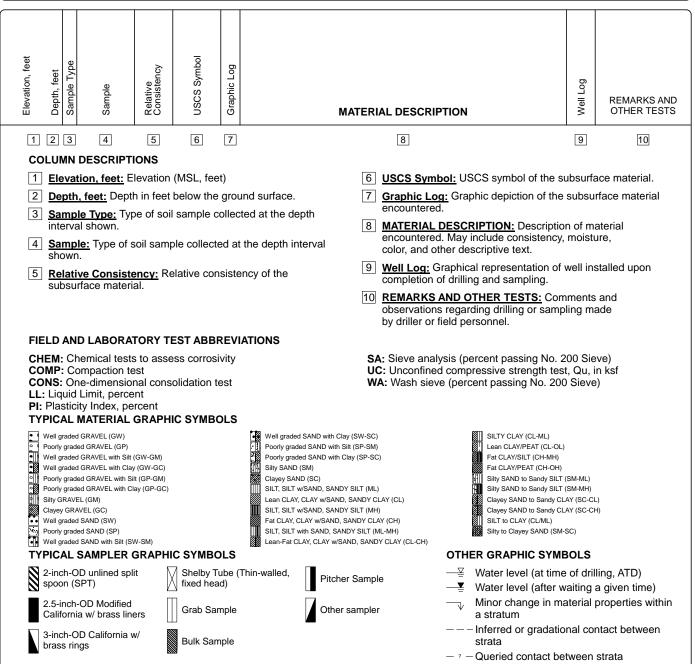

BORING NO. BV-111 SHEET 1 OF 2


		a	VE/	AIC	H					BORI					SHEET 1 OF 2
CLIE	NT	~		~	, .	-	-	_		_	PROJECT		~	e	PROJECT NO.
	IFCT		and	<u>y Cr</u>	eek	⊢ner	gy A		ociate RDINA	S reg	Sandy Cree		gy Sta	tion N (DATUM)	149060 TOTAL DEPTH
PRU					<u> </u>					123				. ,	
SUR		Reis Con			5			27	39.0'		E 10465.0'	<u>440.</u> M	<u>.0 ft (M</u>		49.5 (feet) DATE FINISHED
	-				neavy	/ rair	า				Plant			02/2007	08/02/2007
		SOIL					LOG	GEL	D BY		CHECKED BY			APPROVED	
щ	щК	ES	ES	ES	ω	щŶ		, ,	JJ	Deeken	V Bha	driraju		BL (Christensen
SAMPLE TYPE	SAMPLE NUMBER	SET 6 INCHES	2ND 6 INCHES			SAMPLE RECOVERY	Ē	PE	(FEET)	g				_	
		ROC	<u>× CO</u>	RING □ ≻	i L ≻		Ë	≿	NO		CLASSIFICATIO	N OF MA	TERIAL	S	REMARKS
CORE SIZE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	RQD RECOVERY	PERCENT RECOVERY	RQD	DEPTH (FEET)	SAMPLE TYPE	ELEVATION (FEET)	GRAPHIC LOG					
SPT	1	2	2	3	5	1.2	0-		_ 446 _		<u>CLAY;</u> brown; firm; moist; (6" Topsoil)	; high pla	asticity		Boring advanced w/rotary wash using 3-7/8" step
тw	2	2.0	-	-	-	1.5	2-		- 444						bit & bentonite mud as drilling fluid. SPT performed w/
SPT	3	2	4	5	9	1.4	4-		- 442 -		grading stiff				autohammer.
тw	4	2.0	-	-	-	1.8	6-		- 440 -		grading yellow; w/trace sa	and			_ @6' PP=1.5 tsf
SPT	5	2	4	7	11	1.5	8-		- 438						@8' PP=3.5 tsf
							10 -		- 436		@ 9.0' grading yellow-bro	wn			
							12 -		- 434 -						PP>4.5 tsf
тw	6	2.0	-	-	-	2.0	14		- 432 -						
							16 -		- 430						
SPT	7	10	15	19	34	1.5	18		- 428		grading hard; w/some sar @ 18.5' grading w/1" grav	/el			[–] PP>4.5 tsf
							20 -		- 426		@ 19.5' grading gray-brov	wn			
тw	8	0.8	-	_	-	0.8	22 -		- 424		grading w/occasiional qua	artz sear	ns		
							24 -		- 422						
							26 -		- 420						
SPT	9	20	27	38	65	1.5	28 -		- 418 -		CLAYSHALE; gray; hard; w/trace cementation	moist; h	igh pla		0- 2;

	ACK	a	VE/	AIC	н					BOR	ING								SHEET 2 O
CLIE	INT											PRC	JECT						PROJECT NO.
					eek	Ener	<u>gy A</u>	<u>ssc</u>	<u>ciate</u>	S			Sand	y Creek	Energ	<u>yy Sta</u>	ation	T 1157	149060
PRO		LOC Dois			<u> </u>		-		r dina 1 '39.0'	IES		г	10465.0'	GROU		D ft (N	•	1 UM)	TOTAL DEPTH
SUR		Reis			3			21	<u>J9.0</u>				RDINATE S	SYSTEM			STAR	т	49.5 (feet) DATE FINISHED
	wee	ds in	valle	ey, h	<u>ea</u> v	y rair	1					Plan	t				/02/20	007	08/02/2007
	:	SOIL	SAM	PLINO	3		LOG	GE	DBY	_			CHECKE				APP	ROVED	
Щω	Щщ	SET 6 INCHES	2ND 6 INCHES	3RD 6 INCHES	<u>ш</u>	SAMPLE RECOVERY				Deeker	<u>ו</u>		`	V Bhadr	iraju			BL	Christensen
SAMPLE TYPE	SAMPLE NUMBER	NC P	NCF ND	3RD NC	N VALUE	AMP VOC			Ē										
S.						S, RE(F	Ш	EE (FE	<u>ଁ</u>									
	-	ROC	K CO	RING	. >			Σ	NO				CLASSIFI	CATION	OF MAT	ERIAL	_S		REMARKS
CORE SIZE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	RQD RECOVERY	PERCENT RECOVERY	RQD	DEPTH (FEET)	SAMPLE TYPE	ELEVATION (FEET)	GRAPHIC LOG									
	z		RE	RE	2.5		<u> </u>	\$	田 - 416	5 //									
							- 32 –		- 414										Thick walled
TW	10	0.7	-	-	-	0.7	34 –		- 412										tube driven.
							36 -		- 410 -										
SPT	11	23	44	41	85	1.5	38 –		- 408		grad	ding di	ry to mois	t					
U (1)			T				40 -		- 406										
							42 -		- 404										
TW	12	1.0	-	-	-	1.0	44 -		- 402										Thick walled tube driven.
							46 -		- 400										
SPT	13	30	40	47	87	1.5	48 -		- 398										Bottom of bo
							50 - - 52 -		- 396 - - 394										@ 49.5'. Wat level not recorded. Bo backfilled w/
							52 - - 54 -		- 394 - - 392										bentonite chi
							56 -		- 390										
							- 58 -		- 388										

Piezometer NO. PZ-107

Appendix C


Laboratory Test Results

Project No:		286-7508	3	Samp	ole Identifica	ation:	BV-102, TV	N-4, 6-8 Fl	EET		<u>at interioristic a tetta int</u>
Technician:		AG/KMV		Sam	ple Descrip	tion:	Light Gray				
Project	:	Sandy	Creek	Energy	Station						
1	NITIA	L CC	NDI	TIONS		[FIN	AL C	OND	TIONS	
	ER CONTE	NT	S	PECIMEN D	ΑΤΑ	w	ATER CONT		T	SPECIMEN	
Tare No.:		w	Length,	in:	5.120	Tare N	0.:	d-1	Length		5.37
Wet+Tare, g	-	110.04	Diamete	er, in:	2.870	Wet+T	are, gms:	242.3	Diamet		2.89
Dry+Tare, g		95.59	Wet ma	ss, gms:	1127.8		ire, gms:	208.4		ass, gms:	1181.
Tare Weight	t, gms:	21.37	Area, so	.cm.:	41.74		eight, gms:	85.1	Area, s	-	42.3
Moisture, %		19.5	Volume	CC:	542.8	Moistur		27.4	Volume		
			Unit we		129.7		-, ,.	<u>/.1</u>	-	≠, cc. et wt, pcf:	577.
Specific Gra	wity:	2.70	Unit dry	•	108.5	Specifir	Gravity:	2.70	1	/ wt, pcf:	127.
Saturation, 9	%:	95.2	Void Ra	-	0.552	Saturat	•	108.8	Void Ra	•	100.
Perm. Cell N	lo.:	7	Burret d		1.123		area,sq.cm.:	0.991			0.68
Cell Pressur	e, psi:	30.0		essure, psi:	30.0		issure, psi:	28.0	Remark	actor,cm/cc:	1.00
Date	Time	Elapsed	Temp	Pressure	Head	Tail	Head	Tail	Total	Permeability	Dormoshill
Doto	Time								10100		Permeabilit
Dale	Time	Time	(C)	Diff.	Rdg	Rdg	Change	Change	Head	Kt	K ₂₀
		(sec)	(C)	Diff. (psi)	Rdg (cc)	Rdg (cc)	Change (cm)			•	
1/3/2008	9:33:00 AM		(C) 24.0				•	Change	Head	Kt (cm/sec)	K ₂₀ (cm/sec)
		(sec)		(psi)	(cc)	(cc)	(cm)	Change (cm)	Head (cm)	Kt (cm/sec) 0.00E+00	K ₂₀ (cm/sec) 0.00E+00
1/3/2008	9:33:00 AM	(sec) 0	24.0	(psi) 2.0	(cc) 0.2	(cc) 24.2	(cm) 0.000	Change (cm) 0.000	Head (cm) 164.82	Kt (cm/sec) 0.00E+00 8.19E-07	K ₂₀ (cm/sec) 0.00E+00 7.43E-07
1/3/2008 1/4/2008	9:33:00 AM 3:31:00 PM	(sec) 0 1798	24.0 24.0	(psi) 2.0 2.0	(cc) 0.2 0.9	(cc) 24.2 23.4	(cm) 0.000 0.706	Change (cm) 0.000 0.807	Head (cm) 164.82 163.30	Kt (cm/sec) 0.00E+00 8.19E-07 2.41E-07	K ₂₀ (cm/sec) 0.00E+00 7.43E-07 2.18E-07
1/3/2008 1/4/2008 1/5/2008 1/7/2008 1/8/2008	9:33:00 AM 3:31:00 PM 9:25:00 AM	(sec) 0 1798 2872 6093 7122	24.0 24.0 24.0	(psi) 2.0 2.0 2.0	(cc) 0.2 0.9 1.2	(cc) 24.2 23.4 23.0	(cm) 0.000 0.706 0.303	Change (cm) 0.000 0.807 0.404	Head (cm) 164.82 163.30 162.60	Kt (cm/sec) 0.00E+00 8.19E-07	K ₂₀ (cm/sec) 0.00E+00 7.43E-07 2.18E-07 2.97E-07
1/3/2008 1/4/2008 1/5/2008 1/7/2008 1/8/2008 1/9/2008	9:33:00 AM 3:31:00 PM 9:25:00 AM 3:06:00 PM 8:15:00 AM 7:40:00 AM	(sec) 0 1798 2872 6093 7122 8527	24.0 24.0 24.0 24.0 24.0	(psi) 2.0 2.0 2.0 2.0	(cc) 0.2 0.9 1.2 2.1	(cc) 24.2 23.4 23.0 21.9	(cm) 0.000 0.706 0.303 0.908	Change (cm) 0.000 0.807 0.404 1.110	Head (cm) 164.82 163.30 162.60 160.58	Kt (cm/sec) 0.00E+00 8.19E-07 2.41E-07 3.27E-07	K ₂₀ (cm/sec) 0.00E+00 7.43E-07 2.18E-07 2.97E-07 7.68E-08
1/3/2008 1/4/2008 1/5/2008 1/7/2008 1/8/2008 1/9/2008 1/10/2008	9:33:00 AM 3:31:00 PM 9:25:00 AM 3:06:00 PM 8:15:00 AM 7:40:00 AM	(sec) 0 1798 2872 6093 7122 8527 9957	24.0 24.0 24.0 24.0 24.0 24.0	(psi) 2.0 2.0 2.0 2.0 2.0	(cc) 0.2 0.9 1.2 2.1 2.4	(cc) 24.2 23.4 23.0 21.9 21.6	(cm) 0.000 0.706 0.303 0.908 0.303	Change (cm) 0.000 0.807 0.404 1.110 0.303	Head (cm) 164.82 163.30 162.60 160.58 159.97	Kt (cm/sec) 0.00E+00 8.19E-07 2.41E-07 3.27E-07 8.47E-08	K ₂₀ (cm/sec) 0.00E+00 7.43E-07 2.18E-07 2.97E-07 7.68E-08 6.44E-08
1/3/2008 1/4/2008 1/5/2008 1/7/2008 1/8/2008 1/9/2008 1/10/2008 1/11/2008	9:33:00 AM 3:31:00 PM 9:25:00 AM 3:06:00 PM 8:15:00 AM 7:40:00 AM	(sec) 0 1798 2872 6093 7122 8527	24.0 24.0 24.0 24.0 24.0 24.0 24.0	(psi) 2.0 2.0 2.0 2.0 2.0 2.0 2.0	(cc) 0.2 0.9 1.2 2.1 2.4 2.7	(cc) 24.2 23.4 23.0 21.9 21.6 21.3	(cm) 0.000 0.706 0.303 0.908 0.303 0.303	Change (cm) 0.000 0.807 0.404 1.110 0.303 0.303	Head (cm) 164.82 163.30 162.60 160.58 159.97 159.37	Kt (cm/sec) 0.00E+00 8.19E-07 2.41E-07 3.27E-07 8.47E-08 7.10E-08	K ₂₀ (cm/sec) 0.00E+00 7.43E-07 2.18E-07 2.97E-07 7.68E-08 6.44E-08 6.28E-08
1/3/2008 1/4/2008 1/5/2008 1/7/2008 1/8/2008 1/9/2008 1/10/2008	9:33:00 AM 3:31:00 PM 9:25:00 AM 3:06:00 PM 8:15:00 AM 7:40:00 AM 7:30:00 AM	(sec) 0 1798 2872 6093 7122 8527 9957	24.0 24.0 24.0 24.0 24.0 24.0 24.0 25.0	(psi) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	(cc) 0.2 0.9 1.2 2.1 2.4 2.7 3.1	(cc) 24.2 23.4 23.0 21.9 21.6 21.3 21.0	(cm) 0.000 0.706 0.303 0.908 0.303 0.303 0.303 0.404	Change (cm) 0.000 0.807 0.404 1.110 0.303 0.303 0.303	Head (cm) 164.82 163.30 162.60 160.58 159.97 159.37 158.66	Kt (cm/sec) 0.00E+00 8.19E-07 2.41E-07 3.27E-07 8.47E-08 7.10E-08 7.12E-08	K ₂₀ (cm/sec) 0.00E+00 7.43E-07 2.18E-07 2.97E-07 7.68E-08 6.44E-08
1/3/2008 1/4/2008 1/5/2008 1/7/2008 1/8/2008 1/9/2008 1/10/2008 1/11/2008	9:33:00 AM 3:31:00 PM 9:25:00 AM 3:06:00 PM 8:15:00 AM 7:40:00 AM 7:30:00 AM	(sec) 0 1798 2872 6093 7122 8527 9957 11397 15717	24.0 24.0 24.0 24.0 24.0 25.0 24.0 24.0 24.0	(psi) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	(cc) 0.2 0.9 1.2 2.1 2.4 2.7 3.1 3.5 4.4	(cc) 24.2 23.4 23.0 21.9 21.6 21.3 21.0 20.8 20.2	(cm) 0.000 0.706 0.303 0.908 0.303 0.303 0.303 0.404 0.404 0.908	Change (cm) 0.000 0.807 0.404 1.110 0.303 0.303 0.303 0.202 0.605	Head (cm) 164.82 163.30 162.60 160.58 159.97 159.37 158.66 158.06 156.54	Kt (cm/sec) 0.00E+00 8.19E-07 2.41E-07 3.27E-07 8.47E-08 7.10E-08 7.12E-08 5.36E-08 9.78E-08	K ₂₀ (cm/sec) 0.00E+00 7.43E-07 2.18E-07 2.97E-07 7.68E-08 6.28E-08 4.86E-08
1/3/2008 1/4/2008 1/5/2008 1/7/2008 1/8/2008 1/9/2008 1/10/2008 1/11/2008	9:33:00 AM 3:31:00 PM 9:25:00 AM 3:06:00 PM 8:15:00 AM 7:40:00 AM 7:30:00 AM	(sec) 0 1798 2872 6093 7122 8527 9957 11397 15717	24.0 24.0 24.0 24.0 24.0 25.0 24.0 24.0 24.0	(psi) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	(cc) 0.2 0.9 1.2 2.1 2.4 2.7 3.1 3.5 4.4	(cc) 24.2 23.4 23.0 21.9 21.6 21.3 21.0 20.8 20.2 6.6	(cm) 0.000 0.706 0.303 0.908 0.303 0.303 0.303 0.404 0.404 0.908	Change (cm) 0.000 0.807 0.404 1.110 0.303 0.303 0.303 0.202 0.605	Head (cm) 164.82 163.30 162.60 160.58 159.97 159.37 158.66 158.06 156.54	Kt (cm/sec) 0.00E+00 8.19E-07 2.41E-07 3.27E-07 8.47E-08 7.10E-08 7.12E-08 5.36E-08 9.78E-08	K ₂₀ (cm/sec) 0.00E+00 7.43E-07 2.18E-07 2.97E-07 7.68E-08 6.44E-08 6.28E-08 4.86E-08
1/3/2008 1/4/2008 1/5/2008 1/7/2008 1/9/2008 1/10/2008 1/11/2008 1/11/2008	9:33:00 AM 3:31:00 PM 9:25:00 AM 3:06:00 PM 8:15:00 AM 7:40:00 AM 7:30:00 AM	(sec) 0 1798 2872 6093 7122 8527 9957 11397 15717	24.0 24.0 24.0 24.0 24.0 25.0 24.0 24.0 24.0	(psi) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	(cc) 0.2 0.9 1.2 2.1 2.4 2.7 3.1 3.5 4.4	(cc) 24.2 23.4 23.0 21.9 21.6 21.3 21.0 20.8 20.2 6.6 be the	(cm) 0.000 0.706 0.303 0.908 0.303 0.303 0.303 0.404 0.404 0.908	Change (cm) 0.000 0.807 0.404 1.110 0.303 0.303 0.303 0.202 0.605	Head (cm) 164.82 163.30 162.60 160.58 159.97 159.37 158.66 158.06 156.54	Kt (cm/sec) 0.00E+00 8.19E-07 2.41E-07 3.27E-07 8.47E-08 7.10E-08 7.12E-08 5.36E-08 9.78E-08	K ₂₀ (cm/sec) 0.00E+00 7.43E-07 2.18E-07 2.97E-07 7.68E-08 6.44E-08 6.28E-08 4.86E-08

Key to Log of Boring

Sheet 1 of 1

GENERAL NOTES

- 1. Soil classifications are based on the Unified Soil Classification System. Descriptions and stratum lines are interpretive, and actual lithologic changes may be gradual. Field descriptions may have been modified to reflect results of lab tests.
- Descriptions on these logs apply only at the specific boring locations and at the time the borings were advanced. They are not warranted to be representative of subsurface conditions at other locations or times.

Log of Boring GB-1

Sheet 1 of 2

Date(s) Drilled 08/30/2010	Logged By M. Zahirul Islam	Checked By Edward B. Dolan, P.G.
Drilling	Drill Bit	Total Depth
Method Hollow Stem Auger	Size/Type 8.2 inch HSA	of Borehole 32 feet bgs
Drill Rig	Drilling	Approximate
Type Mobile B 59	Contractor Total Support Services, Inc.	Surface Elevation 456.12 feet MSL
Groundwater Level	Sampling	Hammer
and Date Measured Not Encountered	Method(s) Core	Data N/A
Borehole Backfill Well Completion	Location N 10513523.31, E 3349864.44	

Elevation, feet		Sample Type	Sample	Relative Consistency	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	Well Log	REMARKS AND OTHER TESTS
456.1— _ _	0		Core	Stiff	СН		Drill cuttings appear to be light brown CLAY, dry, some gravel. - -	-	No sample recovered.
_	_		Shelby Tube	Medium stiff	СН		Brown dry CLAY, some gravel, trace silt and sand.	-	
451.1 — -	5-			Stiff	СН		Brown dry CLAY, occassional calcite seam, some gravel.	_	
-	-		Core				-	_	
-	-								
446.1	10	X	Shelby Tube	Stiff	СН		Brown CLAY, moist, calcite seam, occassional gravel, trace sand and silt.	_	
-	-		Core				-	_	
- 441.1—	15			0.11			_		
_		Å	Shelby Tube	Stiff	СН		Same as above. -		
-			Core				-		
- 436.1—	20-			Very	СН		Brown CLAY, occassional calcite seam, dry, a 6 in. grey clay layer at 22		2 2
_	-	Å	Shelby Tube	stiff			- ft bgs.		
_			Core				_		
- 446.1— - 441.1— - 441.1— - 436.1— - 431.1— -	25			Hard	СН		 √ Grading grey.		
-	-			Hard	Claystone		Dark grey CLAYSTONE, dry, trace silt, drilling very slowly.		
_ _ 426.1	_		Core					_	
426.1	30-								

Log of Boring GB-1

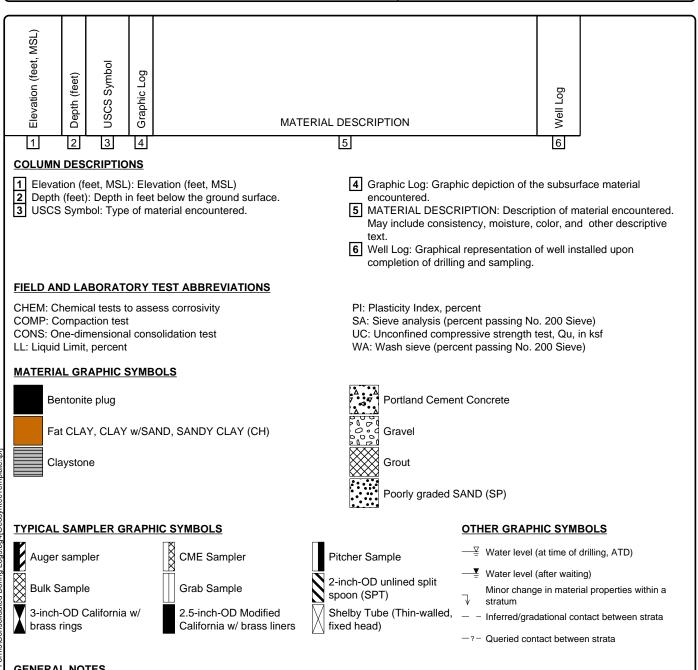
Sheet 2 of 2

Elevation, feet	Depth, feet	Sample Type	Sample	Relative Consistency	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	Well Log	REMARKS AND OTHER TESTS
426.1	30		Core		Claystone		Same as above.		
-	-						Bottom of Boring at 32 feet bgs.		
- 421.1	35								
_	-								
_	-	-							
- 416.1	- 40								
-	-	-							
-	-								
411.1—	45								
_	-								
_	-								
406.1— _	50 -								
-	-								
401 1	-								
-	-								
	-								
- 396.1—	60								
-	-								
411.1 - - 406.1 - - 401.1 - - - - - - - - - - - - - - - - - -	-								
391.1—	65—								

Log of Boring GB-4

Sheet 1 of 1

Date(s) Drilled 08/30/2010 and 08/31/2010	Logged By M. Zahirul Islam	Checked By Edward B. Dolan, P.G.
Drilling	Drill Bit	Total Depth
Method Hollow Stem Auger	Size/Type 8.2 inch HSA	of Borehole 17 feet bgs
Drill Rig	Drilling	Approximate
Type Mobile B 59	Contractor Total Support Services, Inc.	Surface Elevation 433.75 feet MSL
Groundwater Level 3.17 feet measured on	Sampling	Hammer
and Date Measured 9/22/2010	Method(s) Core	Data N/A
Borehole Backfill Well Completion	Location N 10513167.81, E 3349948.58	


Elevation, feet	Depth, feet	Sample Type	Sample	Relative Consistency	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	REMARKS AND OTHER TESTS
433.8	0 - -		Core	Medium stiff	СН		Moist grey CLAY with some gravel. a 2 in. gravel encountered at about 2 ft bgs, roots (top 6 in.).	3.5 ft sample recovered
- - 428.8	- - 5			Medium	СН		- 9/22/2010 ¥ - 9/22/2010 ¥ - 9/22/2010 ¥ - 9/22/2010 ¥ - 1	
-	-		Core	stiff Medium	СН		Brown CLAY, moist, calcite seam, occassional gravel.	
423.8	- 10		Shelby Tube	stiff	СН		 → Grading grey, moist, trace silt.	
423.8 - - 418.8 - - 413.8 - - - 408.8 - - - - - - - - - - - - - - - - - -	-		Core	Hard	Claystone		Grey CLAYSTONE, trace silt, dry.	
418.8 -	- 15		Core	Hard	Claystone		Hard, dark grey CLAYSTONE, dry.	
-	-						Bottom of Boring at 17 feet bgs.	
413.8— - -	20	-						
- - 408.8	- - 25	-						
-	-							
403.8	- 30							

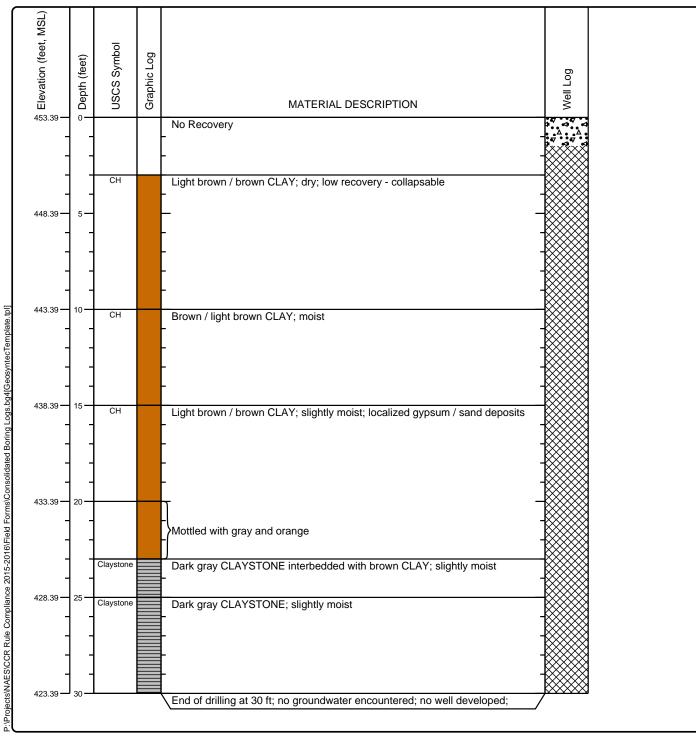
Log of Boring GB-5

Sheet 1 of 1

Date(s) Drilled 09/01/2010	Logged By M. Zahirul Islam	Checked By Edward B. Dolan, P.G.
Drilling	Drill Bit	Total Depth
Method Hollow Stem Auger	Size/Type 8.2 inch HSA	of Borehole 20 feet bgs
Drill Rig	Drilling	Approximate
Type Mobile B 59	Contractor Total Support Services, Inc.	Surface Elevation 440.64 feet MSL
Groundwater Level	Sampling	Hammer
and Date Measured Not Measured	Method(s) Core	Data N/A
Borehole Backfill Well Completion	Location N 10513245.68, E 3349741.37	

-	0				USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	Well Log	REMARKS AND OTHER TESTS
- - 435.6-	-			Stiff	СН		Light grey CLAY, dry, some gravel.		
435.6- 5			Core	Stiff	СН		V Grading brown, occassional calcite seam		
-	5 - -	X	Shelby Tube	Medium stiff	СН		 Brown CLAY, calcite seam, moist, occassional gravel, trace sand and silt. 		
_	_		Core						
- - - 430.6 1(- - 425.6 1(- - - - - - - - - - - - - - - - - - -	0	X	Shelby Tube	Medium stiff	СН		$\overline{}$ Grading grey, moist, occassional gravel, trace sand and silt.		
-	_		Core						
425.6- 15	5	X	Shelby Tube	Stiff	СН		Mixture of light brown and grey CLAY, occassional gravel, dry.		
-	-		Core	Hard	Claystone		 Hard, dark grey CLAYSTONE, trace silt, a 6 in. vertical fracture with iron stain at 19 ft bgs, dry. 		
420.6— 20	:0 ¹						Bottom of Boring at 20 feet bgs.		
-	_								
	-								
415.6 25	5								
-	_								
410.6 3(_								
410.6	0								

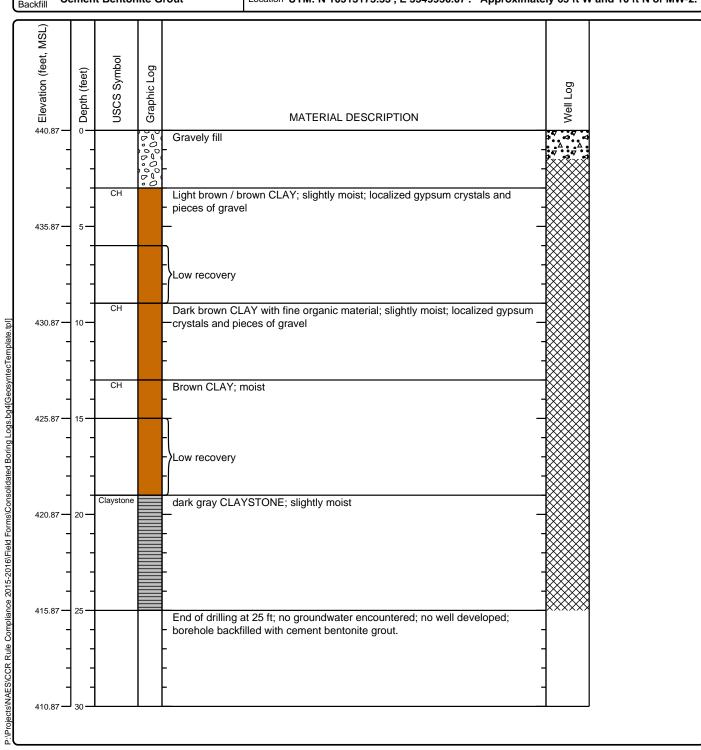
GENERAL NOTES


1: Soil classifications are based on the Unified Soil Classification System. Descriptions and stratum lines are interpretive, and actual lithologic changes may be gradual. Field descriptions may have been modified to reflect results of lab tests.

2: Descriptions on these logs apply only at the specific boring locations and at the time the borings were advanced. They are not warranted to be representative of subsurface conditions at other locations or times.

Project: Sandy Creek Energy Station Project Location: 2161 Rattlesnake Road Riesel, TX 76682

Project Number: TXL0526 / 02


Date(s) Drilled 9/22/2015	Logged By Alexander Brewster	Checked By Lindsay O'Leary, P.E.
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 5" HSA	Total Depth of Borehole 30 ft
Drill Rig Type Truck-Mounted CME	Drilling Contractor Best Drilling Services, Inc.	Approximate Surface Elevation 453.39 (ft, MSL)
Groundwater Level Not encountered	Sampling Method(s) Core Barrel	Hammer N/A Data
Borehole Backfill Cement Bentonite Grout	Location UTM: N 10513492.63', E 3349684.20'. evaporation pond.	SE of northern corner of existing leachate

Project: Sandy Creek Energy Station Project Location: 2161 Rattlesnake Road Riesel, TX 76682

Project Number: TXL0526 / 02

Date(s) Drilled 9/23/2015	Logged By Alexander Brewster	Checked By Lindsay O'Leary, P.E.
Drilling	Drill Bit	Total Depth
Method Hollow Stem Auger	Size/Type 8.25" HSA	of Borehole 25 ft
Drill Rig	Drilling	Approximate
Type Truck-Mounted CME	Contractor Best Drilling Services, Inc.	Surface Elevation 440.87 (ft, MSL)
Groundwater Level	Sampling	Hammer N/A
and Date Measured Not encountered	Method(s) Core Barrel	Data
Borehole Backfill Cement Bentonite Grout	Location UTM: N 10513175.55', E 3349950.0	7'. Approximately 65 ft W and 10 ft N of MW-2.

Drilling Date: Started: 8/30/2010 Completed: 9/3/2010 Diameter of Hole: Diameter: 8.25 in From Surface To 27 ft Drilling Method: Hollow Stem Auger Borehole Other: 20/40 Silica Sand Completion: Annular Seal Data: 1st Interval: From 0 ft to 2 ft with Concrete (#sacks and material) 2nd Interval: From 2 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: From 2 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: From 2 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: From 2 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: From 2 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: No Data Method Used: Gravity Cemented By: Crew Distance to Property Line: No Data Method of Verification: No Data Method of Verification: No Data Approved by Variance: No Data Surface Surface Sleeve Installed Completion: Water Level: Static level: No Data Artesian flow: No Data Packers: No Data Plugging Info: Casing or Cement/Bentonite left in well: No Data Type Of Pump: No Data Well Tests: No Data Method Strata: No Data Oistance Data Distance in Completion: Mater Quality: Type of Water: No Data Dista No Data Distance in the driller extribus Made: No Data Disting and that each and all of the statements herein are true and correct. The driller supervision) and that each and all of the statements herein are true and correct. The driller completion and resubmittal.	STATE OF TEXAS WELL REPORT for Tracking #231664					
Riesel, TX Latitude: 31° 28' 02" N Weil Location: Same Riesel, TX Latitude: 31° 28' 02" N Weil County: McLennan Longitude: 096° 57' 15" W Elevation: No Data GPS Brand Used: No Data Type of Work: New Weil Proposed Use: Monitor Drilling Date: Started: 8/30/2010 Completed: 9/3/2010 Monitor Drilling Mathod: Hollow Stem Auger Borehole Other: 20/40 Silica Sand Monitor Annular Seal Data: 1st Interval: From 0 ft to 2 ft with Concrete (#sacks and material) 2nd Interval: From 0 ft to 2 ft with Bentonite (#sacks and material) 2nd Interval: From 0 ft to 2 ft with Bentonite (#sacks and material) 3rd Interval: From 0 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: From 2 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: From 2 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: From 2 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: From 2 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: From 2 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: No Data Weiter Level: Static level: No Data Approved by Variance: No Data Method of Verification: No Data Weiter Level: Static level: No Data Aproved by Variance: No Data Method of Verification: No Data Yepe Of Pump: No Data No Data Method of Ind	Owner:	SCPP	Owner Well #:	GB1		
Riesel, TX Longitude:: 096° 57' 15" W Well County: No Data GPS Brand Used: No Data Type of Work: New Well Proposed Use: Monitor Drilling Date: Started: 8/30/2010 Completed: 9/3/2010 Monitor Drilling Method: Hollow Stem Auger Monitor Borehole Other: 20/40 Silica Sand Sorehole Completion: Annular Seal Data: 1st Interval: From 0 ft to 2 ft with Concrete (#sacks and material) 2nd Interval: From 0 ft to 2 ft with Bentonite (#sacks and material) 3rd Interval: From 0 ft to 2 ft with Concrete (material) 3rd Interval: From 0 ft to 2 ft with Concrete (material) 3rd Interval: From 0 ft to 2 ft with Concrete (material) 3rd Interval: From 0 ft to 2 ft with Concrete (material) 3rd Interval: From 0 ft to 2 ft with Concrete (material) 3rd Interval: From 0 ft to 2 ft with Concrete (material) 3rd Interval: From 0 ft to 2 ft with Concrete (material) 3rd Interval: From 0 ft to 2 ft with Concrete (material) 3rd Interval: From 0 ft to 2 ft with Concrete (material) 3rd Interval: From 0 ft to 2 ft with Concrete (material) 3rd Interval: From 0 ft to 2 ft with Concrete (material) 3rd Interval: From 0 ft to 2 ft with Concrete (material) 3rd Interval: From 0 ft to 2 ft with Concrete (material) 3rd Interval: From 0 ft to 2 ft with Concrete (material) 3rd Interval: From 0 ft to 2 ft with Concrete (material) 3rd Interval: From 0 ft to 2 ft with Concrete (material) 3rd Interval: From 0 ft to 2 ft with Concrete (material) 3rd Interval: From 0 ft to 2 ft with Concrete (material) 3rd Interval: No Data Water Level: Static level: No	Address:		Grid #:	39-33-2		
Elevation: No Data GPS Brand Used: No Data Type of Work: New Well Proposed Use: Monitor Type of Work: New Well Proposed Use: Monitor Drilling Date: Started: 8/30/2010 Completed: 9/30/2010 Diameter of Hole: Diameter: 8.25 in From Surface To 27 ft Drilling Method: Hollow Stem Auger Borehole Other: 20/40 Silica Sand Completion: Annular Seal Data: 1st Interval: From 0 ft to 2 ft with Concrete (#sacks and material) 3rd Interval: From 2 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: From 2 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: From 2 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: No Data Method Used: Gravity Cemented By: Graw Distance to Septic Field or other Concentrated Contamination: No Data Distance to Septic Field or other Concentrated Contamination: No Data Distance to Septic Field or other Concentrated Contamination: No Data Distance to Septic Field or other Concentrated Contamination: No Data Distance to Septic Field or other Concentrated Contamination: No Data Distance to Septic Field or other Concentrated Contamination: No Data Approved by Variance: No Data Approved by Variance: No Data Approved by Variance: No Data Plugging Info: No Data No Data No Data Neel Tests: No Data Neel Tests: No Data Depth of Strata: No Data Depth of Strata: No Data Did the driller Knowingly penetrate any strata which contained undesirable constituents: No Data Suffication Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that teach and all of the statements herein are true and correct. The driller Supervision and that teach and all of the statements herein are true and correct. The driller Supervision and that teach and all of the statements herein are true and correct. The driller Supervision and that teach and all of the statements herein are true and correct. The driller Supervision and that teach and all of the statements herein are true and correct. The driller Supervision and that teach			Latitude:	31° 28' 02" N		
Type of Work: New Well Proposed Use: Monitor Drilling Date: Started: 8/30/2010 Completed: 9/3/2010 Diameter of Hole: Diameter: 8.25 in From Surface To 27 ft Drilling Method: Hollow Stem Auger Borehole Other: 20/40 Silica Sand Borehole Other: 20/40 Silica Sand Completion: Annular Seal Data: 1st Interval: From 0 ft to 2 ft with Concrete (#sacks and material) Annular Seal Data: 1st Interval: From 2 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: No Data Method Used: Gravity Cemented By: Grave Distance to Septic Field or other Concentrated Contamination: No Data Distance to Septic Field or other Concentrated Contamination: No Data Method of Verification: No Data Approved by Variance: No Data Approved by Variance: No Data Surface Surface Sleeve Installed Completion: Valer Level: Static level: No Data Water Level: Static level: No Data Plugging Info: Casing or Cement/Bentonite left in well: No Data Well Tests: No Data Water Quality: Type of Water: No Data Method of Strafa: No Data Depti of Strafa: No Data Other driller knowingly penetrate any strata which cont	Well County:	McLennan	Longitude:	096° 57' 15" W		
Drilling Date: Started: 8/30/2010 Completed: 9/3/2010 Diameter of Hole: Diameter: 8.25 in From Surface To 27 ft Hollow Stem Auger Borehole Other: 20/40 Silica Sand Completion: Annular Seal Data: 1st Interval: From 0 ft to 2 ft with Concrete (#sacks and material) 2nd Interval: From 2 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: From 2 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: From 2 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: From 2 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: From 2 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: From 2 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: From 2 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: From 2 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: No Data Method Used: Gravity Cemented By: Crew Distance to Property Line: No Data Approved by Variance: No Data Approved by Variance: No Data Approved by Variance: No Data Artesian flow: No Data Packers: No Data Packers: No Data Packers: No Data Packers: No Data Water Quality: Type of Water: No Data Distance No Data Method I Strata: No Data Chemical Analysis Made: No Data Dist the driller certified that the driller drilled this well (or the well was drilled constituents: No Data Chemical Analysis Made: No Data Distate driller certified that the driller drilled this well (or the well was drilled constituents: No Data Chemical Analysis Made: No Data Dist the driller certified that the driller drilled this well (or the well was drilled constituents: No Data Chemical Analysis Made: No Data Dist the driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are frue and correct. The driller completion and resubmittal.	Elevation:	No Data	GPS Brand Used:	No Data		
Completed: 9/3/2010 Diameter of Hole: Diameter: 8.25 in From Surface To 27 ft Drilling Method: Holtow Stem Auger Borehole Other: 20/40 Silica Sand Completion: Annular Seal Data: Annular Seal Data: 1st Interval: From 0 ft to 2 ft with Concrete (#sacks and material) 2nd Interval: From 2 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: No Data Method Used: Gravity Cemented By: Crew Distance to Septic Field or other Concentrated Contamination: No Data Distance to Property Line: No Data Approved by Variance: No Data Surface Surface Sleve Installed Completion: Static level: No Data Artesian flow: No Data Water Level: Static level: No Data Artesian flow: No Data Water Level: No Data Well Tests: No Data Well Tests: No Data Depth of Strata: No Data Dieth of Strata: No Data Vater Quality: Type of Water: No Data Depth of Strata: No Data Vater Cuality: Type of Water: No Data Depth of Strata: No Data Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller completion and resubmittal.	Type of Work:	New Well	Proposed Use:	Monitor		
Drilling Method: Hollow Stem Auger Dorilling Method: Other: 20/40 Silica Sand Completion: Annular Seal Data: Annular Seal Data: 1st Interval: From 0 ft to 2 ft with Concrete (#sacks and material) 2nd Interval: No Data Method Used: Gravity Cemented By: Grew Distance to Septic Field or other Concentrated Contamination: No Data Distance to Property Line: No Data Method of Varifaction: No Data Approved by Variance: No Data Surface Surface Sleeve Installed Completion: Artesian flow: No Data Artesian flow: No Data Aversion flow: No Data Artesian flow: No Data Packers: No Data Plugging Info: Casing or Cement/Bentonite left in well: No Data Ype Of Pump: No Data Well Tests: No Data Mater Quality: Type of Water: No Data Dig the driller knowingly penetrate any strata which contained undesirable constituents: No Data Mater Quality: Type of Water: No Data Did the driller knowingly penetrate any strata which contained undesirable constituents: No Data Certification Data: The driller confiled that the driller drilled this well (or the well was drilled under the driller's direat supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and resubmittal.	Drilling Date:					
Borehole Completion: Other: 20/40 Silica Sand Annular Seal Data: 1st Interval: From 0 ft to 2 ft with Concrete (#sacks and material) 2nd Interval: No Data Method Used: Gravity Cemented By: Crew Distance to Septic Field or other Concentrated Contamination: No Data Distance to Septic Field or other Concentrated Contamination: No Data Method Used: Gravity Cemented By: Crew Distance to Property Line: No Data Method of Varifaction: No Data Method of Varifaction: No Data Surface Completion: Surface Sleeve Installed Water Level: Static level: No Data Artesian flow: No Data Water Level: Static level: No Data Artesian flow: No Data Plugging Info: Casing or Cement/Bentonite left in well: No Data Depth of Strata: No Data Well Tests: No Data Depth of Strata: No Data Did the driller contified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and resubmittal.	Diameter of Hole	e: Diameter: 8.25 in From Surface T	o 27 ft			
Completion: Annular Seal Data: 1st Interval: From 0 ft to 2 ft with Concrete (#sacks and material) 2nd Interval: No Data Method Used: Gravity Cemented By: Crew Distance to Septic Field or other Concentrated Contamination: No Data Method 0 Septic Field or other Concentrated Contamination: No Data Method of Verification: No Data Method of Verification: No Data Approved by Variance: No Data Surface Surface Sleeve Installed Completion: Static level: No Data Water Level: Static level: No Data Plugging Info: Casing or Cement/Bentonite left in well: No Data Pugging Info: Casing or Cement/Bentonite left in well: No Data Veli Tests: No Data Veli Tests: No Data Did the driller knowingly penetrate any strata which contained undesirable constituents: No Data Chemical Analysis Made: No Data Did the driller knowingly penetrate any strata which contained undesirable constituents: No Data Chemical Analysis Made: No Data Did the driller knowingly penetrate any strata which contained undesirable constituents: No Data Chemical Analysis Made: No Data Did the driller knowingly penetrate any strata which contained undesirable constituents: No Data Chemical Analysis Made: No Dat	Drilling Method:	Hollow Stem Auger				
2nd Interval: From 2 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: No Data Method Used: Gravity Cemented By: Crew Distance to Septic Field or other Concentrated Contamination: No Data Distance to Property Line: No Data Method of Verification: No Data Approved by Variance: No Data Artesian flow: No Data Packers: No Data Plugging Info: Casing or Cement/Bentonite left in well: No Data Type Of Pump: No Data Well Tests: No Data Vell Tests: No Data Chemical Analysis Made: No Data Chemical Analysis Made: No Data Clearing or Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understod that failure to complete the required items will result in the log(s) being returned for completion and resubmittal.		Other: 20/40 Silica Sand				
Completion: Water Level: Static level: No Data Artesian flow: No Data Packers: No Data Plugging Info: Casing or Cement/Bentonite left in well: No Data Type Of Pump: No Data Well Tests: No Data Water Quality: Type of Water: No Data Depth of Strata: No Data Water Quality: Type of Water: No Data Depth of Strata: No Data Chemical Analysis Made: No Data Did the driller knowingly penetrate any strata which contained undesirable constituents: No Data Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and resubmittal. Company Total Support Services	Annular Sear Da	2nd Interval: From 2 ft to 14 ft with Bentonite (#sacks and material) 3rd Interval: No Data Method Used: Gravity Cemented By: Crew Distance to Septic Field or other Concentrated Contamination: No Data Distance to Property Line: No Data Method of Verification: No Data				
Artesian flow: No Data Packers: No Data Plugging Info: Casing or Cement/Bentonite left in well: No Data Type Of Pump: No Data Well Tests: No Data Water Quality: Type of Water: No Data Depth of Strata: No Data Depth of Strata: No Data Did the driller knowingly penetrate any strata which contained undesirable constituents: No Data Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and resubmittal. Company Total Support Services	Surface Completion:	Surface Sleeve Installed				
Plugging Info: Casing or Cement/Bentonite left in well: No Data Type Of Pump: No Data Well Tests: No Data Water Quality: Type of Water: No Data Depth of Strata: No Data Depth of Strata: No Data Did the driller knowingly penetrate any strata which contained undesirable constituents: No Data Did the driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and resubmittal. Company Total Support Services	Water Level:					
Type Of Pump: No Data Well Tests: No Data Water Quality: Type of Water: No Data Depth of Strata: No Data Depth of Strata: No Data Chemical Analysis Made: No Data Did the driller knowingly penetrate any strata which contained undesirable constituents: No Data Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and resubmittal. Company Total Support Services	Packers:	No Data				
Well Tests: No Data Water Quality: Type of Water: No Data Depth of Strata: No Data Chemical Analysis Made: No Data Did the driller knowingly penetrate any strata which contained undesirable constituents: No Data Did the driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and resubmittal. Company Total Support Services	Plugging Info:	Casing or Cement/Bentonite left in	well: No Data			
Water Quality: Type of Water: No Data Depth of Strata: No Data Chemical Analysis Made: No Data Did the driller knowingly penetrate any strata which contained undesirable constituents: No Data Did the driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and resubmittal. Company Total Support Services	Type Of Pump:	No Data				
Depth of Strata: No Data Chemical Analysis Made: No Data Did the driller knowingly penetrate any strata which contained undesirable constituents: No Data Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and resubmittal. Company Total Support Services	Well Tests:	No Data				
supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and resubmittal. Company Total Support Services	Water Quality:	Depth of Strata: No Data Chemical Analysis Made: No Data		able constituents: No Dat a		
	Certification Data	supervision) and that each and all o understood that failure to complete	understood that failure to complete the required items will result in the log(s) being returned for			
	Company Information:					

Page	2	of 2	
------	---	------	--

	Austin , TX 78708
Driller License Number:	54611
Licensed Well Driller Signature:	Brian Kern
Registered Driller Apprentice Signature:	No Data
Apprentice Registration Number:	No Data
Comments:	No Data

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking number (Tracking #231664) on your written request.

Texas Department of Licensing & Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

DESC. & COLOR OF FORMATION MATERIAL

From (ft) To (ft) Description 0 to 3 Brown Gravel Sand and Clay 3 to 26 Tan and Gray Clay 26 to 27 Gray Shale CASING, BLANK PIPE & WELL SCREEN DATA

Dia. New/Used Type Setting From/To 2 New PVC Riser 0/16 Sched. 40 2 New PVC Screen 16/26 0.010 Slotted

STATE OF TEXAS WELL REPORT for Tracking #231665				
Owner: SCPP Owner Well #: GB4				GB4
Address:		161 Rattlesnake Rd. Grid #: 39-33-2 iesel , TX 39-33-2 39-33-2		
Well Location:	: Same Riesel , TX		Latitude:	31° 27' 59" N
Well County:	unty: McLennan		Longitude:	096° 57' 19" W
Elevation:	No	Data	GPS Brand Used:	No Data
Type of Work:	Ne	w Well	Proposed Use:	Monitor
Drilling Date:		Started: 8/30/2010 Completed: 9/3/2010		
Diameter of Hol	le:	Diameter: 8.25 in From Surface To 16	ft	
Drilling Method:	:	Hollow Stem Auger		
Borehole Completion:		Other: 20/40 Silica Sand		
Annular Seal Data: 1st Interval: From 0 ft to 1 ft with Concrete (#sacks and material) 2nd Interval: From 1 ft to 3 ft with Bentonite (#sacks and material) 3rd Interval: No Data Method Used: Gravity Cemented By: Crew Distance to Septic Field or other Concentrated Contamination: No Data Distance to Property Line: No Data Method of Verification: No Data Approved by Variance: No Data			ta	
Surface Completion:		Surface Sleeve Installed		
Water Level:		Static level: No Data Artesian flow: No Data		
Packers:		No Data		
Plugging Info:		Casing or Cement/Bentonite left in well:	No Data	
Type Of Pump:		No Data		
Well Tests:		No Data		
Water Quality:		Type of Water: No Data Depth of Strata: No Data Chemical Analysis Made: No Data Did the driller knowingly penetrate any s	strata which contained undesire	able constituents: No Data
Certification Dat	a:	The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and resubmittal.		
Company Information:		Total Support Services P.O. Box 81621		

	Austin , TX 78708
Driller License Number:	54611
Licensed Well Driller Signature:	Brian Kern
Registered Driller Apprentice Signature:	No Data
Apprentice Registration Number:	No Data
Comments:	No Data

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking number (Tracking #231665) on your written request.

Texas Department of Licensing & Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

DESC. & COLOR OF FORMATION MATERIAL

From (ft) To (ft) Description 0 to 11 Tan and Gray Clay 11 to 16 Gray Shale

CASING, BLANK PIPE & WELL SCREEN DATA

Dia. New/Used Type Setting From/To 2 New PVC Riser 0/5 Sched. 40 2 New PVC Screen 5/15 0.010 Slotted

STATE OF TEXAS WELL REPORT for Tracking #231670					
Owner:	er: SCPP Owner Well #: GB5				
Address:	2161 Rattlesnake Rd. Riesel , TX	Grid #:	39-33-2		
Well Location:	Same Riesel , TX	Latitude:	31° 28' 01" N		
Well County:	McLennan	Longitude:	096° 57' 20'' W		
Elevation:	No Data	GPS Brand Used:	No Data		
Type of Work:	New Well	Proposed Use:	Environmental Soil Boring		
Drilling Date:	Started: 8/30/2010 Completed: 9/3/2010				
Diameter of Hole:	Diameter: 8.25 in From Surface To 20 ft				
Drilling Method:	Hollow Stem Auger				
Borehole Completion:	Open Hole				
Annular Seal Data	a: 1st Interval: From 0 ft to 2 ft with Concrete 2nd Interval: From 2 ft to 20 ft with Bentoni 3rd Interval: No Data Method Used: Gravity Cemented By: Crew Distance to Septic Field or other Concentrate Distance to Property Line: No Data Method of Verification: No Data Approved by Variance: No Data	te (#sacks and material)			
Surface Completion:	No Data				
Water Level:	Static level: No Data Artesian flow: No Data				
Packers:	No Data				
Plugging Info:	The well was plugged within 48 hours. Casing or Cement/Bentonite left in well: No D	ata			
Type Of Pump:	No Data				
Well Tests:	No Data				
Water Quality:	Type of Water: No Data Depth of Strata: No Data Chemical Analysis Made: No Data Did the driller knowingly penetrate any strata	which contained undesirable of	constituents: No Data		
Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for completion and resubmittal.					

Company Information:	Total Support Services P.O. Box 81621 Austin , TX 78708
Driller Li ce nse Number:	54611
License d Well Driller S ig nature:	Brian Kern
Registered Driller Apprentice Signature:	No Data
Apprentice Registration Number:	No Data
Comments:	No Data

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking number (Tracking #231670) on your written request.

Texas Department of Licensing & Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

DESC. & COLOR OF FORMATION MATERIAL

CASING, BLANK PIPE & WELL SCREEN DATA

From (ft) To (ft) Description 0 to 19 Tan and Gray Clay 19 to 20 Gray Shale No Data

STATE OF TEXAS WELL REPORT for Tracking #408222			
Owner:	Sandy Creek Services, LLC	Owner Well #:	Location 3 (GB-6)
Address:	P.O. Box 370 Riesel, TX 76682	Grid #:	39-33-2
Well Location:	2161 Rattlesnake Rd	Latitude:	31° 28' 03.33" N
	Riesel, TX 76682	Longitude:	096° 57' 17.91" W
Well County:	McLennan	Elevation:	453 ft. above sea level
Type of Work:	New Well	Proposed Use:	Environmental Soil Boring

Drilling Start Date: 9/23/2015 Drilling End Date: 9/23/2015

	Diameter (in.) Top Dep	th (ft.)	Bottom Depth (ft.)
Borehole:	8.15	0		25
Drilling Method:	Hollow Stem Aug	ger		
Borehole Completion:	Plugged			
	Top Depth (ft.)	Bottom Depth (ft.)	Des	scription (number of sacks & material)
Annular Seal Data:	0	25	CE	MENT BENTONITE GROUT
Seal Method: Tr	remie	Dist	ance to Pro	operty Line (ft.): No Data
Sealed By: D	riller			c Field or other htamination (ft.): No Data
		Di	stance to S	Septic Tank (ft.): No Data
			Method	d of Verification: No Data
Surface Completion:	No Data		Su	Irface Completion by Driller
Water Level:	No Data			
Packers:	No Data			
Type of Pump:	No Data			
Well Tests:	No Test Data Sp	pecified		

		Strata Depth (ft.)	Water Type	
Water Qu	uality:	No Data	No Data	
			Chemical Analysis Made:	Νο
		Did the driller	knowingly penetrate any strata which contained injurious constituents?:	Νο
	tion Data:	driller's direct supervi correct. The driller u the report(s) being re	at the driller drilled this well (or the well ision) and that each and all of the state inderstood that failure to complete the re turned for completion and resubmittal.	ments herein are true and
Company	y Information	EBEST DRILLING S	ERVICES, INC.	
		P.O. BOX 845 FRIENDSWOOD, T	⁻ X 77549	
Driller Na	ame:	Lawrence Tobola	License N	umber: 3026
Commen				
Commen	its:	No Data		
	I	No Data .ithology: DR OF FORMATION M/		Casing: WELL SCREEN DATA
	I	.ithology:		

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

5

10

14

23

10

14

23

25

CLAY, drk. brown/black

CLAYSTONE, drk. gray

CLAY, drk. brown

CLAY, brown

	STATE OF TEXAS WELL REPORT for Tracking #408220			
Owner:	Sandy Creek Services, LLC	Owner Well #:	Location 5 (GB-7)	
Address:	P.O. Box 370 Riesel, TX 76682	Grid #:	39-33-2	
Well Location:	2161 Rattlesnake Rd.	Latitude:	31° 28' 00.11" N	
	Riesel, TX 76682	Longitude:	096° 57' 14.95" W	
Well County:	McLennan	Elevation:	441 ft. above sea level	
Type of Work:	New Well	Proposed Use:	Monitor	

Drilling Start Date: 9/23/2015 Drilling End Date: 9/23/2015

	Diameter (in	.) Top Dep	th (ft.)	Bottom Dep	th (ft.)
Borehole:	8.25	0		25	
Drilling Method:	Hollow Stem Au	ger			
Borehole Completion:	Plugged				
	Top Depth (ft.)	Bottom Depth (ft.)	De	escription (number of sa	acks & material)
Annular Seal Data:	0	25	CE	EMENT BENTONI	TE GROUT
Seal Method: Tr	emie	Dist	ance to P	roperty Line (ft.): I	No Data
Sealed By: Driller		Distance to Septic Field or other concentrated contamination (ft.): No Data			
		Di	stance to	Septic Tank (ft.):	No Data
			Metho	d of Verification:	No Data
Surface Completion:	No Data		S	urface Completic	on by Driller
Water Level:	No Data				
Packers:	No Data				
Type of Pump:	No Data				
Well Tests:	No Test Data S	pecified			
	Descript	ion (number of sacks & mater	ial)	Top Depth (ft.)	Bottom Depth (ft.)
Plug Information:	CEME	NT BENTONITE GROU	ΙТ	0	25

		Strata Depth (ft.)	Water Type	
Water Q	Juality.	No Data	No Data	
Water G	tuanty.	NO Data	No Data	
			Chemical Analysis Made:	No
		Did the driller	knowingly penetrate any strata which contained injurious constituents?:	Νο
Certifica	ation Data:	driller's direct superv correct. The driller u	nat the driller drilled this well (or the we ision) and that each and all of the state nderstood that failure to complete the eturned for completion and resubmittal	ements herein are true and required items will result in
Compar	ny Information	n: BEST DRILLING S	SERVICES, INC.	
		P.O. BOX 845 FRIENDSWOOD, 1	TX 77549	
Driller N	ame:	Lawrence Tobola	License	Number: 3026
Comme	nts:	30 ft west and 10 f	ft North of MW-2	
DESCRIPT		Lithology: DR OF FORMATION M		Casing: WELL SCREEN DATA
Top (ft.)	Bottom (ft.)	Description	Dia. (in.) New/Used Type	Setting From/To (ft.)
0	3	Gravelly fill	No Data	
3	9	CLAY, It. brown/brow	'n	
9	13	CLAY, drk. brown		
13	19	CLAY, brown		

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

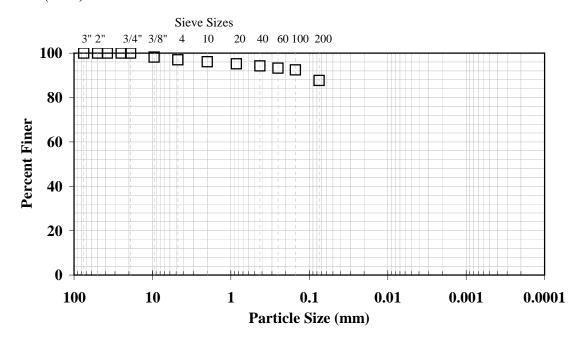
Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

19

25

CLAYEYSTONE, drk. gray


Particle Size Analysis for Soils

Client: Geosyntec Consultants

Project: TXL0084-03 Sandy Creek Services (SCS) Leachate Evaporation Pond Design Sample: GB-1 (5-6 ft)
 TRI Log#:
 E2347-08-03

 Test Method:
 ASTM D 422

 Test Date:
 09/13/10

Sieve Analysis			
Sieve Size	Percentage Passing		
Sieve Size	(%)		
3 in.	100.0		
2 in.	100.0		
1.5 in.	100.0		
1 in.	100.0		
3/4 in.	100.0		
3/8 in.	98.2		
No. 4 (4.75 mm)	97.0		
No. 10 (2.00 mm)	96.1		
No. 20 (850 µm)	95.1		
No. 40 (425 µm)	94.2		
No. 60 (250 µm)	93.2		
No. 100 (150 µm)	92.4		
No. 200 (75 µm)	87.7		

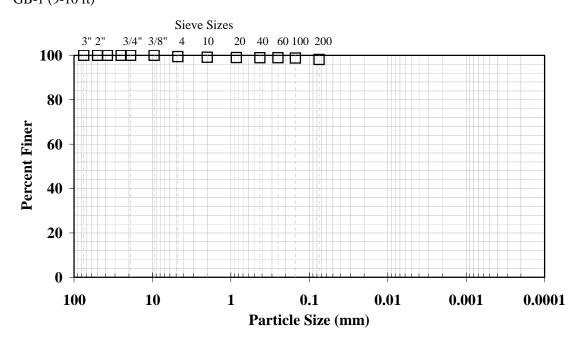
Notes: Soil classifies as a fat clay (CH) in accordance with ASTM D 2487.

The as received moisture content was 20.46 % as determined by ASTM D 2216.

Plastic Index (ASTM D 4318) Results			
Liquid Limit	64		
Plastic Limit	19		
Plastic Index	45		
Notes: Specimen was air dried, 3 point Liquid			
Limit procedure was used.			

Cheng-Wei Chen, 09/14/10 Quality Review/Date Tested by: Adam Lewis & Olga Vasquez

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.


Particle Size Analysis for Soils

Client: Geosyntec Consultants

Project: TXL0084-03 Sandy Creek Services (SCS) Leachate Evaporation Pond Design Sample: GB-1 (9-10 ft)
 TRI Log#:
 E2347-08-03

 Test Method:
 ASTM D 422

 Test Date:
 09/13/10

Sieve Analysis			
Sieve Size	Percentage Passing		
Sieve Size	(%)		
3 in.	100.0		
2 in.	100.0		
1.5 in.	100.0		
1 in.	100.0		
3/4 in.	100.0		
3/8 in.	100.0		
No. 4 (4.75 mm)	99.4		
No. 10 (2.00 mm)	99.2		
No. 20 (850 µm)	99.0		
No. 40 (425 µm)	98.9		
No. 60 (250 µm)	98.9		
No. 100 (150 µm)	98.7		
No. 200 (75 µm)	98.1		

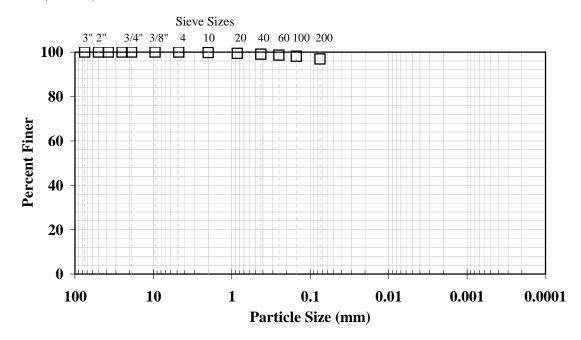
Notes: Soil classifies as a fat clay (CH) in accordance with ASTM D 2487.

The as received moisture content was 22.31 % as determined by ASTM D 2216.

Plastic Index (ASTM D 4318) Results			
Liquid Limit	67		
Plastic Limit	20		
Plastic Index	47		
Notes: Specimen was air dried, 3 point Liquid Limit procedure was used.			

Cheng-Wei Chen, 09/14/10 Quality Review/Date Tested by: Adam Lewis & Olga Vasquez

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.



Particle Size Analysis for Soils

Client: Geosyntec Consultants

Project: TXL0084-03 Sandy Creek Services (SCS) Leachate **Evaporation Pond Design** Sample: GB-1 (24-25 ft)

TRI Log#: E2347-08-03 Test Method: ASTM D 422 Test Date: 09/13/10

Sieve Analysis			
Sieve Size	Percentage Passing		
	(%)		
3 in.	100.0		
2 in.	100.0		
1.5 in.	100.0		
1 in.	100.0		
3/4 in.	100.0		
3/8 in.	100.0		
No. 4 (4.75 mm)	100.0		
No. 10 (2.00 mm)	99.8		
No. 20 (850 µm)	99.4		
No. 40 (425 µm)	99.1		
No. 60 (250 µm)	98.6		
No. 100 (150 µm)	98.1		
No. 200 (75 µm)	96.9		

Notes:

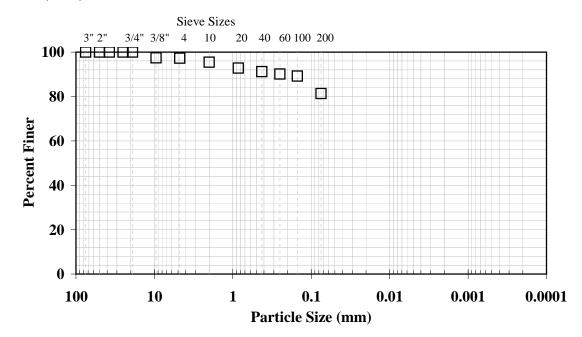
Soil classifies as a fat clay (CH) in accordance with ASTM D 2487.

Plastic Index (ASTM D 4318) Results			
Liquid Limit	64		
Plastic Limit	22		
Plastic Index	42		
Notes: Specimen was air dried, 3 point Liquid			
Limit procedure was used.			

Cheng-Wei Chen, 09/14/10 Quality Review/Date Tested by: Adam Lewis & Olga Vasquez

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

9063 Bee Caves Road
Austin, TX 78733-6201
(512) 263-2101
(512) 263-2558
1-800-880-TEST
VI.B-137



Client: Geosyntec Consultants

Project: TXL0084-03 Sandy Creek Services (SCS) Leachate Evaporation Pond Design Sample: GB-2 (4-5 ft)
 TRI Log#:
 E2347-08-03

 Test Method:
 ASTM D 422

 Test Date:
 09/13/10

Sieve Analysis	
Sieve Size	Percentage Passing
	(%)
3 in.	100.0
2 in.	100.0
1.5 in.	100.0
1 in.	100.0
3/4 in.	100.0
3/8 in.	97.4
No. 4 (4.75 mm)	97.3
No. 10 (2.00 mm)	95.5
No. 20 (850 µm)	92.8
No. 40 (425 µm)	91.2
No. 60 (250 µm)	90.2
No. 100 (150 µm)	89.2
No. 200 (75 µm)	81.3

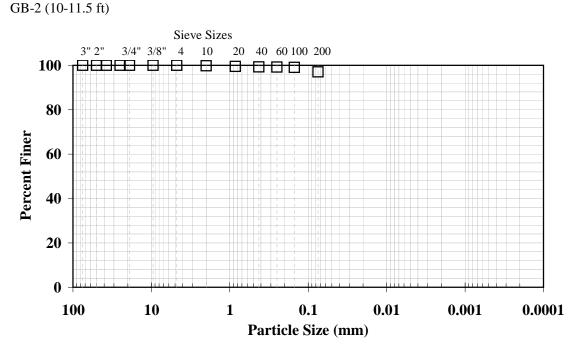
Notes: Soil classifies as a fat clay with sand (CH) in accordance with ASTM D 2487.

The as received moisture content was 17.44 % as determined by ASTM D 2216.

Plastic Index (ASTM D 4318) Results		
Liquid Limit	57	
Plastic Limit	22	
Plastic Index	35	
Notes: Specimen was air dried, 3 point Liquid		
Limit procedure was used.		

Cheng-Wei Chen, 09/14/10

Quality Review/Date Tested by: Adam Lewis & Olga Vasquez



Client: Geosyntec Consultants Project: TXL0084-03 Sandy Creek Services (SCS) Leachate

Evaporation Pond Design

Sample:

TRI Log#: E2347-08-03 Test Method: ASTM D 422 Test Date: 09/13/10

Sieve Analysis	
Sieve Size	Percentage Passing
Sieve Size	(%)
3 in.	100.0
2 in.	100.0
1.5 in.	100.0
1 in.	100.0
3/4 in.	100.0
3/8 in.	100.0
No. 4 (4.75 mm)	100.0
No. 10 (2.00 mm)	99.8
No. 20 (850 µm)	99.5
No. 40 (425 µm)	99.3
No. 60 (250 µm)	99.2
No. 100 (150 µm)	99.1
No. 200 (75 µm)	97.0

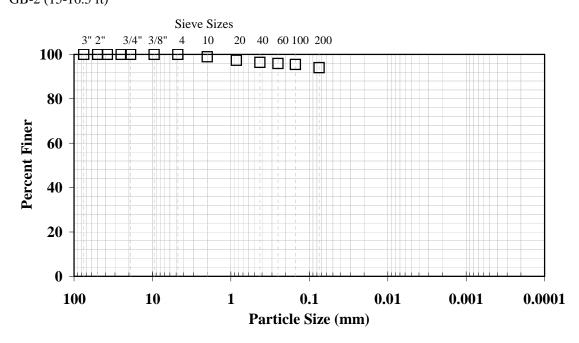
Notes:

Soil classifies as a fat clay (CH) in accordance with ASTM D 2487.

Plastic Index (ASTM D 4318) Results	
Liquid Limit	53
Plastic Limit	24
Plastic Index	29
Notes: Specimen was air dried, 3 point Liquid	
Limit procedure was used.	

Cheng-Wei Chen, 09/20/10 Quality Review/Date

Tested by: Adam Lewis & Olga Vasquez



Client: Geosyntec Consultants

Project: TXL0084-03 Sandy Creek Services (SCS) Leachate Evaporation Pond Design Sample: GB-2 (15-16.5 ft)
 TRI Log#:
 E2347-08-03

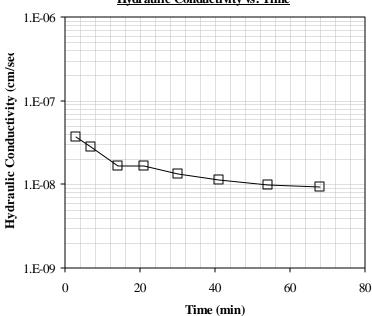
 Test Method:
 ASTM D 422

 Test Date:
 09/13/10

Sieve Analysis	
Sieve Size	Percentage Passing (%)
3 in.	100.0
2 in.	100.0
1.5 in.	100.0
1 in.	100.0
3/4 in.	100.0
3/8 in.	100.0
No. 4 (4.75 mm)	100.0
No. 10 (2.00 mm)	98.9
No. 20 (850 µm)	97.3
No. 40 (425 µm)	96.4
No. 60 (250 µm)	95.9
No. 100 (150 µm)	95.5
No. 200 (75 µm)	94.0

Notes: Soil classifies as a fat clay (CH) in accordance with ASTM D 2487.

Plastic Index (ASTM D 4318) Results	
Liquid Limit	66
Plastic Limit	24
Plastic Index	42
Notes: Specimen was air dried, 3 point Liquid	
Limit procedure was used.	


Cheng-Wei Chen, 09/20/10 Quality Review/Date

Tested by: Adam Lewis & Olga Vasquez

Hydraulic Conductivity

- Client: Geosyntec Consultants
- Project: TXL0084-03 Sandy Creek Services (SCS) Leachate Evaporation Pond Design
- Sample: GB-2 (15-16.5 ft)

Hydraulic Conductivity vs. Time

Note: A B-value of 0.96 was achieved for the undisturbed specimen. Permeation measurements were made with a mercury U-tube. The effective confining pressure was 5 psi per test request.
 TRI Log#:
 E2347-08-03

 Test Method:
 ASTM D 5084, Method F

 Test Date:
 09/15/10

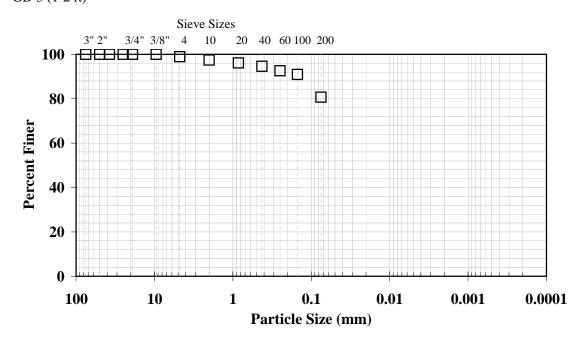
INITIAL VALUES	
Avg. Sample Height (in)	2.02
Avg. Sample Diameter (in)	2.85
Wet Weight (g)	403.0
Area (in ²)	6.38
Volume (cc)	210.7
Initial Water Content (%)	23.6
Total Density (pcf)	119.4
Dry Density (pcf)	96.6
G _s (assumed)	2.65
Degree of Saturation (%)	87.9
Void Ratio	0.71
Porosity	0.42
1 Pore Volume (cc)	87.6

Hydraulic Conductivity

Time (min)	k at 20 deg C (cm/sec)
3	3.65E-08
7	2.80E-08
14	1.64E-08
21	1.68E-08
30	1.33E-08
41	1.12E-08
54	9.70E-09
68	9.25E-09
Average ¹ :	1.1E-08

1: Average corrected hydraulic conductivity (k_{20}) is obtained from the last 4 average readings.

Cheng-Wei Chen, 09/20/10 Analysis & Quality Review/Date Tested by: David Gonzales



Client: Geosyntec Consultants

Project: TXL0084-03 Sandy Creek Services (SCS) Leachate Evaporation Pond Design Sample: GB-3 (1-2 ft)
 TRI Log#:
 E2347-08-03

 Test Method:
 ASTM D 422

 Test Date:
 09/13/10

Sieve Analysis	
Sieve Size	Percentage Passing
Sieve Size	(%)
3 in.	100.0
2 in.	100.0
1.5 in.	100.0
1 in.	100.0
3/4 in.	100.0
3/8 in.	100.0
No. 4 (4.75 mm)	98.9
No. 10 (2.00 mm)	97.4
No. 20 (850 µm)	96.1
No. 40 (425 µm)	94.6
No. 60 (250 µm)	92.6
No. 100 (150 µm)	90.9
No. 200 (75 µm)	80.7

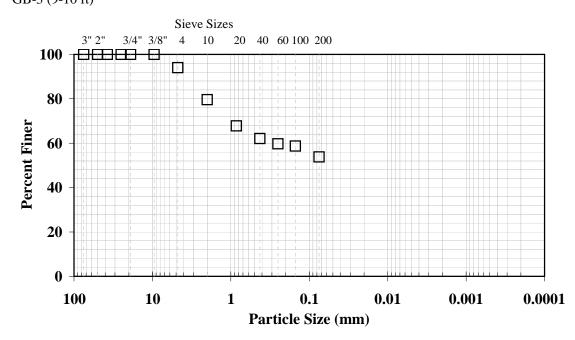
Notes: Soil classifies as a fat clay with sand (CH) in accordance with ASTM D 2487.

The as received moisture content was 13.56 % as determined by ASTM D 2216.

Plastic Index (ASTM D 4318) Results		
Liquid Limit	51	
Plastic Limit	20	
Plastic Index	31	
Notes: Specimen was air dried, 3 point Liquid		
Limit procedure was used.		

Cheng-Wei Chen, 09/14/10 Quality Review/Date

Tested by: Adam Lewis & Olga Vasquez



Client: Geosyntec Consultants

Project: TXL0084-03 Sandy Creek Services (SCS) Leachate Evaporation Pond Design Sample: GB-3 (9-10 ft)
 TRI Log#:
 E2347-08-03

 Test Method:
 ASTM D 422

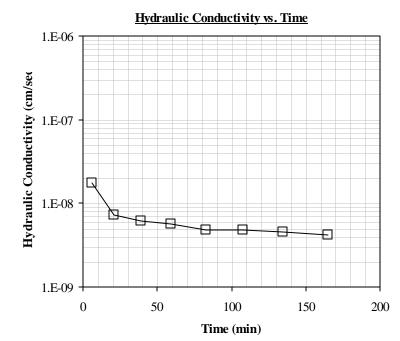
 Test Date:
 09/13/10

Sieve Analysis	
Sieve Size	Percentage Passing
Sieve Size	(%)
3 in.	100.0
2 in.	100.0
1.5 in.	100.0
1 in.	100.0
3/4 in.	100.0
3/8 in.	100.0
No. 4 (4.75 mm)	94.0
No. 10 (2.00 mm)	79.6
No. 20 (850 µm)	67.8
No. 40 (425 µm)	62.1
No. 60 (250 µm)	59.7
No. 100 (150 µm)	58.7
No. 200 (75 µm)	53.8

Notes: Soil classifies as a sandy fat clay (CH) in accordance with ASTM D 2487.

> The as received moisture content was 18.39 % as determined by ASTM D 2216.

Plastic Index (ASTM D 4318) Results		
Liquid Limit	58	
Plastic Limit	17	
Plastic Index	41	
Notes: Specimen was air dried, 3 point Liquid		
Limit procedure was used.		


Cheng-Wei Chen, 09/14/10

Quality Review/Date Tested by: Adam Lewis & Olga Vasquez

Hydraulic Conductivity

- Client: Geosyntec Consultants
- Project: TXL0084-03 Sandy Creek Services (SCS) Leachate Evaporation Pond Design
- Sample: GB-3 (10-11.5 ft)

Note: A B-value of 0.95 was achieved for the undisturbed specimen. Permeation measurements were made with a mercury U-tube. The effective confining pressure was 5 psi per test request.

 TRI Log#:
 E2347-08-03

 Test Method:
 ASTM D 5084, Method F

 Test Date:
 09/15/10

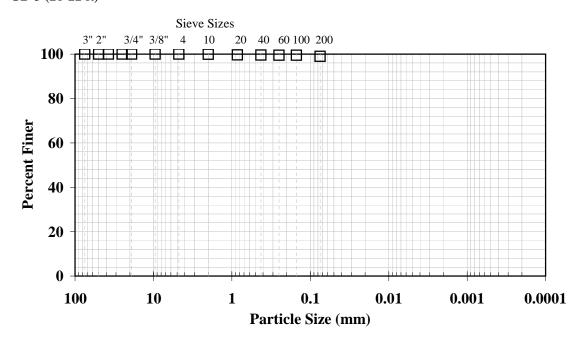
INITIAL VALUES	
Avg. Sample Height (in)	1.97
Avg. Sample Diameter (in)	2.87
Wet Weight (g)	426.2
Area (in ²)	6.46
Volume (cc)	208.2
Initial Water Content (%)	19.7
Total Density (pcf)	127.8
Dry Density (pcf)	106.8
G _s (assumed)	2.65
Degree of Saturation (%)	95.0
Void Ratio	0.55
Porosity	0.35
1 Pore Volume (cc)	73.8

Hydraulic Conductivity

Time (min)	k at 20 deg C
	(cm/sec)
6	1.76E-08
21	7.19E-09
39	6.13E-09
59	5.64E-09
83	4.82E-09
108	4.74E-09
135	4.50E-09
165	4.15E-09
Average ¹ :	4.6E-09

1: Average corrected hydraulic conductivity (k_{20}) is obtained from the last 4 average readings.

Cheng-Wei Chen, 09/20/10 Analysis & Quality Review/Date Tested by: David Gonzales



Client: Geosyntec Consultants

Project: TXL0084-03 Sandy Creek Services (SCS) Leachate Evaporation Pond Design Sample: GB-3 (21-22 ft)
 TRI Log#:
 E2347-08-03

 Test Method:
 ASTM D 422

 Test Date:
 09/13/10

Sieve Analysis	
Sieve Size	Percentage Passing
Sieve Size	(%)
3 in.	100.0
2 in.	100.0
1.5 in.	100.0
1 in.	100.0
3/4 in.	100.0
3/8 in.	100.0
No. 4 (4.75 mm)	100.0
No. 10 (2.00 mm)	99.9
No. 20 (850 µm)	99.6
No. 40 (425 µm)	99.5
No. 60 (250 µm)	99.5
No. 100 (150 µm)	99.5
No. 200 (75 µm)	99.0

Notes: Soil class

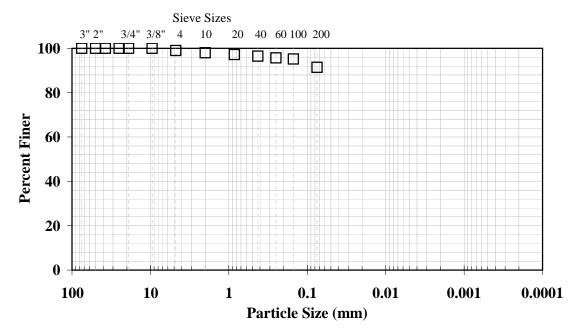
Soil classifies as a fat clay (CH) in accordance with ASTM D 2487.

Plastic Index (ASTM D 4318) Results	
Liquid Limit	56
Plastic Limit	24
Plastic Index	32
Notes: Specimen was air dried, 3 point Liquid	
Limit procedure was used.	

Cheng-Wei Chen, 09/14/10 Quality Review/Date Tested by: Adam Lewis & Olga Vasquez

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

Client: Geosyntec Consultants


Project: TXL0084-03 Sandy Creek Services (SCS) Leachate Evaporation Pond Design

Sample: GB-4 (4-5 ft)

 TRI Log#:
 E2347-08-03

 Test Method:
 ASTM D 422

 Test Date:
 09/13/10

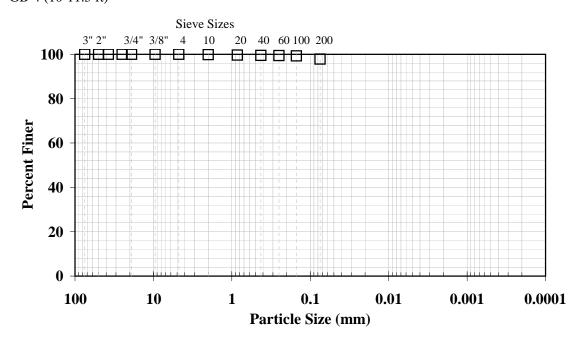
Sieve Analysis	
Sieve Size	Percentage Passing
	(%)
3 in.	100.0
2 in.	100.0
1.5 in.	100.0
1 in.	100.0
3/4 in.	100.0
3/8 in.	100.0
No. 4 (4.75 mm)	99.0
No. 10 (2.00 mm)	98.0
No. 20 (850 µm)	97.2
No. 40 (425 µm)	96.4
No. 60 (250 µm)	95.7
No. 100 (150 µm)	95.2
No. 200 (75 µm)	91.4

Notes: Soil classifies as a fat clay (CH) in accordance with ASTM D 2487.

The as received moisture content was 25.08 % as determined by ASTM D 2216.

Plastic Index (ASTM D 4318) Results		
Liquid Limit	68	
Plastic Limit	23	
Plastic Index	45	
Notes: Specimen was air dried, 3 point Liquid		
Limit procedure was used.		

Cheng-Wei Chen, 09/14/10 Quality Review/Date Tested by: Adam Lewis & Olga Vasquez


The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

Client: Geosyntec Consultants

Project: TXL0084-03 Sandy Creek Services (SCS) Leachate **Evaporation Pond Design** Sample: GB-4 (10-11.5 ft)

TRI Log#: E2347-08-03 Test Method: ASTM D 422 Test Date: 09/13/10

Sieve Analysis	
Sieve Size	Percentage Passing
Sieve Size	(%)
3 in.	100.0
2 in.	100.0
1.5 in.	100.0
1 in.	100.0
3/4 in.	100.0
3/8 in.	100.0
No. 4 (4.75 mm)	100.0
No. 10 (2.00 mm)	99.8
No. 20 (850 µm)	99.6
No. 40 (425 µm)	99.5
No. 60 (250 µm)	99.4
No. 100 (150 µm)	99.3
No. 200 (75 µm)	97.8

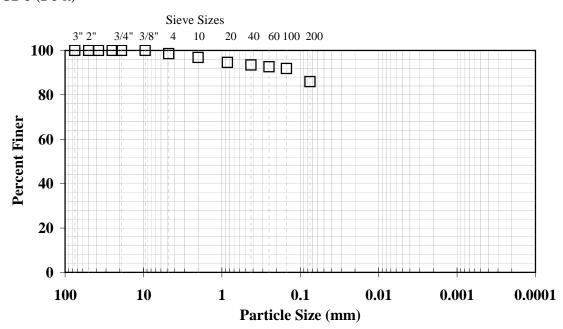
Notes:

Soil classifies as a fat clay (CH) in accordance with ASTM D 2487.

Plastic Index (ASTM D 4318) Results	
Liquid Limit	61
Plastic Limit	25
Plastic Index	36
Notes: Specimen was air dried, 3 point Liquid	
Limit procedure was used.	

Cheng-Wei Chen, 09/27/10 Quality Review/Date Tested by: Adam Lewis & Olga Vasquez

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.



 TRI Log#:
 E2347-08-03

 Test Method:
 ASTM D 422

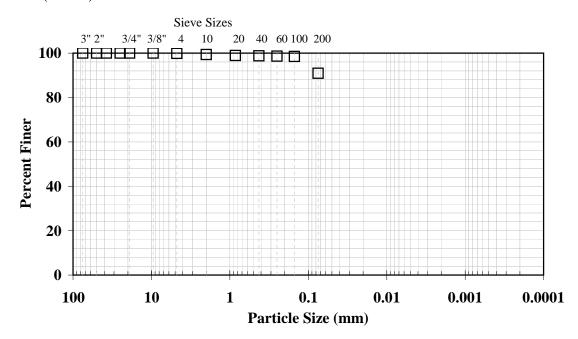
 Test Date:
 09/13/10

Sieve Analysis	
Sieve Size	Percentage Passing
Sieve Size	(%)
3 in.	100.0
2 in.	100.0
1.5 in.	100.0
1 in.	100.0
3/4 in.	100.0
3/8 in.	100.0
No. 4 (4.75 mm)	98.6
No. 10 (2.00 mm)	96.8
No. 20 (850 µm)	94.6
No. 40 (425 µm)	93.4
No. 60 (250 µm)	92.6
No. 100 (150 µm)	91.8
No. 200 (75 µm)	85.9

Notes: Soil classifies as a fat clay (CH) in accordance with ASTM D 2487.

Plastic Index (ASTM D 4318) Results		
Liquid Limit	62	
Plastic Limit	21	
Plastic Index	41	
Notes: Specimen was air dried, 3 point Liquid		
Limit procedure was used.		

Cheng-Wei Chen, 09/20/10


Quality Review/Date Tested by: Adam Lewis & Olga Vasquez

Client: Geosyntec Consultants

Project: TXL0084-03 Sandy Creek Services (SCS) Leachate **Evaporation Pond Design** Sample: GB-5 (5-6.5 ft)

TRI Log#: E2347-08-03 Test Method: ASTM D 422 Test Date: 09/23/10

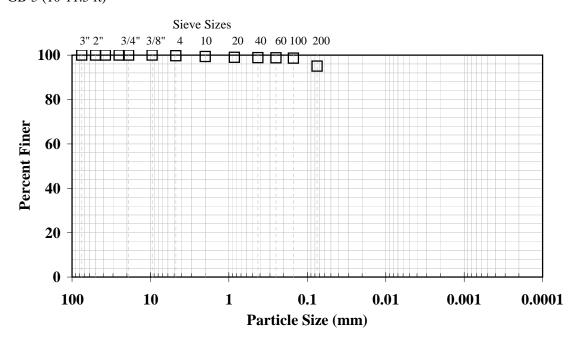
Sieve Analysis	
Sieve Size	Percentage Passing
Sieve Size	(%)
3 in.	100.0
2 in.	100.0
1.5 in.	100.0
1 in.	100.0
3/4 in.	100.0
3/8 in.	100.0
No. 4 (4.75 mm)	99.8
No. 10 (2.00 mm)	99.4
No. 20 (850 µm)	98.9
No. 40 (425 µm)	98.8
No. 60 (250 µm)	98.7
No. 100 (150 µm)	98.5
No. 200 (75 µm)	90.9

Notes:

Soil classifies as a fat clay (CH) in accordance with ASTM D 2487.

Plastic Index (ASTM D 4318) Results	
Liquid Limit	55
Plastic Limit	28
Plastic Index	27
Notes: Specimen was air dried, 3 point Liquid	
Limit procedure was used.	

Cheng-Wei Chen, 09/26/10


Quality Review/Date Tested by: Roderick Thomas & Olga Vasquez

Client: Geosyntec Consultants

Project: TXL0084-03 Sandy Creek Services (SCS) Leachate **Evaporation Pond Design** Sample: GB-5 (10-11.5 ft)

TRI Log#: E2347-08-03 Test Method: ASTM D 422 Test Date: 09/23/10

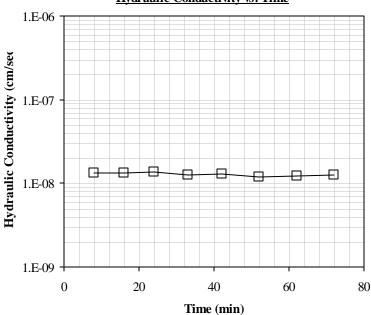
Sieve Analysis						
Sieve Size	Percentage Passing					
	(%)					
3 in.	100.0					
2 in.	100.0					
1.5 in.	100.0					
1 in.	100.0					
3/4 in.	100.0					
3/8 in.	100.0					
No. 4 (4.75 mm)	99.7					
No. 10 (2.00 mm)	99.4					
No. 20 (850 µm)	99.0					
No. 40 (425 µm)	98.9					
No. 60 (250 µm)	98.8					
No. 100 (150 µm)	98.6					
No. 200 (75 µm)	95.0					

Notes:

Soil classifies as a fat clay (CH) in accordance with ASTM D 2487.

Plastic Index (ASTM D 4318) Results						
Liquid Limit	58					
Plastic Limit	26					
Plastic Index 32						
Notes: Specimen was air dried, 3 point Liquid						
Limit procedure was used	1.					

Cheng-Wei Chen, 09/26/10


Quality Review/Date Tested by: Roderick Thomas & Olga Vasquez

A Texas Research International Company

Hydraulic Conductivity

- Client: Geosyntec Consultants
- Project: TXL0084-03 Sandy Creek Services (SCS) Leachate Evaporation Pond Design
- Sample: GB-5 (10-11.5 ft)

Hydraulic Conductivity vs. Time

Note: A B-value of 0.95 was achieved for the undisturbed specimen. Permeation measurements were made with a mercury U-tube. The effective confining pressure was 5 psi per test request.

 TRI Log#:
 E2347-08-03

 Test Method:
 ASTM D 5084, Method F

 Test Date:
 09/22/10

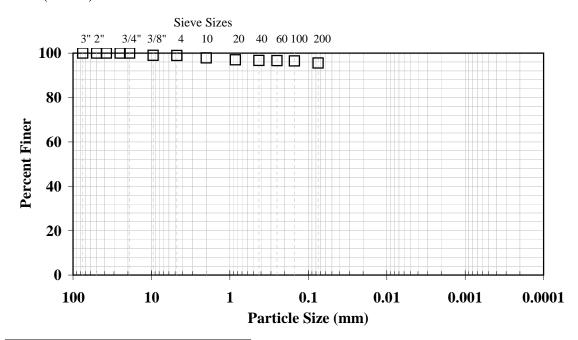
INITIAL VALUES						
Avg. Sample Height (in)	2.04					
Avg. Sample Diameter (in)	2.93					
Wet Weight (g)	420.2					
Area (in ²)	6.72					
Volume (cc)	224.8					
Initial Water Content (%)	21.1					
Total Density (pcf)	116.7					
Dry Density (pcf)	96.3					
G _s (assumed)	2.65					
Degree of Saturation (%)	78.2					
Void Ratio	0.72					
Porosity	0.42					
1 Pore Volume (cc)	93.9					

Hydraulic Conductivity

Time (min)	k at 20 deg C		
	(cm/sec)		
8	1.32E-08		
16	1.35E-08		
24	1.38E-08		
33	1.25E-08 1.28E-08		
42			
52	1.18E-08		
62	1.21E-08		
72	1.24E-08		
Average ¹ :	1.2E-08		

1: Average corrected hydraulic conductivity (k_{20}) is obtained from the last 4 average readings.

Cheng-Wei Chen, 09/27/10 Analysis & Quality Review/Date Tested by: David Gonzales



Client: Geosyntec Consultants

Project: TXL0084-03 Sandy Creek Services (SCS) Leachate Evaporation Pond Design Sample: GB-5 (15-16ft)
 TRI Log#:
 E2347-08-03

 Test Method:
 ASTM D 422

 Test Date:
 09/23/10

Sieve Analysis						
Sieve Size	Percentage Passing					
Sieve Size	(%)					
3 in.	100.0					
2 in.	100.0					
1.5 in.	100.0					
1 in.	100.0					
3/4 in.	100.0					
3/8 in.	99.0					
No. 4 (4.75 mm)	98.9					
No. 10 (2.00 mm)	97.9					
No. 20 (850 µm)	97.0					
No. 40 (425 µm)	96.7					
No. 60 (250 µm)	96.6					
No. 100 (150 µm)	96.5					
No. 200 (75 µm)	95.5					

Notes: Soil classifies as a fat clay (CH) in accordance with ASTM D 2487.

Plastic Index (ASTM D 4318) Results						
Liquid Limit	57					
Plastic Limit	28					
Plastic Index 29						
Notes: Specimen was air dried, 3 point Liquid						
Limit procedure was used	1.					

Cheng-Wei Chen, 09/26/10

Quality Review/Date Tested by: Roderick Thomas & Olga Vasquez

Particle Size Analysis and Atterberg Limits for Soil

Client: Geosyntec Consultants Project: TXL0084-03 Sandy Creek Services (SCS) Leachate Evaporation Pond Design TRI Log No.: E2347-08-03 Test Method: ASTM D 2216

Cheng-Wei Chen, 09/28/10

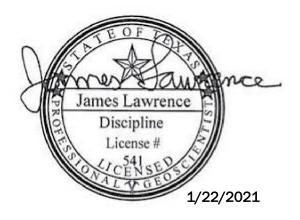
Quality Review/Date

Tested by: Olga Vasquez

Boring	Depth (ft)	w (%)	γ total (pcf)	γ _{dry} (pcf)	% Fines	Liquid Limit	Plastic Limit	Plastic Index	USCS
GB-5	19-20	18.41							
	1								

Page 1 of 1

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.


NOVEMBER 2020 GROUNDWATER MONITOR WELL INSTALL REPORT, SANDY CREEK ENERGY STATION, MCLENNAN COUNTY, TEXAS, SCS ENGINEERS, JANUARY 22, 2021.

November 2020 Groundwater Monitoring Well Install Report

Sandy Creek Energy Station McLennan County, Texas

Prepared For:

Sandy Creek Energy Station 2161 Rattlesnake Road Riesel, Texas 76682

SCS Project 16220089.00 | January 22, 2021

1901 Central Drive, Suite 550 Bedford, TX 76021 817-571-2288 January 22, 2021 SCS Project No. 16220089.00

Ms. Dana Perry Sandy Creek Services, LLC 2161 Rattlesnake Road Riesel, Texas 76682

Subject: Sandy Creek Energy Station November 2020 Groundwater Monitoring Well Install Report

Dear Ms. Perry:

SCS Engineers (SCS) is herein submitting this Groundwater Monitoring Well Installation Report for the Sandy Creek Energy Station (SCES). This report describes the installation of two new monitoring wells (MW-4 and MW-5). This report should be placed in the site operating record.

Monitoring wells MW-4 and MW-5 were installed on November 2, 2020. The wells were installed using hollow stem auger methods by a licensed water well driller (West Drilling), and the project was supervised by a Professional Geologist licensed in the state of Texas (Jim Lawrence). Geologic and groundwater conditions encountered were consistent with site characterization prepared by Geosyntec Consultants (October 18, 2010). Monitoring wells MW-4 and MW-5 were developed (sediment was removed) on December 3, 2020, using a combination of surging and bailing. All work was conducted in general accordance with 40 CFR 257.91 and 30 TAC 330.421.

MW-ID Northing		Easting	Well Elevation (ft msl, toc)	Well Depth (ft, b.g.s)
MW-4	10513171.76	3348968.18	436.91	30.3
MW-5	10514652.86	3348001.46	454.52	35.3

Monitoring well depths and elevations relative are tabulated below.

The boring logs, well location map, monitoring well data sheets, well development sheets, State of Texas Well Reports, and surveyor's report are attached.

Please contact Jim Lawrence at (817) 358-6106 if you have comments or require additional information.

Sincerely,

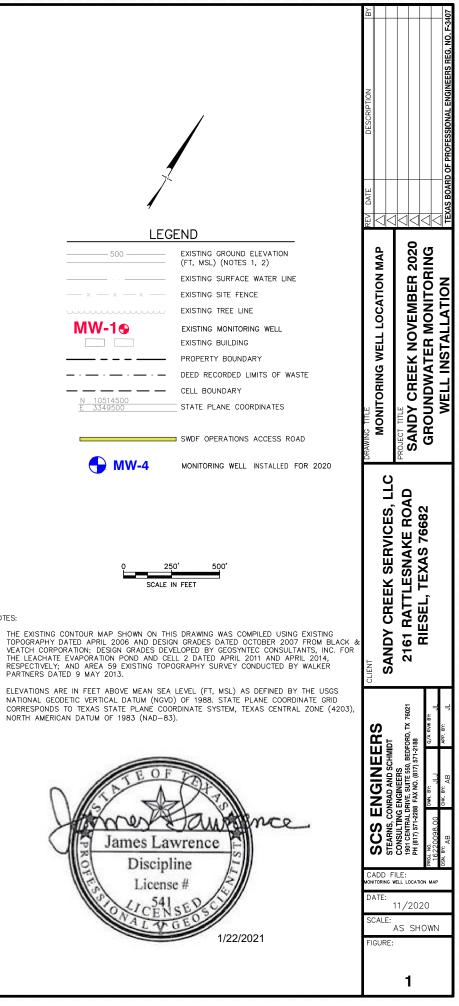
Asher Boudreaux Associate Staff Professional SCS ENGINEERS TBPE Registration No. F-3407

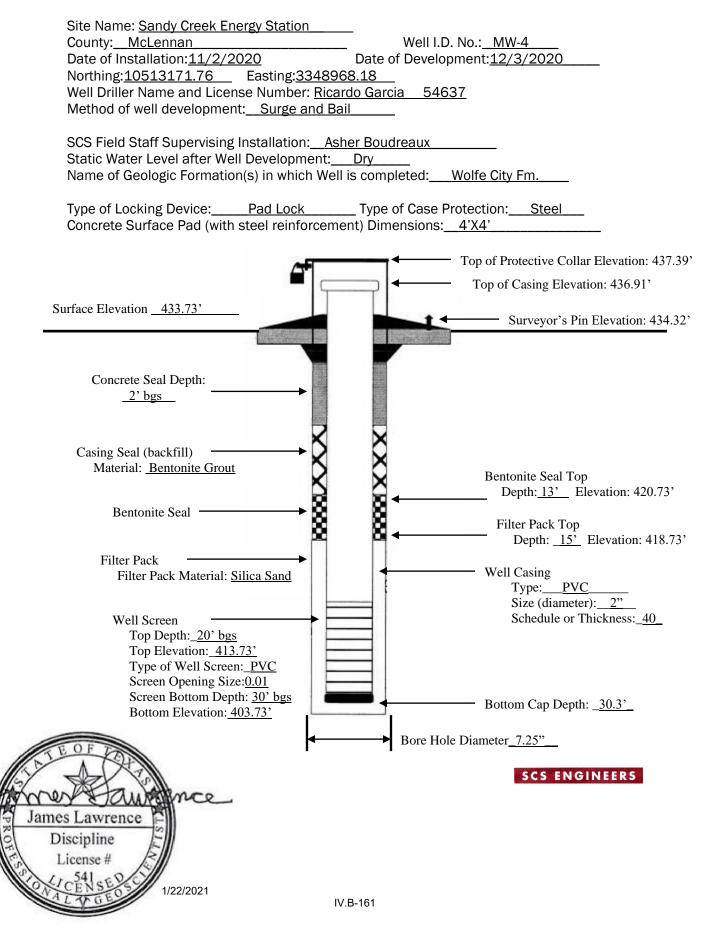
Brett DeVries, Ph.D., P.E. Project Engineer SCS ENGINEERS

James Lawrence, P.G. Project Director SCS ENGINEERS

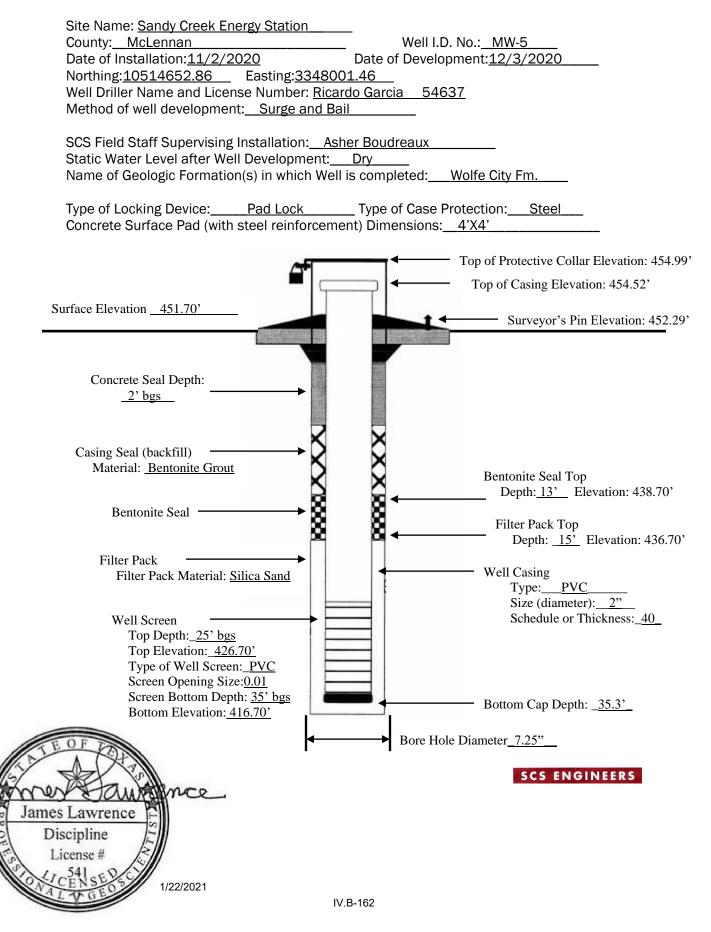
Attachments: Boring Logs Monitoring Well Location Map Monitor Well Completion Data


Monitor Well Development Data State of Texas Well Reports Surveyors Report


Groundwater Monitoring System Certification


	BER MW-4
SCS Engineers 1901 Central Drive, Ste. 550	PAGE 1 OF 1
Bedford, Texas	
Telephone: 817-571-2288	
CLIENT SCES PROJECT NAME Sandy Creek	
PROJECT NUMBER 16220089.00 T80 PROJECT LOCATION 2161 Rattlesnake Rd., Riesel, TX	76682
DATE STARTED 11/2/20 COMPLETED 11/2/20 GROUND ELEVATION 433.73 ft HOLE SIZE 8.2	
DRILLING CONTRACTOR West Drilling GROUND WATER LEVELS:	
DRILLING METHOD Hollow Stem Auger AT TIME OF DRILLING	
LOGGED BY AB CHECKED BY JL AT END OF DRILLING	
NOTES AFTER DRILLING	
HLGE HEGO MATERIAL DESCRIPTION WE 0 CLAY (CH): Dark brown, moist. CLAY (CH): Dark brown, moist.	ELL DIAGRAM op Elev: 0 (ft) ype: SCH PVC
light brown/tan to 14 feet, some gravel some gypsum seams, some sand hard sand lenses with increasing depth 14.0	-GROUT SEAL
CLAYSTONE: Dark gray, slightly moist, some crystallized gypsum. dry 20 becomes harder with increased depth, some sand lenses	 BENTONITE SEAL FILTER SAND
	SCH 40 PVC SLOTTED SCREEN
Bottom of borehole at 30.0 feet.	
٥ الا.B-158	

SCS ENG	and the second	R S			WELL NUMBER MW-5				
SCS Enginee 1901 Central		Ste. 550)		PAGE 1 OF 1				
Bedford, Tex	as								
Telephone: 8									
CLIENT SC									
					PROJECT LOCATION 2161 Rattlesnake Rd., Riesel, TX 76682				
					GROUND ELEVATION 451.70 ft HOLE SIZE 8.25 inches				
DRILLING C	ONTRA	CTOR	West	Drilling					
DRILLING M	ETHOD	Hollo	w Sten	n Auger	AT TIME OF DRILLING				
LOGGED BY	AB			CHECKED BY JL	AT END OF DRILLING				
NOTES					AFTER DRILLING				
0 DEPTH (ft) (ft) NUMBER	U.S.C.S.	GRAPHIC LOG			AL DESCRIPTION				
				CLAY (CH): Brown, moist, some gr light brown/tan, some sand pockets	avel. Discipline License # 1/22/2021 s, occasional gypsum pockets, low recovery. GROUT SEAL				
15 15 20				light brown to gray, some sand, sor moist	ne gypsum seams, orange staining, slightly				
25			25.0	brown, slightly harder, pockets of g	ypsum, slightly moist -25.0				
			26.0	CLAYSTONE: Dark gray, dry.	-26.0				
	СН		27.0	(CH) CLAY (CH): brown, gypsum s	-21.0				
2				CLAYS I ONE: Gray, slightly moist, increase in hardness.	Interbedded with gypsum and silt seams, SLOTTED SCH 40 PVC SCREEN				
3			32.5		-32.5				
	CH		33.0	(CH) CLAY (CH): brown, moist.					
35			35.0	CLAYSTONE: gray, dry, gypsum se	eams and interbedded silt.				
			00.0	Bottom of	borehole at 35.0 feet.				
				n/	.B-159				
				10					



Monitor Well Data Sheet

Monitor Well Data Sheet

Monitoring Well Development Data Sheet

Client: Sandy Creek Energy Station Location: Riesel, Texas Field Technician: Asher Boudreaux

Date: 12/3/2020 Monitoring Well Number: MW-4 Method of Well Development: Surge and Bail Total Well Depth (ft below T.O.C.): 33.48' Well Factor: 0.16 Depth to Water before Development: <u>12.16</u>' Height of Water Column: <u>21.32</u>' Depth to Water after Development: Dry

One Well Volume: <u>3.4 gallons</u>

(Time)	(Gallons) (Temperature °C)		(Ph)	(Conductivity)	Turbidity (NTU)			
13:08	1	21.57	7.02	8.56	0			
13:12	1	22.05	7.01	8.31	0			
13:16	1	21.81	7.08	8.30	0			
13:20	1	21.98	7.13	8.34	0			
13:23	1	22.14	7.16	8.44	0			
13:27	1	21.85	7.22	8.46	0			
13:32	1.5	22.03	7.29	8.49	0			
14:26	1	20.96	7.41	8.09	0			
	Total: 8.5							
Comments: Dry at 13:37 after purging 7.5 gallons Returned at 14:20, depth to water was 29.71' Purged 1 gallon, well went dry at 14:26								

Monitoring Well Development Data Sheet

Client: Sandy Creek Energy Station **Location:** Riesel, Texas **Field Technician:** Asher Boudreaux

Date: 12/3/2020 Monitoring Well Number: MW-5 Method of Well Development: Surge and Bail Total Well Depth (ft below T.O.C.): <u>38.12'</u> Well Factor: <u>0.16</u> Depth to Water before Development: <u>23.81'</u> Depth to Water after Development: <u>Dry</u>

Height of Water Column: <u>14.31'</u> One Well Volume: <u>2.29 gallons</u>

(Time)	(Gallons)	(Temperature °C)	(Ph)	(Conductivity)	Turbidity (NTU)		
12:10	1	19.31	7.22	9.08	0		
12:14	1	20.38	7.18	9.21	0		
12:18	1	20.87	7.12	9.77	0		
12:22	1	21.27	7.12	10.2	0		
12:26	1	21.50	7.11	10.6	0		
12:30 1.5		21.57	7.08	11.5	0		
14:02	1	21.55	7.09	10.4	0		
Total: 7.5							
Comments: Dry at 12:32 after purging 6.5 gallons Returned at 13:51, depth to water was 35.18'							

Purged 1 gallon, well went dry at 14:02

	STATE OF TEXAS WELL F	REPORT for Trac	king #560141
Owner:	Sandy Creek Electric Station	Owner Well #:	MW-4
ddress:	2161 Rattlesnake Road Riesel, TX 76682	Grid #:	39-33-1
Well Location:	2161 Rattlesnake Road	Latitude:	31° 28' 08" N
	Riesel, TX 76682	Longitude:	096° 57' 32" W
Well County:	McLennan	Elevation:	No Data
ype of Work:	New Well	Proposed Use:	Monitor

Drilling Start Date: 11/2/2020 Drilling End

Drilling End Date: 11/2/2020

		T		
	Diameter	(in.)	Top Depth (ft.)	Bottom Depth (ft.)
Borehole:	7.25		0	30
Drilling Method:	Hollow Stem /	Auger		
Borehole Completion:	Filter Packed			
	Top Depth (ft.)	Bottom Depth (ft.)	Filter M	laterial Size
Filter Pack Intervals:	15	30	Sa	nd
	Top Depth (ft.)	Bottom Depth	(ft.) Des	scription (number of sacks & material)
Annular Seal Data:	0	2		Concrete
	2	15		Bentonite
Seal Method: Gr	avity		Distance to Pro	operty Line (ft.): No Data
Sealed By: Dr	iller		Distance to Septic concentrated con	c Field or other tamination (ft.): No Data
			Distance to S	Septic Tank (ft.): No Data
			Method	of Verification: No Data
Surface Completion:	Surface Slab In	stalled	Su	rface Completion by Driller
Water Level:	No Data			
Packers:	No Data			
Type of Pump:	No Data			
Well Tests:	No Test Data S	pecified		

	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysis Made:	No	
	Did the driller kno	wingly penetrate any strata which		
		contained injurious constituents?:	No	
Certification Data: Company Information:	driller's direct supervisior correct. The driller under	ne driller drilled this well (or the well and that each and all of the stater stood that failure to complete the re ed for completion and resubmittal.	nents he	rein are true and
	101 Industrial Drive			
	Waxahachie, TX 7516	5		
Driller Name:		5 License Nu	Imber:	54637
Driller Name: Comments:	Waxahachie, TX 7516		ımber:	54637

DESCRIPTION & COLOR OF FORMATION MATERIAL	DESCRIPTION & COLOR OF FORMAT	TION MATERIAL

BLANK PIPE & WELL SCREEN DATA

Top (ft.)	Bottom (ft.)	Description	Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom
0	14	dark brown and light brown clay	2	Riser	New Plastic (PVC)	40	0	(ft.) 20
14	30	gray shale	2	Screen	New Plastic (PVC)	40 0.010	20	30

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 334-5540

STATE OF TEXAS WELL REPORT for Tracking #560143				
Owner:	Sandy Creek Electric Station	Owner Well #:	MW-5	
ddress:	2161 Rattlesnake Road Riesel, TX 76682	Grid #:	39-33-1	
Vell Location:		Latitude:	31° 28' 08" N	
	Riesel, TX 76682	Longitude:	096° 57' 32" W	
Vell County:	McLennan	Elevation:	No Data	
ype of Work:	New Well	Proposed Use:	Monitor	

Drilling Start Date: 11/2/2020 Drilling End Date: 11/2/2020

	Diameter	(in.)	Top Depth (ft.)	Bottom Depth (ft.)	
Borehole:	7.25		0	35	
Drilling Method:	Hollow Stem	Auger			
Borehole Completion:	Filter Packed				
	Top Depth (ft.)	Bottom Depth (ft.)	Filter N	laterial Size	
Filter Pack Intervals:	15	35	Sa	nd	
	Top Depth (ft.) Bottom D		(ft.) Des	scription (number of sacks & material)	
Annular Seal Data:	0	2		Concrete	
	2	15		Bentonite	
Seal Method: Gr	avity		Distance to Pr	operty Line (ft.): No Data	
Sealed By: Dr	iller		Distance to Septi concentrated cor	c Field or other itamination (ft.): No Data	
			Distance to S	Septic Tank (ft.): No Data	
			Method	of Verification: No Data	
Surface Completion:	Surface Slab Ir	nstalled	Su	rface Completion by Driller	
Water Level:	No Data				
Packers:	No Data				
Type of Pump:	No Data				
Well Tests:	No Test Data	Specified			

	Strata Depth (ft.)	Water Type	
Water Quality:	No Data	No Data	
		Chemical Analysis Made:	No
	Did the driller kno	wingly penetrate any strata which contained injurious constituents?:	No
Certification Data:	driller's direct supervision correct. The driller unde	he driller drilled this well (or the well v n) and that each and all of the statem rstood that failure to complete the rec red for completion and resubmittal.	ents herein are true and
Company Information:	WEST Drilling		
	101 Industrial Drive Waxahachie, TX 7516	5	
Driller Name:	Ricardo Garcia	License Nur	nber: 54637
Comments:	No Data		
	hology: R OF FORMATION MATE		sing: ELL SCREEN DATA

Top (ft.)	Bottom (ft.)	Description	Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
0	25	dark brown, light brown and gray clay	2	Riser	New Plastic (PVC)	40	0	25
25	35	gray shale, with brown clay lenses (at 26-27 ft and 32.5-33 ft)	2	Screen	New Plastic (PVC)	40 0.010	25	35

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 334-5540

PIEZOMETER WELLS FOR SANDY CREEK ENERGY STATION

PIEZOMETER	1. TOP OF CASING	2. TOP OF PVC PIPE	3. CONCRETE SLAB	4. GROUND SURFACE	NORTHING	EASTING
4	437.39	436.91	434.32	433.73	10513171.76	3348968.18
5	454.99	454.52	452.29	451.70	10514652.86	3348001.46

SURVEY DATE: NOVEMBER 9, 2020 **RELEASE DATE: NOVEMBER 16, 2020**

SURVEYOR'S NOTES:

THE COORDINATES AND ELEVATIONS SHOWN HEREON ARE BASED UPON SANDY CREEK ENERGY STATION PUBLISHED SITE CONTROL. "BM 1" NORTHING: 10512746.63, EASTING: 3349242.64, ELEVATION: 426.62



Dana B. Spigmer

CONCRETE SLAB

DRAWING NOT TO SCALE

GROUNDWATER MONITORING SYSTEM CERTIFICATION

General Site Information

Site: Sandy Creek Energy Station

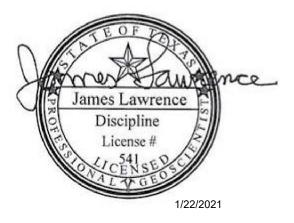
Site Location: Riesel, Texas

Qualified Groundwater Scientist Statement

I, James Lawrence, P.G., have reviewed the groundwater monitoring system design for the subject site and the supporting data. In my professional opinion, the groundwater monitoring system has been designed in accordance with the groundwater monitoring requirements specified in 40 CFR 257.91. The new monitoring wells (MW-4 and MW-5) were installed in general accordance with the 40 CFR 257.91 and 30 TAC 330.421.

I am a qualified groundwater scientist as defined in 30 TAC 330.3. The only warranty made by me is that I have used that degree of care and skill ordinarily exercised under similar conditions by reputable members of my profession, practicing in the same or similar locality. No other warranty, expressed or implied, is intended.

Firm and Address:


SCS Engineers 1901 Central Drive, Suite 550 Bedford, Texas 76021

Signature:

1	P	
James	Farmence	

Date:

1/22/2021

APPENDIX VI.C

HISTORICAL GROUNDWATER REPORTS AND DATA

2017 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

January 30, 2018 SCS Project 16215106.00

Mr. Darryl Sparks Compliance Manager **NAES** Corporation 2161 Rattlesnake Road Riesel, Texas 76682

Subject: Sandy Creek Energy Station McLennan County, Texas 2017 Annual Groundwater Monitoring and Corrective Action Report Submittal

Dear Mr. Sparks:

SCS Engineers (SCS) is pleased to submit the 2017 Annual Groundwater Monitoring and Corrective Action Report to the Sandy Creek Energy Station (SCES), in accordance with Coal Combustion Residual Rule (CCR) 40 CFR Part §257.94, and the site Groundwater Sampling and Analysis Plan (GWSAP), prepared by SCS, dated March 2, 2016.

Please contact James Lawrence at (817) 358-6106 if you have comments or require additional information.

Sincerely,

Dayle P Str

Doug Steen Associate Professional SCS ENGINEERS TBPE Registration No. F-3407

Breat Della James Lawrence

Brett DeVries, Ph.D., P.E. Project Engineer SCS ENGINEERS

James Lawrence, P.G. **Project Director SCS ENGINEERS**

2017 Annual Groundwater Monitoring and Corrective Action Report Attachment:

cc: Paulette Heuer at PHeuer@lspower.com Alan Riddle at ariddle@sandycreekservices.com

SCS ENGINEERS

2017 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

SANDY CREEK ENERGY STATION RIESEL, TEXAS

Prepared for:

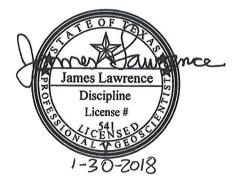
SANDY CREEK ENERGY STATION

2161 Rattlesnake Road Riesel, Texas 76682

Prepared by:

SCS ENGINEERS

Dallas/Fort Worth Office 1901 Central Drive, Suite 550 Bedford, Texas 76021 817-571-2288


> January 2018 File No. 16215106.00

Offices Nationwide www.scsengineers.com

TABLE OF CONTENTS

SECTION	PAGE
1.0 INTRODUC	TION AND BACKGROUND1
2.0 GROUNDW	ATER MONITORING SUMMARY2
3.0 RESULTS A	ND STATISTICAL ANALYSIS6
4.0 RECOMME	NDATIONS7
Figures	
Figure 1-	Monitoring Well Location Map
Appendices	
Appendix A -	December 2017 Groundwater Monitoring Field Forms
Appendix B -	December 2017 Laboratory Report with Chain of Custody
Appendix C -	Historical Groundwater Analytical Data
Appendix D -	December 2017 Results and Statistical Limits
Appendix E -	Statistical Analysis Graphs
Appendix F -	December 2017 Alternate Source Demonstrations

SECTION 1.0

INTRODUCTION AND BACKGROUND

SCS Engineers (SCS) is submitting the 2017 Annual Groundwater Monitoring and Corrective Action Report for the Sandy Creek Energy Station (SCES), in accordance with Coal Combustion Residual Rule (CCR) 40 CFR §257.90(e), and site Groundwater Sampling and Analysis Plan (GWSAP) prepared by SCS, dated March 2, 2016. This report includes results for the first semiannual detection monitoring event at SCES, conducted in December 2017.

SCES is a pulverized coal-fired electric generation facility which operates a landfill for disposal of dry scrubber ash and bottom ash generated during the coal combustion process at the facility. Incidental wastes generated during the operation of the facility may also be disposed in the landfill, as described in the initial registration notification to TCEQ and the most recent version of the Operations Plan for the facility. The landfill is currently comprised of two CCR disposal cells, Cells 1 and 2, which commenced receiving waste in early 2013 and October 2014, respectively. The approximate area of Cells 1 and 2 are 10.0 and 14.3 acres, respectively.

Sampling of groundwater monitoring wells is conducted in accordance with 40 CFR §257.93 and the GWSAP. Background monitoring of four wells (MW-1, MW-2, MW-3, and BW-1; as depicted on Figure 1) was performed for eight consecutive quarters in accordance with 40 CFR §257.94(b) (i.e., eight independent samples were collected for each well). The background monitoring described above commenced in December 2015 and was completed in August 2017. In accordance with 40 CFR §257 Appendix III and IV, the constituents monitored during the first eight quarters and the first semiannual detection monitoring event included 18 inorganic compounds, total dissolved solids, radium-226, and radium-228.

SECTION 2.0

GROUNDWATER MONITORING SUMMARY

Groundwater Monitoring System

The current groundwater monitoring system at the SCES landfill consists of four wells (see Table 1 below). One (BW-1) is upgradient and three (MW-1, -2, & -3) are downgradient. All four wells are currently in detection monitoring. Figure 1 shows monitoring well locations at SCES.

Table 1 - Sandy Creek Energy Station Groundwater Monitoring System						
Well Name (U/D)1Completion DateStatusTop of Casing Elevation (ft msl)2Well Depth (ft bgs)2Screen Interval (ft bgs)2						Water Level Elevation (ft msl on 12/20/2017)
MW-1 (D)	9/21/2015	Detection	465.87	37.25	23.90 - 33.90	454.22
MW-2 (D)	9/23/2015	Detection	442.15	22.60	9.30 - 19.30	429.47
MW-3 (D)	9/1/2010	Detection	430.06	19.95	5.98 - 15.98	421.08
BW-1 (U)	9/22/2015	Detection	485.57	41.50	28.30 - 38.30	466.51

¹ (U) = upgradient; (D) = downgradient

² Top of Casing Elevation, Well Depth, and Screen Interval information obtained from Table 1 – Monitoring Well and Piezometer Construction Details and Groundwater Elevations prepared by Geosyntec Consultants, dated March 11, 2016

ft msl = feet above mean sea level

ft bgs = feet below ground surface

Summary of Groundwater Monitoring Events

All sampling events followed the groundwater sampling and laboratory analysis procedures outlined in the GWSAP. A duplicate sample was collected from one well during each event for Quality Assurance & Quality Control (QA/QC) purposes. All monitoring wells were sampled and analyzed for 40 CFR 257 Appendix III & IV constituents, in accordance with 40 CFR §257.94(b).

December 2015 – First Quarterly Monitoring Event

All four wells (MW-1, MW-2, MW-3, and BW-1) were purged and sampled on December 14, 2015 using the conventional purge and sampling method with disposable PVC bailers. The results of the sampling were provided to SCES in a report prepared by SCS, dated March 2, 2016.

Exceedances of EPA drinking water primary maximum contaminant levels (MCLs) during this event included selenium (MW-1) (see Table 2 below).

February 2016 – Second Quarterly Monitoring Event

All four wells (MW-1, MW-2, MW-3, and BW-1) were purged and sampled on February 25, 2016 using the conventional purge and sampling method with disposable PVC bailers. The results of the sampling were provided to SCES in a report prepared by SCS, dated April 22, 2016.

Exceedances of EPA primary drinking water MCLs during this event included arsenic (MW-2, BW-1) and selenium (MW-1) (see Table 2 below).

May 2016 – Third Quarterly Monitoring Event

All four wells (MW-1, MW-2, MW-3, and BW-1) were purged and sampled on May 11, 2016 using the conventional purge and sampling method with disposable PVC bailers. The results of the sampling were provided to SCES in a report prepared by SCS, dated July 8, 2016.

Exceedances of EPA primary drinking water MCLs during this event included arsenic (MW-1), beryllium (MW-1), chromium (MW-1), lead (MW-1), and combined radium (MW-1, BW-1) (see Table 2 below).

<u>August 2016 – Fourth Quarterly Monitoring Event</u>

All four wells (MW-1, MW-2, MW-3, and BW-1) were purged and sampled on August 16, 2016 using the conventional purge and sampling method with disposable PVC bailers. The results of the sampling were provided to SCES in a report prepared by SCS, dated October 17, 2016.

Exceedances of EPA primary drinking water MCLs during this event included selenium (MW-1) and combined radium (MW-3) (see Table 2 below).

<u>November 2016 – Fifth Quarterly Monitoring Event</u>

All four wells (MW-1, MW-2, MW-3, and BW-1) were purged and sampled on November 17, 2016 using the conventional purge and sampling method with disposable PVC bailers. The results of the sampling were provided to SCES in a report prepared by SCS, dated January 23, 2017.

Exceedances of EPA primary drinking water MCLs during this event included selenium (MW-1) and combined radium (MW-3) (see Table 2 below).

February 2017 – Sixth Quarterly Monitoring Event

All four wells (MW-1, MW-2, MW-3, and BW-1) were purged and sampled on February 23, 2017 using the conventional purge and sampling method with disposable PVC bailers. The results of the sampling were provided to the SCES in a report prepared by SCS, dated April 24, 2017.

Exceedances of EPA primary drinking water MCLs during this event included selenium (MW-1) and combined radium (MW-2) (see Table 2 below).

June 2017 – Seventh Quarterly Monitoring Event

All four wells (MW-1, MW-2, MW-3, and BW-1) were purged and sampled on June 7, 2017 using the conventional purge and sampling method with disposable PVC bailers. The results of the sampling were provided to the SCES in a report prepared by SCS, dated August 9, 2017.

Exceedances of EPA primary drinking water MCLs during this event included selenium (MW-1) (see Table 2 below).

<u>August 2017 – Eighth Quarterly Monitoring Event</u>

All four wells (MW-1, MW-2, MW-3, and BW-1) were purged and sampled on August 24, 2017 using the conventional purge and sampling method with disposable PVC bailers. The results of the sampling were provided to SCES in a report prepared by SCS, dated September 26, 2017.

Exceedances of EPA drinking water MCLs during this event included selenium (MW-1) and combined radium (MW-3) (see Table 2 below).

December 2017 – Semiannual Detection Monitoring Event

All four wells (MW-1, MW-2, MW-3, and BW-1) were purged and sampled on December 20, 2017 using the conventional purge and sampling method with disposable PVC bailers. This sampling event marks the first semiannual detection monitoring event following the collection of eight independent quarterly samples, in accordance with 40 CFR §257.94(b). Though 40 CFR §257.94(b) states that only Appendix III constituents must be monitored during semiannual detection monitoring events, wells were also monitored for 40 CFR §257 Appendix IV constituents due to multiple EPA primary MCL exceedances of Appendix IV constituents during quarterly monitoring (see Appendix C). Field forms and laboratory results for this event are provided in Appendices A & B, respectively.

Exceedances of federally-promulgated primary MCLs during this event included selenium (MW-1) and combined radium (MW-2).

The analysis of Appendix IV constituents during the December 2017 monitoring event does not represent a decision to initiate an assessment monitoring program. The facility remains in a detection monitoring program, in accordance with 40 CFR §257.94.

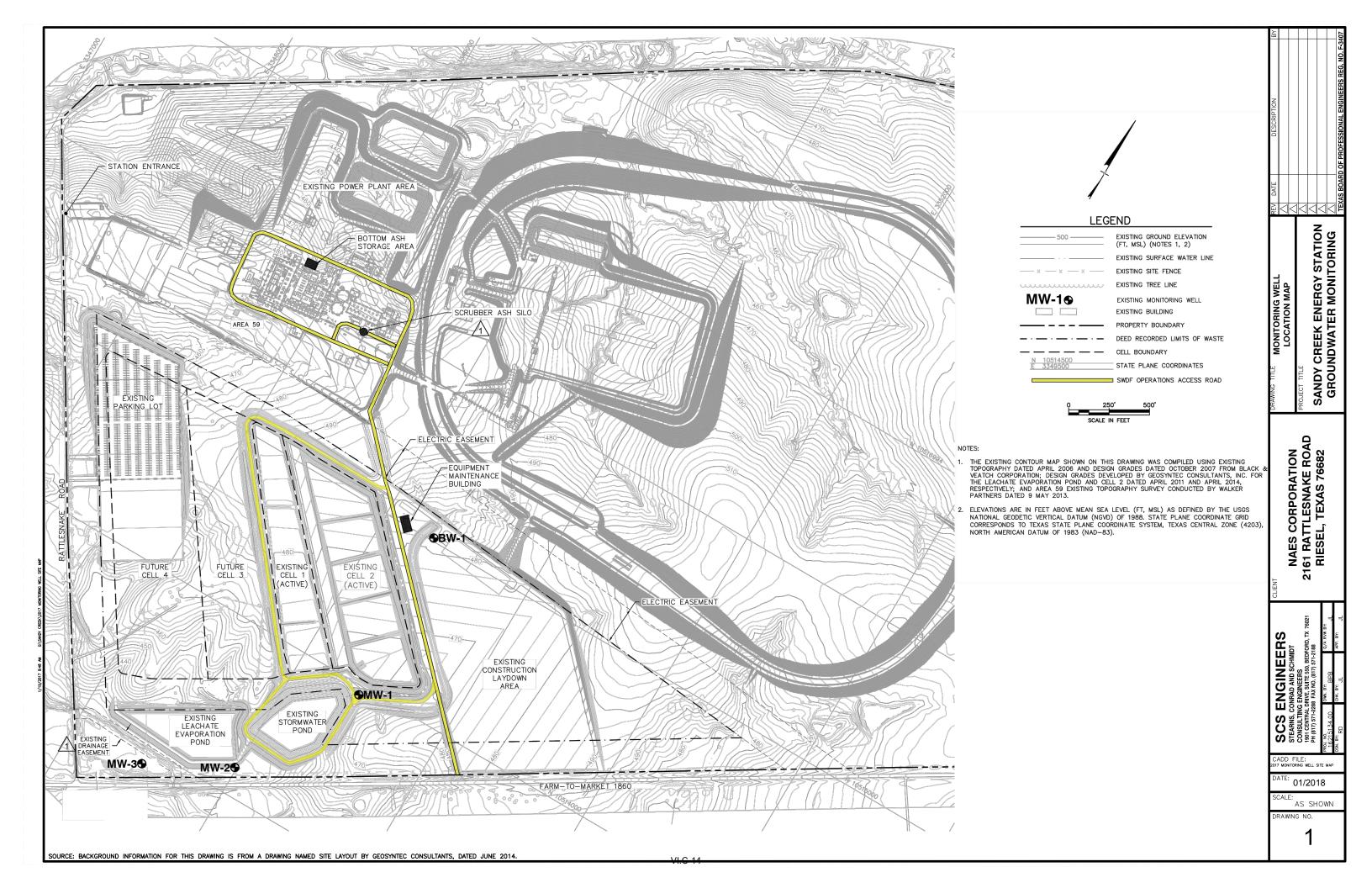
Constituent	Well Name	Date	Concentration (mg/L)	MCL (mg/L)
	MW-1	5/11/2016	0.12	
Arsenic	MW-2	2/25/2016	0.014	0.01
	BW-1	2/25/2016	0.015	
Beryllium	MW-1	5/11/2016	0.029	0.004
Chromium	MW-1	5/11/2016	0.69	0.1
Lead	MW-1	5/11/2016	0.21	0.015
	MW-1	12/14/2015	0.16	
		2/25/2016	0.2	
		8/16/2016	0.13	
Selenium		11/17/2016	0.16	0.05
Selemum		2/23/2017	0.066	0.05
		6/7/2017	0.15	
		8/24/2017	0.17	
		12/20/2017	0.18	
	MW-1	5/11/2016	12.33	
	MW-2	2/23/2017	5.79]
Combined	IVI VV -2	12/20/2017	5.015	1
Combined Radium		8/16/2016	5.991	5
	MW-3	11/17/2016	6.102]
		8/24/2017	5.67	1
	BW-1	5/11/2016	5.20	1

SECTION 3.0

RESULTS AND STATISTICAL ANALYSIS

A summary of December 2017 laboratory results and statistical limits in each well – constituent pair is provided in Appendix D. Statistical limits were determined accordance with 40 CFR §257.93(f-g) and the GWSAP using the software program Sanitas ®. Limits are presented using Shewhart-CUSUM control charts, non-parametric prediction limits, or parametric prediction limits as deemed appropriate by background data distributions. EPA primary drinking water MCLs are also presented for comparison to current data.

Unconfirmed statistically significant increases (SSIs) were indicated for fluoride at MW-1 and boron in MW-3 (see Appendix D). In accordance with 40 CFR §257.94(e)(2), two alternate source demonstrations (ASDs) are provided in Appendix F to demonstrate that these unconfirmed SSIs likely result from natural variation in groundwater quality at the site, and are not indicative of impacts from the SCES landfill.


SECTION 4.0

RECOMMENDATIONS

No confirmed SSIs were indicated for any wells during the December 2017 detection monitoring event at the SCES, as outlined in the attached ASDs for fluoride in MW-1 and boron in MW-3 (see Appendix F). These ASDs should be filed with the annual groundwater monitoring and corrective action report, in accordance with the recordkeeping requirements specified in 40 CFR §257.105(f), notification requirements specified in 40 CFR §257.106(h), and internet requirements specified in 40 CFR §257.107(h). SCS recommends that the facility remain in semiannual detection monitoring, in accordance with 40 CFR §257.94.

Due to the lack of confirmed SSIs for Appendix III and IV constituents during the December 2017 detection monitoring event, the facility will continue monitoring for all constituents listed in 40 CFR §257 Appendix III during semiannual groundwater monitoring events, in accordance with 40 CFR §257.94(a). The Appendix IV constituent list will be analyzed if any confirmed statistical exceedances of the Appendix III list are indicated in future events. The next planned groundwater monitoring event is a semiannual detection monitoring event scheduled for June 2018.

FIGURE 1: MONITORING WELL LOCATION MAP

APPENDIX A DECEMBER 2017 GROUNDWATER MONITORING FIELD FORMS

Facility name:	Sandy Creek Energy Station		1. Facility Type:	Power Station		
Permittee:	Sandy Creek Energy Associate	s, L.P.	2. Monitor well no .:	MW-1		
County:	McLennan		3. Date of sampling:	12/20/2017		
Name of sample	er: Doua	Steen	Most recent previous	sampling: 8/24/2017		
Affiliation of san			-	easurements: 12/20/2017		
If split sampled,	with whom? N/A		Datum reference poin	it: Top of Casing		
Integrity of well:			Datum elevation*:			
Installation date	: 9/21/2015		Depth to water(below	datum)*: 11.65		
			4. Water level elevation	on*: 454.22		
5. Purging/Sar	npling method:Bailer	_(Enter bailer or pump)	11. Sample event: <u>De</u>	etection		
Were low-flo	ow methods used? 🔲 yes 🔳	no (check one)	- Backgrou	und - Corrective Action		
If yes, wh	nat volume was purged? N/A	∖gal.	- Detectior	n - Other		
6. Well volume	es purged: 2.0		- Assessm	nent		
7. Was the we	II dry before purging? yes	no (check one)	12. Sample schedule: Semi-Annual			
8. Was the we	II dry after purging? 🔳 yes 🛛	no (check one)	- Quarterly	y - Fourth Year		
9. How long be	efore sampling? 2.0		- Semi-Annual - Other			
10. Unit of meas	sure? hours (Enter val	ue as days, hours, or mins.)	- Annual			
			13. Sample type: Re	egular		
			- Regular	- Split		
			- Duplicate	e - Other		
Field Measurer	ments:		- Resampl	le		
	14. pH	5.86				
	15. Spec. cond.	4,287	16. 🔳 umho/cm or	mmho/cm (check one)		
	17. Temp.	21.41	18. 🗆 F 🛛 or 🔳	C (check one)		
	19. Turbidity	66.2	20. ■ NTU			
Laboratory:						
21. Nai	me Pace Analytical Servic	ces, Inc.	Pł	hone: (817) 335-1186		
Add	dress: 2657 Gravel Drive, Fo	rt Worth, TX 76118				

Facility name:	Sandy Creek Energy Station		1. Facility Type:	Power Station	
Permittee:	Sandy Creek Energy Associate	es, L.P.	2. Monitor well no .:	MW-2	
County:	McLennan		3. Date of sampling:	12/20/2017	
Name of sample	er: Doug	g Steen	Most recent previous s	sampling: <u>8/24/2017</u>	
Affiliation of san	npler: SCS Engineers		Date of water level me	easurements: <u>12/20/2017</u>	
If split sampled,	with whom? N/A		Datum reference point	t: Top of Casing	
Integrity of well:	GOOD		Datum elevation*:	442.15	
Installation date	: 9/23/2015		Depth to water(below	datum)*: 12.68	
			4. Water level elevation	on*: 429.47	
5. Purging/Sar	mpling method: <u>Bailer</u>	_(Enter bailer or pump)	11. Sample event: De	etection	
Were low-flo	ow methods used? 🔲 yes 🔳	no (check one)	- Backgrou	Ind - Corrective Action	
lf yes, wh	nat volume was purged? N/	A gal.	- Detection	n - Other	
6. Well volume	es purged: 2.5		- Assessm	ent	
7. Was the we	II dry before purging? □yes	no (check one)	12. Sample schedule:	Semi-Annual	
8. Was the we	II dry after purging? 🔳 yes 🛛	no (check one)	- Quarterly	- Fourth Year	
9. How long be	efore sampling? 2.0		- Semi-Annual - Other		
10. Unit of mea	sure? hours (Enter va	lue as days, hours, or mins.)	- Annual		
			13. Sample type: Re	egular	
			- Regular	- Split	
			- Duplicate	e - Other	
Field Measurer	ments:		- Resample	е	
	14. pH	5.39			
	15. Spec. cond.	6,198	16. 🔳 umho/cm or	mmho/cm (check one)	
	17. Temp.	20.23	18. 🗆 F 🛛 or 🔳	C (check one)	
	19. Turbidity	37.7	20. ■ NTU		
Laboratory:					
21. Nai	me Pace Analytical Servio	ces, Inc.	Ph	none: (817) 335-1186	
Add	dress: <u>2657 Gravel Drive, Fo</u>	ort Worth, TX 76118			

Facility name:	Sandy Creek Energy Station		1. Facility Type:	Power Station		
Permittee:	Sandy Creek Energy Associate	es, L.P.	2. Monitor well no .:	MW-3		
County:	McLennan		3. Date of sampling:	12/20/2017		
Name of sample	er: Dou	g Steen	Most recent previous	sampling: 8/24/2017		
Affiliation of san			-	easurements: 12/20/2017		
If split sampled,	with whom? N/A			nt: Top of Casing		
Integrity of well:			Datum elevation*:			
			Depth to water(below			
			4. Water level elevati	on*: 421.08		
5. Purging/Sar	npling method: <u>Bailer</u>	_(Enter bailer or pump)	11. Sample event: D	etection		
Were low-flo	ow methods used? yes	no (check one)	- Backgro	und - Corrective Action		
lf yes, wh	If yes, what volume was purged? <u>N/A</u> gal.			n - Other		
6. Well volume	es purged: <u>3.1</u>		- Assessment			
7. Was the we	II dry before purging? □yes	no (check one)	12. Sample schedule: Semi-Annual			
8. Was the we	II dry after purging? yes	no (check one)	- Quarterl	y - Fourth Year		
9. How long be	efore sampling? 2.0		- Semi-Annual - Other			
10. Unit of meas	sure? hours (Enter va	alue as days, hours, or mins.)	- Annual			
			13. Sample type: R	egular		
			- Regular	- Split		
			- Duplicat	e - Other		
Field Measurer	ments:		- Resamp	le		
	14. pH	5.58				
	15. Spec. cond.	6,459	16. 🔳 umho/cm oi	mmho/cm (check one)		
	17. Temp.	21.52	18. 🗆 F 🛛 or 📕	C (check one)		
	19. Turbidity	22.4	20. ■ NTU			
Laboratory:						
21. Nar	me Pace Analytical Servi	ices, Inc.	P	hone: (817) 335-1186		
Ado	dress: 2657 Gravel Drive, F	ort Worth, TX 76118				

Facility name:	Sandy Creek Energy Station		1. Facility Type:	Power Station		
Permittee:	Sandy Creek Energy Associate	es, L.P.	2. Monitor well no .:	BW-1		
County:	McLennan		3. Date of sampling:	12/20/2017		
Name of sample	er: Doud	g Steen	Most recent previous	sampling: 8/24/2017		
Affiliation of san			-	easurements: 12/20/2017		
If split sampled,	·			nt: Top of Casing		
Integrity of well:			Datum elevation*:			
Installation date			Depth to water(below			
			4. Water level elevati	on*: 466.51		
5. Purging/Sar	npling method: <u>Bailer</u>	_(Enter bailer or pump)	11. Sample event: D	etection		
Were low-flo	ow methods used? 🔲 yes 🔳	no (check one)	- Backgro	und - Corrective Action		
lf yes, wh	nat volume was purged? N/	A gal.	- Detectio	n - Other		
6. Well volume	es purged: <u>3.1</u>		- Assessn	nent		
7. Was the we	II dry before purging? □yes	no (check one)	12. Sample schedule: Semi-Annual			
8. Was the we	II dry after purging? yes	no (check one)	- Quarterl	y - Fourth Year		
9. How long be	efore sampling? 2.0		- Semi-Ar	nual - Other		
10. Unit of meas	sure? hours (Enter va	lue as days, hours, or mins.)	- Annual			
			13. Sample type: R	egular		
			- Regular	- Split		
			- Duplicat	e - Other		
Field Measurer	ments:		- Resamp	le		
	14. pH	7.14				
	15. Spec. cond.	7,063	16. 🔳 umho/cm oi	mmho/cm (check one)		
	17. Temp.	20.33	18. 🗆 F 🛛 or 📕	C (check one)		
	19. Turbidity	180	20. ■ NTU			
Laboratory:						
21. Nar	me Pace Analytical Servi	ces, Inc.	P	hone: <u>(817) 335-1186</u>		
Ado	dress: 2657 Gravel Drive, Fo	ort Worth, TX 76118				

Facility name:	Sandy Creek Energ	gy Station	1. Facility T	ype:	Power Station
Permittee:	Sandy Creek Energ	gy Associates, L.P.	2. Monitor v	vell no.:	DUP
County:	McLennan		3. Date of s	ampling:	12/20/2017
Name of complete	_	Davis Chaes	Mastroom		ooroniumu NI/A
Name of sample		Doug Steen	Most recent	•	
Affiliation of sam		S Engineers	Deturn refe		easurements: <u>N/A</u>
If split sampled, v	with whom? <u>N/A</u> N/A			-	nt: <u>Top of Casing</u> N/A
Integrity of well: Installation date:			Datum elev		datum)*: N/A
installation date.	IN/A				on*: N/A
			4. Water le		011. N/A
5. Purging/Sam	pling method: <u>N/A</u>	(Enter bailer or pur	np) 11. Sample	event: De	etection
Were low-flo	w methods used?	🗆 yes 🛛 no (check one)		- Backgro	und - Corrective Action
lf yes, wha	at volume was purge	ed? <u>N/A</u> gal.		- Detection	n - Other
6. Well volumes	s purged: <u>N/A</u>	_		- Assessm	nent
7. Was the well	dry before purging?	🗌 yes 🔲 no (check one)	12. Sample	schedule	: Semi-Annual
8. Was the well	dry after purging?	🗆 yes 🛛 no (check one)		- Quarterly	y - Fourth Year
9. How long bet	fore sampling? <u>N/A</u>			- Semi-An	nual - Other
10. Unit of meas	ure? N/A	(Enter value as days, hours, c	or mins.)	- Annual	
			13. Sample	type: D	uplicate
				- Regular	- Split
				- Duplicate	e - Other
Field Measurem	ents:			- Resamp	le
	14. pH	N/A			
	15. Spec. cor	nd. N/A	16. 🗖 umh	no/cm or	mmho/cm (check one)
	17. Temp.	N/A	18. 🗖 F	or 🗆	C (check one)
	19. Turbidity	N/A	20. 🗆 NTU		
Laboratory:					
21. Nam	ne Pace Ana	lytical Services, Inc.		PI	hone: (817) 335-1186
Add	ress: 2657 Grav	vel Drive, Fort Worth, TX 76118			

APPENDIX B DECEMBER 2017 LABORATORY REPORT WITH CHAIN OF CUSTODY

Pace Analytical Services, LLC 400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

January 29, 2018

Jim Lawrence SCS Engineers 1901 Central Dr. Suite 550 Bedford, TX 76021

RE: Project: 16215106.00/Sandy Creek Pace Project No.: 7579575

Dear Jim Lawrence:

Enclosed are the analytical results for sample(s) received by the laboratory on December 22, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Report revised 1/29/18 to include calcium results.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

D-l Ball

Vince Egyed vince.egyed@pacelabs.com (817) 335-1186 Project Manager

Enclosures

cc: Tyson Milbrand, SCS Engineers Madison Rosene, SCS Engineers Doug Steen, SCS Engineers Valerie Wooters, SCS Engineers

Pace Analytical Services, LLC 400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

CERTIFICATIONS

Project: 16215106.00/Sandy Creek

Pace Project No.: 7579575

New Orleans Certification IDs

California Env. Lab Accreditation Program Branch: 11277CA Florida Department of Health (NELAC): E87595 Illinois Environmental Protection Agency: 0025721 Kansas Department of Health and Environment (NELAC): E-10266 Louisiana Dept. of Environmental Quality (NELAC/LELAP): 02006

Pennsylviania Dept. of Env Protection (NELAC): 68-04202 Texas Commission on Env. Quality (NELAC): T104704405-09-TX U.S. Dept. of Agriculture Foreign Soil Import: P330-10-00119 Commonwealth of Virginia (TNI): 480246

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 L-A-B DOD-ELAP Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification Connecticut Certification #: PH-0694 **Delaware Certification** Florida/TNI Certification #: E87683 Georgia Certification #: C040 Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133 Louisiana DHH/TNI Certification #: LA140008 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: PA00091 Marvland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification Missouri Certification #: 235

Montana Certification #: Cert 0082 Nebraska Certification #: NE-05-29-14 Nevada Certification #: PA014572015-1 New Hampshire/TNI Certification #: 2976 New Jersey/TNI Certification #: PA 051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Oregon/TNI Certification #: PA200002 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: TN2867 Texas/TNI Certification #: T104704188-14-8 Utah/TNI Certification #: PA014572015-5 USDA Soil Permit #: P330-14-00213 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Certification Wyoming Certification #: 8TMS-L

Dallas Certification IDs:

400 West Bethany Dr Suite 190, Allen, TX 75013 EPA# TX00074 Florida Certification #: E871118 Texas Certification #: T104704232 Kansas Certification #: E-10388 Arkansas Certification #: 88-0647 Oklahoma Certification #: 8727 Louisiana Certification #: 30686 Iowa Certification #: 408 Florida Certification #: E871118 Nevada Certification #: TX00074

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: 16215106.00/Sandy Creek

Pace Project No.: 7579575

Lab ID	Sample ID	Matrix	Date Collected	Date Received
7579575001	MW-1	Water	12/20/17 12:55	12/22/17 07:21
7579575002	MW-2	Water	12/20/17 13:25	12/22/17 07:21
7579575003	MW-3	Water	12/20/17 13:55	12/22/17 07:21
7579575004	BW-1	Water	12/20/17 12:10	12/22/17 07:21
7579575005	DUP	Water		12/22/17 07:21

SAMPLE ANALYTE COUNT

Project:16215106.00/Sandy CreekPace Project No.:7579575

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
7579575001		EPA 6010	DT1		PASI-D
		EPA 6010	KJR	1	PASI-N
		EPA 6020	KJR	2	PASI-N
		EPA 7470	IZC	1	PASI-D
		EPA 903.1	KAC	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2540C	NT	1	PASI-D
		EPA 9040	TMS	1	PASI-D
		EPA 9056A	LNF	3	PASI-D
579575002	MW-2	EPA 6010	DT1, SPS	11	PASI-D
		EPA 6010	KJR	1	PASI-N
		EPA 6020	KJR	2	PASI-N
		EPA 7470	IZC	1	PASI-D
		EPA 903.1	KAC	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2540C	NT	1	PASI-D
		EPA 9040	TMS	1	PASI-D
		EPA 9056A	LNF	3	PASI-D
579575003	MW-3	EPA 6010	DT1	11	PASI-D
		EPA 6010	KJR	1	PASI-N
		EPA 6020	KJR	2	PASI-N
		EPA 7470	IZC	1	PASI-D
		EPA 903.1	KAC	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2540C	NT	1	PASI-D
		EPA 9040	TMS	1	PASI-D
		EPA 9056A	LNF	3	PASI-D
579575004	BW-1	EPA 6010	DT1	11	PASI-D
		EPA 6010	KJR	1	PASI-N
		EPA 6020	KJR	2	PASI-N
		EPA 7470	IZC	1	PASI-D
		EPA 903.1	KAC	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2540C	NT	1	PASI-D
		EPA 9040	TMS	1	PASI-D
		EPA 9056A	LNF	3	PASI-D
579575005	DUP	EPA 6010	DT1	11	PASI-D

SAMPLE ANALYTE COUNT

Project:	16215106.00/Sandy Creek
Pace Project No.:	7579575

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 6010	KJR	1	PASI-N
		EPA 6020	KJR	2	PASI-N
		EPA 7470	IZC	1	PASI-D
		EPA 903.1	KAC	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2540C	NT	1	PASI-D
		EPA 9040	TMS	1	PASI-D
		EPA 9056A	LNF	3	PASI-D

Project: 16215106.00/Sandy Creek

Pace Project No.: 7579575

Sample: MW-1	Lab ID:	7579575001	Collecte	ed: 12/20/1	7 12:55	Received: 12/	22/17 07:21 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 Metals, Total	Analytica	Method: EPA	6010 Prepa	aration Meth	od: EPA	3010			
Lithium	0.38	mg/L	0.050	0.012	1	12/28/17 07:50	12/29/17 13:53	7439-93-2	
Arsenic	ND	mg/L	0.0060	0.0037	1	12/26/17 06:05	12/27/17 15:31	7440-38-2	
Barium	0.017	mg/L	0.010	0.0033	1	12/26/17 06:05	12/27/17 15:31	7440-39-3	
Beryllium	ND	mg/L	0.0010	0.00017	1	12/26/17 06:05	12/27/17 15:31	7440-41-7	
Boron	1.3	mg/L	0.10	0.018	1	12/26/17 06:05	12/27/17 15:31	7440-42-8	
Cadmium	ND	mg/L	0.0050	0.00061	1	12/26/17 06:05	12/27/17 15:31	7440-43-9	
Calcium	548	mg/L	1.0	0.33	1	12/26/17 06:05	12/27/17 15:31	7440-70-2	
Chromium	ND	mg/L	0.0070	0.0021	1	12/26/17 06:05	12/27/17 15:31	7440-47-3	
Cobalt	ND	mg/L	0.0025	0.00049	1	12/26/17 06:05	12/27/17 15:31	7440-48-4	
Lead	ND	mg/L	0.010	0.0017	1	12/26/17 06:05	12/27/17 15:31	7439-92-1	
Molybdenum	ND	mg/L	0.030	0.0097	1	12/26/17 06:05	12/27/17 15:31	7439-98-7	
Selenium	0.18	mg/L	0.020	0.0042	1	12/26/17 06:05	12/27/17 15:31	7782-49-2	
6020 MET ICPMS	Analytica	Method: EPA	6020 Prepa	aration Meth	od: EPA	3010			
Antimony	ND	mg/L	0.0010	0.00025	1	01/02/18 07:46	01/02/18 12:16	7440-36-0	
Thallium	ND	mg/L	0.00050	0.00012	1	01/02/18 07:46	01/02/18 12:16	7440-28-0	
7470 Mercury	Analytica	Method: EPA	7470 Prepa	aration Meth	od: EPA	7470			
Mercury	ND	mg/L	0.00020	0.000070	1	12/27/17 07:02	12/27/17 13:58	7439-97-6	
2540C Total Dissolved Solids	Analytica	Method: SM 2	540C						
Total Dissolved Solids	4250	mg/L	62.5	62.5	1		12/22/17 22:56		
9040 pH	Analytica	Method: EPA	9040						
pH at 25 Degrees C	7.4	Std. Units	0.10	0.10	1		12/26/17 12:24		H6
9056 IC Anions	Analytica	Method: EPA	9056A						
Chloride	248	mg/L	80.0	35.8	100		01/11/18 17:12	16887-00-6	
Fluoride	1.1	mg/L	0.50	0.18	1		01/11/18 14:14	16984-48-8	
Sulfate	2340	mg/L	700	393	1000		01/12/18 14:22	14808-79-8	

Project: 16215106.00/Sandy Creek

Pace Project No.: 7579575

Sample: MW-2	Lab ID:	7579575002	Collecte	ed: 12/20/1	7 13:25	Received: 12/	22/17 07:21 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 Metals, Total	Analytical	Method: EPA	6010 Prepa	aration Meth	od: EP/	A 3010			
Arsenic	ND	mg/L	0.012	0.0074	2	12/26/17 06:05	12/28/17 14:50	7440-38-2	D3
Lithium	0.74	mg/L	0.050	0.012	1	12/28/17 07:50	12/29/17 14:17	7439-93-2	
Barium	0.022	mg/L	0.010	0.0033	1	12/26/17 06:05	12/27/17 15:38	7440-39-3	
Beryllium	ND	mg/L	0.0010	0.00017	1	12/26/17 06:05	12/27/17 15:38	7440-41-7	
Boron	2.2	mg/L	0.10	0.018	1	12/26/17 06:05	12/27/17 15:38	7440-42-8	
Cadmium	ND	mg/L	0.010	0.0012	2	12/26/17 06:05	12/28/17 14:50	7440-43-9	D3
Calcium	716	mg/L	1.0	0.33	1	12/26/17 06:05	12/27/17 15:38	7440-70-2	
Chromium	ND	mg/L	0.014	0.0042	2	12/26/17 06:05	12/28/17 14:50	7440-47-3	D3
Cobalt	0.0072	mg/L	0.0050	0.00098	2	12/26/17 06:05	12/28/17 14:50	7440-48-4	D3
Lead	ND	mg/L	0.020	0.0033	2	12/26/17 06:05	12/28/17 14:50	7439-92-1	D3
Molybdenum	ND	mg/L	0.030	0.0097	1	12/26/17 06:05	12/27/17 15:38	7439-98-7	
Selenium	ND	mg/L	0.040	0.0084	2	12/26/17 06:05	12/28/17 14:50	7782-49-2	D3
6020 MET ICPMS	Analytical	Method: EPA	6020 Prepa	aration Meth	od: EPA	A 3010			
Antimony	ND	mg/L	0.0010	0.00025	1	01/02/18 07:46	01/02/18 12:20	7440-36-0	
Thallium	ND	mg/L	0.00050	0.00012	1	01/02/18 07:46	01/02/18 12:20	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470 Prepa	aration Meth	od: EPA	A 7470			
Mercury	ND	mg/L	0.00020	0.000070	1	12/27/17 07:02	12/27/17 14:00	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
Total Dissolved Solids	9600	mg/L	500	500	1		12/27/17 17:51		
9040 pH	Analytical	Method: EPA	9040						
pH at 25 Degrees C	7.2	Std. Units	0.10	0.10	1		12/26/17 12:33		H6
9056 IC Anions	Analytical	Method: EPA	9056A						
Chloride	2590	mg/L	800	358	1000		01/12/18 14:40	16887-00-6	
Fluoride	ND	mg/L	0.50	0.18	1		01/11/18 14:31	16984-48-8	
Sulfate	3100	mg/L	700	393	1000		01/12/18 14:40	14808-79-8	

Project: 16215106.00/Sandy Creek

Pace Project No.: 7579575

Sample: MW-3	Lab ID:	7579575003	Collecte	ed: 12/20/1	7 13:55	Received: 12/	22/17 07:21 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 Metals, Total	Analytica	I Method: EPA	6010 Prepa	aration Meth	od: EPA	3010			
Lithium	0.92	mg/L	0.050	0.012	1	12/28/17 07:50	12/29/17 14:21	7439-93-2	
Arsenic	ND	mg/L	0.0060	0.0037	1	12/26/17 06:05	12/27/17 15:45	7440-38-2	
Barium	0.034	mg/L	0.010	0.0033	1	12/26/17 06:05	12/27/17 15:45	7440-39-3	
Beryllium	ND	mg/L	0.0010	0.00017	1	12/26/17 06:05	12/27/17 15:45	7440-41-7	
Boron	1.3	mg/L	0.10	0.018	1	12/26/17 06:05	12/27/17 15:45	7440-42-8	
Cadmium	ND	mg/L	0.0050	0.00061	1	12/26/17 06:05	12/27/17 15:45	7440-43-9	
Calcium	563	mg/L	1.0	0.33	1	12/26/17 06:05	12/27/17 15:45	7440-70-2	
Chromium	ND	mg/L	0.0070	0.0021	1	12/26/17 06:05	12/27/17 15:45	7440-47-3	
Cobalt	0.0086	mg/L	0.0025	0.00049	1	12/26/17 06:05	12/27/17 15:45	7440-48-4	
Lead	ND	mg/L	0.010	0.0017	1	12/26/17 06:05	12/27/17 15:45	7439-92-1	
Molybdenum	ND	mg/L	0.030	0.0097	1	12/26/17 06:05	12/27/17 15:45	7439-98-7	
Selenium	ND	mg/L	0.020	0.0042	1	12/26/17 06:05	12/27/17 15:45	7782-49-2	
6020 MET ICPMS	Analytica	I Method: EPA	6020 Prepa	aration Meth	od: EPA	3010			
Antimony	ND	mg/L	0.0010	0.00025	1	01/02/18 07:46	01/02/18 12:31	7440-36-0	
Thallium	ND	mg/L	0.00050	0.00012	1	01/02/18 07:46	01/02/18 12:31	7440-28-0	
7470 Mercury	Analytica	I Method: EPA	7470 Prepa	aration Meth	od: EPA	7470			
Mercury	ND	mg/L	0.00020	0.000070	1	12/27/17 07:02	12/27/17 14:02	7439-97-6	
2540C Total Dissolved Solids	Analytica	I Method: SM 2	540C						
Total Dissolved Solids	5790	mg/L	83.3	83.3	1		12/27/17 17:49		
9040 pH	Analytica	I Method: EPA	9040						
pH at 25 Degrees C	6.8	Std. Units	0.10	0.10	1		12/26/17 12:47		H6
9056 IC Anions	Analytica	I Method: EPA	9056A						
Chloride	380	mg/L	80.0	35.8	100		01/11/18 17:48	16887-00-6	
Fluoride	0.61	mg/L	0.50	0.18	1		01/11/18 14:49	16984-48-8	
Sulfate	2830	mg/L	700	393	1000		01/12/18 14:58	14808-79-8	

Project: 16215106.00/Sandy Creek

Pace Project No.: 7579575

Sample: BW-1	Lab ID:	7579575004	Collecte	ed: 12/20/1	7 12:10	Received: 12/	22/17 07:21 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 Metals, Total	Analytica	I Method: EPA	6010 Prepa	aration Meth	od: EPA	3010			
Arsenic	ND	mg/L	0.0060	0.0037	1	12/26/17 06:05	12/27/17 15:51	7440-38-2	
Lithium	0.73	mg/L	0.050	0.012	1	12/28/17 07:50	12/29/17 14:25	7439-93-2	
Barium	0.044	mg/L	0.010	0.0033	1	12/26/17 06:05	12/27/17 15:51	7440-39-3	
Beryllium	ND	mg/L	0.0010	0.00017	1	12/26/17 06:05	12/27/17 15:51	7440-41-7	
Boron	3.5	mg/L	0.10	0.018	1	12/26/17 06:05	12/27/17 15:51	7440-42-8	
Cadmium	ND	mg/L	0.0050	0.00061	1	12/26/17 06:05	12/27/17 15:51	7440-43-9	
Calcium	658	mg/L	1.0	0.33	1	12/26/17 06:05	12/27/17 15:51	7440-70-2	
Chromium	ND	mg/L	0.0070	0.0021	1	12/26/17 06:05	12/27/17 15:51	7440-47-3	
Cobalt	0.0034	mg/L	0.0025	0.00049	1	12/26/17 06:05	12/27/17 15:51	7440-48-4	
Lead	ND	mg/L	0.010	0.0017	1	12/26/17 06:05	12/27/17 15:51	7439-92-1	
Molybdenum	ND	mg/L	0.030	0.0097	1	12/26/17 06:05	12/27/17 15:51	7439-98-7	
Selenium	ND	mg/L	0.020	0.0042	1	12/26/17 06:05	12/27/17 15:51	7782-49-2	
6020 MET ICPMS	Analytica	I Method: EPA	6020 Prepa	aration Meth	od: EPA	3010			
Antimony	ND	mg/L	0.0010	0.00025	1	01/02/18 07:46	01/02/18 12:35	7440-36-0	
Thallium	ND	mg/L	0.00050	0.00012	1	01/02/18 07:46	01/02/18 12:35	7440-28-0	
7470 Mercury	Analytica	I Method: EPA	7470 Prepa	aration Meth	od: EPA	7470			
Mercury	ND	mg/L	0.00020	0.000070	1	12/27/17 07:02	12/27/17 14:03	7439-97-6	
2540C Total Dissolved Solids	Analytica	I Method: SM 2	540C						
Total Dissolved Solids	6140	mg/L	83.3	83.3	1		12/27/17 17:50		
9040 pH	Analytica	I Method: EPA	9040						
pH at 25 Degrees C	7.2	Std. Units	0.10	0.10	1		12/26/17 12:21		H6
9056 IC Anions	Analytica	I Method: EPA	9056A						
Chloride	1030	mg/L	80.0	35.8	100		01/11/18 18:06	16887-00-6	
Fluoride	ND	mg/L	0.50	0.18	1		01/11/18 15:07	16984-48-8	
Sulfate	2620	mg/L	700	393	1000		01/12/18 15:16	14808-79-8	

Project: 16215106.00/Sandy Creek

Pace Project No.: 7579575

Sample: DUP	Lab ID:	7579575005	Collecte	ed:		Received: 12/	22/17 07:21 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 Metals, Total	Analytica	I Method: EPA	6010 Prepa	aration Meth	od: EP/	A 3010			
Lithium	0.71	mg/L	0.050	0.012	1	12/28/17 07:50	12/29/17 14:30	7439-93-2	
Arsenic	ND	mg/L	0.0060	0.0037	1	12/26/17 06:05	12/27/17 15:58	7440-38-2	
Barium	0.044	mg/L	0.010	0.0033	1	12/26/17 06:05	12/27/17 15:58	7440-39-3	
Beryllium	ND	mg/L	0.0010	0.00017	1	12/26/17 06:05	12/27/17 15:58	7440-41-7	
Boron	3.3	mg/L	0.10	0.018	1	12/26/17 06:05	12/27/17 15:58	7440-42-8	
Cadmium	ND	mg/L	0.0050	0.00061	1	12/26/17 06:05	12/27/17 15:58	7440-43-9	
Calcium	630	mg/L	1.0	0.33	1	12/26/17 06:05	12/27/17 15:58	7440-70-2	
Chromium	ND	mg/L	0.0070	0.0021	1	12/26/17 06:05	12/27/17 15:58	7440-47-3	
Cobalt	0.0031	mg/L	0.0025	0.00049	1	12/26/17 06:05	12/27/17 15:58	7440-48-4	
Lead	ND	mg/L	0.010	0.0017	1	12/26/17 06:05	12/27/17 15:58	7439-92-1	
Molybdenum	ND	mg/L	0.030	0.0097	1	12/26/17 06:05	12/27/17 15:58	7439-98-7	
Selenium	ND	mg/L	0.020	0.0042	1	12/26/17 06:05	12/27/17 15:58	7782-49-2	
6020 MET ICPMS	Analytica	I Method: EPA	6020 Prepa	aration Meth	od: EP/	A 3010			
Antimony	ND	mg/L	0.0010	0.00025	1	01/02/18 07:46	01/02/18 12:39	7440-36-0	
Thallium	ND	mg/L	0.00050	0.00012	1	01/02/18 07:46	01/02/18 12:39	7440-28-0	
7470 Mercury	Analytica	I Method: EPA	7470 Prepa	aration Meth	od: EP/	A 7470			
Mercury	ND	mg/L	0.00020	0.000070	1	12/27/17 07:02	12/27/17 14:05	7439-97-6	
2540C Total Dissolved Solids	Analytica	I Method: SM 2	540C						
Total Dissolved Solids	6100	mg/L	83.3	83.3	1		12/27/17 17:50		
9040 pH	Analytica	I Method: EPA	9040						
pH at 25 Degrees C	7.4	Std. Units	0.10	0.10	1		12/26/17 12:52		H6
9056 IC Anions	Analytica	I Method: EPA	9056A						
Chloride	1080	mg/L	80.0	35.8	100		01/11/18 18:24	16887-00-6	
Fluoride	ND	mg/L	0.50	0.18	1		01/11/18 15:25	16984-48-8	
Sulfate	2870	mg/L	700	393	1000		01/12/18 15:33	14808-79-8	

Project:	16215106.00/Sand	dy Creek										
Pace Project No.:	7579575											
QC Batch:	89710		Analysi	s Method:	E	EPA 7470						
QC Batch Method:	EPA 7470		Analysi	s Descript	ion: 7	470 Mercury	y					
Associated Lab San	nples: 75795750	01, 7579575002, 7	579575003,	75795750	004, 7579	575005						
METHOD BLANK:	397217		N	latrix: Wat	ter							
Associated Lab San	ples: 75795750	01, 7579575002, 7	579575003,	75795750	004, 7579	575005						
			Blank	R	eporting							
Paran	neter	Units	Result		Limit	MDL		Analyzed	Qua	alifiers		
Mercury		mg/L		ND	0.00020	0.00	0070 12	2/27/17 13	:51			
LABORATORY CON	ITROL SAMPLE:	397218										
			Spike	LCS	;	LCS	% R	ec				
Paran	neter	Units	Conc.	Resu	lt	% Rec	Limi	ts	Qualifiers			
Mercury		mg/L	.0025	0	.0028	112	;	83-117		-		
MATRIX SPIKE & M	ATRIX SPIKE DUP	LICATE: 39721	9		397220							
			MS	MSD								
		7579575001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r Uni	ts Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury	mg/	 /L ND	.0025	.0025	0.0032	0.0028	12	7 11	12 37-137	13	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 16215106.00/Sandy Creek

Pace Project No.: 7579575

QC Batch:	8962	6	Analysis Method:	EPA 6010
QC Batch Method:	EPA 3	3010	Analysis Description:	6010 MET
Associated Lab Sam	ples:	7579575001, 7	579575002, 7579575003, 7579575004, 7	7579575005

Matrix: Water

METHOD BLANK:	396893

Associated Lab Samples:	7579575001	7579575002	7579575003	7579575004	7579575005
Associated Lab Samples.	7579575001,	1519515002,	1519515005,	1519515004,	1519515005

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Arsenic	mg/L	ND	0.0060	0.0037	12/26/17 13:33	
Barium	mg/L	ND	0.010	0.0033	12/26/17 13:33	
Beryllium	mg/L	ND	0.0010	0.00017	12/26/17 13:33	
Boron	mg/L	ND	0.10	0.018	12/26/17 13:33	
Cadmium	mg/L	ND	0.0050	0.00061	12/26/17 13:33	
Calcium	mg/L	ND	1.0	0.33	12/26/17 13:33	
Chromium	mg/L	ND	0.0070	0.0021	12/26/17 13:33	
Cobalt	mg/L	ND	0.0025	0.00049	12/26/17 13:33	
Lead	mg/L	ND	0.010	0.0017	12/26/17 13:33	
Molybdenum	mg/L	ND	0.030	0.0097	12/27/17 15:00	
Selenium	mg/L	ND	0.020	0.0042	12/26/17 13:33	

LABORATORY CONTROL SAMPLE: 396894

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/L	1	1.1	106	83-111	
Barium	mg/L	1	1.1	106	87-116	
Beryllium	mg/L	1	1.1	108	86-113	
Boron	mg/L	1	1.1	109	80-120	
Cadmium	mg/L	1	1.1	108	86-113	
Calcium	mg/L	10	10.6	106	85-114	
Chromium	mg/L	1	1.0	104	89-114	
Cobalt	mg/L	1	1.1	112	90-117	
Lead	mg/L	1	1.1	112	90-117	
Molybdenum	mg/L	1	1.1	106	80-120	
Selenium	mg/L	1	1.1	112	83-121	

MATRIX SPIKE & MATRIX S		CATE: 39689	5		396896							
Parameter	Units	7579488001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Arsenic	mg/L	ND	1	1	1.1	1.1	110	110	71-126	1	20	
Barium	mg/L	90.8 ug/L	1	1	1.2	1.2	108	108	66-124	0	20	
Beryllium	mg/L	ND	1	1	1.1	1.1	110	110	67-123	0	20	
Boron	mg/L	ND	1	1	1.1	1.1	110	111	76-126	1	20	
Cadmium	mg/L	ND	1	1	1.1	1.1	111	111	70-130	0	20	
Calcium	mg/L	103000 ug/L	10	10	111	109	78	54	10-200	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 16215106.00/Sandy Creek Pace Project No.: 7579575

MATRIX SPIKE & MATRIX S	SPIKE DUPLIC	CATE: 39689	5		396896							
		7579488001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chromium	mg/L	 ND	1	1	1.0	1.0	103	103	68-123	0	20	
Cobalt	mg/L	ND	1	1	1.1	1.1	111	111	52-134	0	20	
Lead	mg/L	ND	1	1	1.1	1.1	111	111	56-130	0	20	
Molybdenum	mg/L	ND	1	1	1.1	1.1	107	107	75-125	0	20	
Selenium	mg/L	ND	1	1	1.2	1.2	115	115	70-139	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	16215106.00	/Sandy C	reek											
Pace Project No.:	7579575													
QC Batch:	97879			Analys	sis Method	: E	PA 6010							
QC Batch Method:	EPA 3010			Analys	sis Descrip	tion: 6	010 MET							
Associated Lab Sar	nples: 7579	575001,	7579575002, 7	7579575003	, 7579575	004, 75795	575005							
METHOD BLANK:	421455			Ν	Matrix: Wa	iter								
Associated Lab Sar	nples: 7579	575001,	7579575002, 7	7579575003	, 7579575	004, 75795	575005							
				Blank	K R	Reporting								
Paran	neter		Units	Resu	t	Limit	MDL		Analyze	ed	Qua	alifiers		
Lithium			mg/L		ND	0.050)	0.012	12/29/17 1	3:45				
LABORATORY COI	NTROL SAMP	LE: 42 ⁻	1456											
				Spike	LCS	5	LCS	%	Rec					
Paran	neter		Units	Conc.	Resi	ult	% Rec	Li	imits	Qu	alifiers			
Lithium			mg/L	1		0.98	98	3	80-120			-		
MATRIX SPIKE & M	IATRIX SPIKE	DUPLIC	ATE: 42145	57		421458								
				MS	MSD									
										`	0/ D			
			7579575001	Spike	Spike	MS	MSD	MS		-	% Rec		Max	
Paramete	er	Units	7579575001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Re		-	% Rec Limits	RPD		Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	16215106.00	/Sandy Cre	eek										
Pace Project No.:	7579575												
QC Batch:	98006			Analysi	s Method	: E	PA 6020						
QC Batch Method:	EPA 3010			Analysi	s Descrip	tion: 6	020 MET						
Associated Lab San	nples: 7579	575001, 75	579575002,	7579575003,	7579575	004, 75795	75005						
METHOD BLANK:	422024			N	latrix: Wa	iter							
Associated Lab San	nples: 7579	575001, 7	579575002,	7579575003,	7579575	004, 75795	75005						
				Blank	F	Reporting							
Paran	neter		Units	Result	:	Limit	MDL		Analyzed	Qua	alifiers		
Antimony			mg/L		ND	0.0010			/02/18 11:5				
Thallium			mg/L		ND	0.00050	0.0	0012 01	/02/18 11:53	3			
LABORATORY COM	NTROL SAMP	LE: 4220)25										
				Spike	LCS	5	LCS	% Re	с				
Paran	neter		Units	Conc.	Resi	ult	% Rec	Limit	s Q	ualifiers			
Antimony			mg/L	.02		0.018	92	8	5-115				
Thallium			mg/L	.02		0.018	90	8	2-115				
MATRIX SPIKE & M	IATRIX SPIKE		TE: 4220	26		422027							
				MS	MSD								
		2	2067709002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony		mg/L	ND		.02	0.0085	0.0084	42	41	80-120	2	20	M1
Thallium		mg/L	ND	.02	.02	0.019	0.019	96	95	80-120	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 162	215106.00/San	dy Creek							
Pace Project No.: 757	79575								
QC Batch: 89	9659		Analysis I	Method:	SM 25400	2			
QC Batch Method: S	M 2540C		Analysis [Description:	2540C To	tal Disso	lved Solids		
Associated Lab Samples	s: 75795750	01							
METHOD BLANK: 397	7058		Mat	rix: Water					
Associated Lab Samples	s: 75795750	01							
Paramete	r	Units	Blank Result	Reportii Limit	-	DL	Analyz	zed	Qualifiers
Total Dissolved Solids		mg/L	N	ID	25.0	25.0	12/22/17	22:42	
LABORATORY CONTR	OL SAMPLE:	397059							
Paramete	r	Units	Spike Conc.	LCS Result	LCS % Rec		% Rec Limits	Qua	alifiers
Total Dissolved Solids		mg/L	250	258	,	03	85-115		
SAMPLE DUPLICATE:	397060								
			757951700				Max		
Paramete	r	Units	Result	Resul	R	PD	RPD		Qualifiers
Total Dissolved Solids		mg/L	6	16	615	0		5	
SAMPLE DUPLICATE:	397061								
			757957500		_		Max		
Paramete	r	Units	Result	Result		PD	RPD		Qualifiers
Total Dissolved Solids		mg/L	428	50	1250	0		5	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: Pace Project No.:	16215106.00/Sar 7579575	ndy Creek						
QC Batch:	89790		Analysis M	ethod:	SM 2540C			
QC Batch Method:	SM 2540C		Analysis De		2540C Total D	issolved Solids		
Associated Lab Sam	nples: 7579575	002, 7579575003,	7579575004, 757	9575005				
METHOD BLANK:	397449		Matrix	k: Water				
Associated Lab Sam	nples: 7579575	002, 7579575003,	7579575004, 757	9575005				
			Blank	Reporting				
Param	neter	Units	Result	Limit	MDL	Analyz	zed	Qualifiers
Total Dissolved Solid	ds	mg/L	NE) 25.	0 2	25.0 12/27/17	17:46	
LABORATORY CON	NTROL SAMPLE:	397450						
			Spike	LCS	LCS	% Rec		
Param	neter	Units	Conc.	Result	% Rec	Limits	Qual	ifiers
Total Dissolved Solid	ds	mg/L	250	241	96	85-115		
SAMPLE DUPLICAT	TE: 397537							
			7579600013	Dup		Max		
Param	neter	Units	Result	Result	RPD	RPD		Qualifiers
Total Dissolved Solid	ds	mg/L	70300	7040	0	0	5	
SAMPLE DUPLICAT	TE: 397538							
			7579600014	Dup		Max		
Param	neter	Units	Result	Result	RPD	RPD		Qualifiers
Total Dissolved Solid		mg/L		5370		2	5	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	16215106.00/Sar	ndy Creek					
Pace Project No.:	7579575						
QC Batch:	89684		Analysis M	lethod:	EPA 9040		
QC Batch Method:	EPA 9040		Analysis D	escription:	9040 pH		
Associated Lab Sar	mples: 75795750	001, 7579575002, 7	7579575003, 75	79575004, 757	9575005		
LABORATORY CO	NTROL SAMPLE:	397144					
			Spike	LCS	LCS	% Rec	
Parar	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers
pH at 25 Degrees C		Std. Units	6	6.0	100	99-101	H6
SAMPLE DUPLICA	TE: 397145						
			7579315001	Dup		Max	
Parar	neter	Units	Result	Result	RPD	RPD	Qualifiers
pH at 25 Degrees C	;	Std. Units	6.8	8	6.8	0	20 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA

Project: 16215106.00/Sandy Creek

Pace Project No.: 7579575

Face	FIOJECLINO	1519515

QC Batch:	9049	2	Analysis Method:	EPA 9056A
QC Batch Method:	EPA	9056A	Analysis Description:	9056 IC Anions
Associated Lab Sam	ples:	7579575001, 7579575002, 7	7579575003, 7579575004, 75	79575005

METHOD BLANK: 401010		Ma	atrix: Water			
Associated Lab Samples: 75795	75001, 7579575002,	7579575003, 7	7579575004, 75	79575005		
		Blank	Reporting	3		
Parameter	Units	Result	Limit	MDL	Analyz	zed Qualifier
Chloride	mg/L			.80	0.36 01/11/18	12:44
Fluoride	mg/L		ND 0	.50	0.18 01/11/18	12:44
Sulfate	mg/L		ND 0	.70	0.39 01/11/18	12:44
LABORATORY CONTROL SAMPLE	E: 401011					
LABORATORT CONTROL SAMPLE	L. 401011	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		5.0	101	90-110	
The second of the	mg/L	5	5.0	100	90-110	
Fluoride	ing/L	•	0.0			

MATRIX SPIKE & MATRIX SPIK		CATE: 40101	2		401013						
			MS	MSD							
		7579315001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD I	RPD Qual
Chloride	mg/L	6.9	5.6	5.6	13.6	13.7	121	122	80-120	1	15 M1
Fluoride	mg/L	0.24J	5.6	5.6	4.5	4.5	76	78	80-120	2	15 M1
Sulfate	mg/L	23.8	50	50	77.9	78.4	108	109	80-120	1	15

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC. VI.C-40

Project: 16215106.00/Sandy Creek

Pace Project No.: 7579575

Sample: MW-1 PWS:	Lab ID: 75795750 Site ID:	01 Collected: 12/20/17 12:55 Sample Type:	Received:	12/22/17 07:21	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		1.26 ± 0.680 (0.686) C:NA T:86%	pCi/L	01/12/18 17:39	9 13982-63-3	
Radium-228		2.46 ± 0.888 (1.38) C:75% T:61%	pCi/L	01/11/18 12:48	3 15262-20-1	

Project: 16215106.00/Sandy Creek

Pace Project No.: 7579575

Sample: MW-2 PWS:	Lab ID: 757957 Site ID:	75002 Collected: 12/20/17 13:25 Sample Type:	Received:	12/22/17 07:21	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.945 ± 0.578 (0.709) C:NA T:100%	pCi/L	01/12/18 17:54	4 13982-63-3	
Radium-228	EPA 904.0	4.07 ± 0.940 (0.702) C:80% T:84%	pCi/L	01/11/18 12:48	8 15262-20-1	

Project: 16215106.00/Sandy Creek

Pace Project No.: 7579575

Sample: MW-3 PWS:	Lab ID: 757957 Site ID:	5003 Collected: 12/20/17 13:55 Sample Type:	Received:	12/22/17 07:21	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.626 ± 0.567 (0.835) C:NA T:95%	pCi/L	01/12/18 17:54	4 13982-63-3	
Radium-228	EPA 904.0	2.77 ± 0.728 (0.734) C:78% T:84%	pCi/L	01/11/18 12:48	3 15262-20-1	

Project: 16215106.00/Sandy Creek

Pace Project No.: 7579575

Sample: BW-1 PWS:	Lab ID: 7579575 Site ID:	004 Collected: 12/20/17 12:10 Sample Type:	Received:	12/22/17 07:21	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	1.07 ± 0.681 (0.878) C:NA T:92%	pCi/L	01/12/18 17:54	4 13982-63-3	
Radium-228	EPA 904.0	3.13 ± 0.788 (0.742) C:76% T:85%	pCi/L	01/11/18 12:48	3 15262-20-1	

Project: 16215106.00/Sandy Creek

Pace Project No.: 7579575

Sample: DUP PWS:	Lab ID: 75795 Site ID:	75005 Collected: Sample Type:	Received:	12/22/17 07:21	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	1.54 ± 0.774 (0.877) C:NA T:90%	pCi/L	01/12/18 17:54	4 13982-63-3	
Radium-228	EPA 904.0	2.78 ± 0.712 (0.650) C:81% T:80%	pCi/L	01/11/18 12:49	9 15262-20-1	

QUALITY CONTROL - RADIOCHEMISTRY

Project:	16215106.00/Sar	ndy Creek				
Pace Project No.:	7579575					
QC Batch:	283643	Analysis Method:	EPA 903.1			
QC Batch Method:	EPA 903.1	Analysis Descript	ion: 903.1 Radiu	m-226		
Associated Lab Sa	mples: 7579575	001, 7579575002, 7579575003, 75795750	004, 7579575005			
METHOD BLANK:	1392418	Matrix: Wat	er			
Associated Lab Sa	mples: 7579575	001, 7579575002, 7579575003, 75795750	004, 7579575005			
Para	meter	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers	
Radium-226		0.506 ± 0.433 (0.587) C:NA T:96%	pCi/L	01/12/18 17:39		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC. VI.C-46

QUALITY CONTROL - RADIOCHEMISTRY

Project:	16215106.00/Sa	ndy Creek					
Pace Project No.:	7579575						
QC Batch:	283773	Ana	lysis Method:	EPA 904.0			
QC Batch Method:	EPA 904.0	Ana	lysis Description:	904.0 Radium	228		
Associated Lab Sa	mples: 7579575	001, 7579575002, 75795750	03, 7579575004, 7	579575005			
METHOD BLANK:	1392877		Matrix: Water				
Associated Lab Sa	mples: 7579575	001, 7579575002, 75795750	03, 7579575004, 7	579575005			
Doro		Act ± Unc (MDC) (Units	Analyzed	Qualifiers	
Pala	ameter	ACLE UNC (MDC) (Units	Analyzeu	Quaimers	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC. VI.C-47

QUALIFIERS

Project: 16215106.00/Sandy Creek

Pace Project No.: 7579575

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The Nelac Institute

LABORATORIES

- PASI-D Pace Analytical Services Dallas
- PASI-N Pace Analytical Services New Orleans
- PASI-PA Pace Analytical Services Greensburg

ANALYTE QUALIFIERS

- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:16215106.00/Sandy CreekPace Project No.:7579575

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
7579575001	MW-1	EPA 3010	89626	EPA 6010	89702
7579575001	MW-1	EPA 3010	97879	EPA 6010	97949
7579575002	MW-2	EPA 3010	89626	EPA 6010	89702
7579575002	MW-2	EPA 3010	97879	EPA 6010	97949
7579575003	MW-3	EPA 3010	89626	EPA 6010	89702
7579575003	MW-3	EPA 3010	97879	EPA 6010	97949
7579575004	BW-1	EPA 3010	89626	EPA 6010	89702
7579575004	BW-1	EPA 3010	97879	EPA 6010	97949
7579575005	DUP	EPA 3010	89626	EPA 6010	89702
7579575005	DUP	EPA 3010	97879	EPA 6010	97949
7579575001	MW-1	EPA 3010	98006	EPA 6020	98126
7579575002	MW-2	EPA 3010	98006	EPA 6020	98126
579575002 7579575003	MW-2 MW-3	EPA 3010	98006	EPA 6020	98120
	BW-1				98126
579575004 570575005	DUP	EPA 3010	98006	EPA 6020	
579575005	DOP	EPA 3010	98006	EPA 6020	98126
579575001	MW-1	EPA 7470	89710	EPA 7470	89738
579575002	MW-2	EPA 7470	89710	EPA 7470	89738
579575003	MW-3	EPA 7470	89710	EPA 7470	89738
579575004	BW-1	EPA 7470	89710	EPA 7470	89738
579575005	DUP	EPA 7470	89710	EPA 7470	89738
579575001	MW-1	EPA 903.1	283643		
579575002	MW-2	EPA 903.1	283643		
579575003	MW-3	EPA 903.1	283643		
579575004	BW-1	EPA 903.1	283643		
579575005	DUP	EPA 903.1	283643		
579575001	MW-1	EPA 904.0	283773		
579575002	MW-2	EPA 904.0	283773		
579575003	MW-3	EPA 904.0	283773		
579575004	BW-1	EPA 904.0	283773		
579575005	DUP	EPA 904.0	283773		
7579575001	MW-1	SM 2540C	89659		
7579575002	MW-2	SM 2540C	89790		
579575003	MW-3	SM 2540C	89790		
579575004	BW-1	SM 2540C	89790		
579575005	DUP	SM 2540C	89790		
7579575001	MW-1	EPA 9040	89684		
579575002	MW-2	EPA 9040	89684		
579575003	MW-3	EPA 9040	89684		
579575004	BW-1	EPA 9040	89684		
7579575005	DUP	EPA 9040	89684		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:16215106.00/Sandy CreekPace Project No.:7579575

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
7579575001	 MW-1	EPA 9056A	90492		
7579575002	MW-2	EPA 9056A	90492		
7579575003	MW-3	EPA 9056A	90492		
7579575004	BW-1	EPA 9056A	90492		
7579575005	DUP	EPA 9056A	90492		

Pace Analytical [®]	Document Name: Sample Condition Upon Receipt	Document Revised: 09-26-17 Page 1 of 1
	Document No.: F-DAL-C-001-rev.07	Issuing Authority: Pace Dallas Quality Office
	Sample Condition Upon	Receipt
	⊠Dallas □Ft Worth	WO#:7579575
Client Name: <u>SCS Enginel</u> Courier: FedEX □ UPS □ USPS □ Client □ L Tracking #:		
Custody Seal on Cooler/Box: Yes 🗆 No		
Thermometer Used: IR C Type of Ic Cooler Temp °C: \mathcal{E}_{L} \mathcal{E}_{L} (Recorded) \mathcal{O}_{L}	ce:Wetr Blue 🗆 None 🗆 Sa	 Other Xi ample Received on ice, cooling process has begun xi ual) (Thermal preservation not required)
Chain of Custody Present	Yes No 🗆 NA 🗆	1
Chain of Custody filled out	Yes No 🗆 NA 🗆	2
Chain of Custody relinquished	Yes No 🗆 NA 🗆	3
Sampler name & signature on COC	Yes D No Z NA D	4
Sample received within HT	P 12/22/17 Yes No & NA -	5 of at of llold
Short HT analyses (<72 hrs)	Yes No D NA D	6 FIT OUT OF HOLD
Rush TAT requested	Yes D No Z NA D	7
Sufficient Volume received	Yes Yes No D NA D	8
Correct Container used	Yes I No I NA I	9
Pace Container used	Yes No D NA D	-
Container Intact	Yes No D NA D	10
Unpreserved 5035A soil frozen within 48 hrs	Yes D No D NA	11
Filtered volume received for Dissolved tests	Yes 🗆 No 🗆 NA 🗖	12
Sample labels match COC	Yes & No D NA D	13
Include date/time/ID/analyses Matrix:	Mater	1.20(2)
All containers needing preservation have been ch	necked Yes No 🗆 NA 🗆	14a. pH Strip Lot #: (2 203 20)
and found to be in Compliance with EPA recomm	nendation	Original pH: pH<2, pH>9 □ pH>12 □ Neutra
(includes residual chlorine checks)		Lot# of lodine strip:
Exception: VOA, coliform, O&G	Yes 🗆 No 🖉	Lot# of Lead Acetate strip:
Do containers require preservation at the lab Added 1.0/1,SmLHN03 to sample(Are soil samples (volatiles) received in Bulk D		14b. Preservation: Lot# and adjusted pH; $H \rightarrow H \rightarrow 0_3$ 99448 pH<2 p pH>9 \square pH>12 15.
Trip Blank present	Yes D No D NA	16.
Trip Blank Custody Seals Intact Pace Trip Blank Lot# (if purchased):	Yes D No D NA	
Headspace in VOA (>6mm)	Yes 🗆 No 🗆 NA 🖻	17.
Project sampled in USDA Regulated Area:	Yes 🗖 No 🗆	18. List State 丁文
Triage Person: <u>BB</u> Date: <u>12</u> 22/17 L	.ogin Person: DIP Date: 12 22	Labeling Person: DCP Date: 12/22/17
Client Notification/Resolution/Comments:		<i>y</i> .
Person Contacted:	Date:	
Comments/Resolution:		·
		9

•

Project Manager Review:

Face Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

ts must be completed	
MENTI All relevant Methanol Methanol <td>30 M</td>	30 M
ody is a LEGAL DOCUMENT. All section c attention: Invoice Information: Attention: Attention: Attentin:	
The Chain-of-Custody is a section of Custody is a sect	
Project Information: Project Information: Project Information: Dug Steen DU NULLING Sandy Creek DU NULLING Sa	
MATRIX MATRIX Mater Vide SoliSolid Alife Alife Alife	
section A Required Client Information: Comparison Section A Required Client Information: Comparison Sectorial Dr. Bedford, TX 76021 Email: disten@scsengineers.com Phone: NONE Fax: Requested Due Date: MWV-3 MWV	Page 31 of 31

APPENDIX C HISTORICAL GROUNDWATER ANALYTICAL DATA

APPENDIX C - GROUNDWATER ANALYTICAL DATA

2017 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

SANDY CREEK ENERGY STATION

2161 RATTLESNAKE ROAD

											RIESE	L, TX 76682											
	Boron	Calcium	Chloride	pH at 25°C	Sulfate	Total Dissolved Solids	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium-226	Radium-228	Combined Radium	Fluoride
Units	mg/L	mg/L	mg/L	Std. Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	pCi/L	pCi/L	pCi/L	mg/L
MW-1 12/14/2015	1.2	454	253	7.6	2090	4090	<0.0010	<0.0050	0.044	<0.0010	<0.0010	0.0073	<0.0025	<0.0050	0.43	<0.00020	<0.010	0.16	<0.00050	1.04 ± 0.838	1.09 ± 0.523	2.13	<0.30
2/25/2016	1.2	434 520	235	7.5	2090	4090	<0.0010	< 0.0050	0.044	<0.0010	<0.0010	0.0073	<0.0025	0.0030	0.43	<0.00020	<0.010	0.18	<0.00050	0.922 ± 0.720	1.09 ± 0.323	2.15	<0.30
5/11/2016	2.6	1030	402	7.2	2580	5260	<0.0010	0.12	1	0.029	<0.0010	0.69	0.0023	0.21	0.39	<0.00020	<0.010	0.039	0.00030	3.94 ± 1.31	8.39 ± 1.74	12.382	<0.30
8/16/2016	1.3	535	239	6.8	2300	3880	<0.0010	< 0.0050	0.022	< 0.0010	<0.0010	<0.0050	<0.0025	< 0.0050	0.41	<0.00020	<0.010	0.13	< 0.00050	0.593 ± 0.620	3.29 ± 0.828	3.883	0.35
11/17/2016	1.2	542	216	7	2130	3720	< 0.0010	< 0.0050	0.018	< 0.0010	< 0.0010	< 0.0050	< 0.0025	< 0.0050	0.37	< 0.00020	< 0.020	0.16	< 0.00050	0.338 ± 0.339	2.49 ± 0.783	2.828	< 0.30
2/23/2017	1.3	531	223	7	2350	3980	< 0.0010	<0.010	<0.20	< 0.0050	< 0.0050	< 0.010	<0.010	< 0.0050	0.44	< 0.00020	< 0.010	0.066	< 0.00050	-0.207 ± 0.945	3.13 ± 0.908	2.923	< 0.30
6/7/2017	1.2	530	203	7.5	2010	3680	< 0.0010	< 0.0050	0.019	< 0.0010	<0.0010	< 0.0050	< 0.0025	< 0.0050	0.36	< 0.00020	<0.020	0.15	< 0.00050	0.000 ± 0.449	1.30 ± 0.518	1.3	<0.30
8/24/2017	1.2	518	241	7.1	2620	4550	< 0.0010	< 0.0050	0.02	< 0.0010	< 0.0010	<0.0050	< 0.0025	<0.0050	0.395	<0.00020	<0.020	0.17	< 0.00050	0.577 ± 0.429	1.69 ± 0.634	2.267	0.4
12/20/2017	1.3	548	248	7.4	2340	4250	< 0.0010	<0.0060	0.017	< 0.0010	< 0.0050	<0.0070	< 0.0025	< 0.010	0.38	< 0.00020	<0.030	0.18	< 0.00050	1.26 ± 0.680	2.46 ± 0.888	3.72	1.1
MW-2																							
12/14/2015	1.9	569	1890	6.7	2810	8520	<0.0010	<0.0050	0.031	<0.0010	<0.0010	<0.0050	0.0061	<0.0050	0.69	<0.00020	<0.010	<0.010	<0.00050	1.41 ± 0.938	2.76 ± 0.771	4.17	0.98
2/25/2016	2.4	697	2080	7.3	2890	8070	< 0.0010	0.014	0.038	<0.0010	<0.0010	<0.0050	<0.011	<0.0050	0.74	<0.00020	<0.010	<0.010	<0.00050	0.857 ± 0.590	2.57 ± 0.665	3.427	<0.30
5/11/2016	2.2	613	2340	6.7	3010	9930	< 0.0010	0.0059	0.027	< 0.0010	< 0.0010	<0.0050	0.0079	< 0.0050	0.87	< 0.00020	<0.010	< 0.010	< 0.00050	0.859 ± 0.561	3.13 ± 0.822	3.989	<0.30
8/16/2016	2.1	680	2440	6.7	3080	7870	<0.0020	< 0.0050	0.021	< 0.0010	< 0.0010	<0.0050	0.0084	< 0.0050	0.84	<0.00020	<0.010	< 0.010	< 0.0010	0.237 ± 0.329	3.28 ± 0.775	3.517	0.64
11/17/2016	1.9	701 646	2140	6.7 6.9	2770	9680	<0.0010	0.0059	0.024	< 0.0010	< 0.0010	< 0.0050	0.0064	< 0.0050	0.82	< 0.00020	0.024	< 0.010	< 0.00050	0.923 ± 0.594 1.52 ± 1.50	3.16 ± 0.826	4.083	0.35
2/23/2017	1.9 1.9	646 640	2320 2420	6.9 7.5	3110 2970	9630 14200	<0.0010 <0.0010	<0.010 <0.0050	<0.20 0.016	<0.0050 <0.0010	<0.0050 <0.0010	<0.010 <0.0050	<0.010 0.0051	<0.0050 <0.0050	0.8 0.75	<0.00020 <0.00020	<0.010 <0.020	<0.020 <0.010	<0.00050 <0.00050	1.52 ± 1.50 0.344 ± 0.415	4.27 ± 1.07 3.82 ± 0.931	5.79 4.164	0.46 1.3
6/7/2017 8/24/2017	1.9	664	2420	6.8	3710	9600	<0.0010	<0.0050	0.016	<0.0010	<0.0010	<0.0050	0.0051	<0.0050	0.75	<0.00020	<0.020	<0.010 0.026	<0.00050	0.344 ± 0.415 1.12 ± 0.610	3.82 ± 0.931 3.78 ± 0.960	4.164	0.32
12/20/2017	2.2	716	2590	7.2	3100	9600	<0.0010	<0.010	0.022	<0.0010	<0.0020	<0.0050	0.0003	<0.010	0.725	<0.00020	<0.020	<0.040	<0.00050	0.945 ± 0.578	4.07 ± 0.940	5.015	<0.50
12/20/2017	2.2	710	2350	7.2	5100	5000	40.0010	40.012	0.0LL	40.0010	40.010	40.014	0.0072	40.020	0.74	<0.00020	\$0.050	<0.040	<0.00050	0.545 2 0.570	4.07 2 0.540	5.015	×0.50
MW-3																							
12/14/2015	0.35	67.6	12.3	7.2	135	586	<0.0010	< 0.0050	0.021	< 0.0010	< 0.0010	<0.0050	< 0.0025	<0.0050	< 0.050	<0.00020	<0.010	<0.010	< 0.00050	0.997 ± 0.813	0.736 ± 0.505	1.733	0.62
2/25/2016	1.2	479	347	7	2430	5400	< 0.0010	0.0061	0.052	< 0.0010	< 0.0010	<0.0050	0.0098	< 0.0050	0.85	< 0.00020	<0.010	<0.010	< 0.00050	1.26 ± 0.762	3.02 ± 0.791	4.28	0.9
5/11/2016	1.1	465	349	6.5	2330	5440	< 0.0010	<0.0050	0.024	< 0.0010	< 0.0010	< 0.0050	0.0059	< 0.0050	0.65	<0.00020	<0.010	<0.010	< 0.00050	1.54 ± 0.797	1.62 ± 0.547	3.16	<0.30
8/16/2016	1.2	505	381	7.3	2950	5680	< 0.0010	< 0.0050	0.018	< 0.0010	< 0.0010	< 0.0050	0.006	< 0.0050	0.98	<0.00020	<0.010	< 0.010	< 0.00050	0.891 ± 0.626	5.10 ± 1.13	5.991	<0.30
11/17/2016	1.1	494	322	6.6	2420	5420	<0.0010	<0.0050	0.028	< 0.0010	< 0.0010	<0.0050	0.0068	<0.0050	0.94	<0.00020	<0.020	<0.010	<0.00050	0.872 ± .0579	5.23 ± 1.30	6.102	<0.30
2/23/2017	1.1	389	202	7	1450	2900	<0.0010	<0.010	<0.20	<0.0050	<0.0050	<0.010	<0.010	<0.0050	0.7	<0.00020	<0.010	<0.020	<0.00050	-0.239 ± 1.09	4.07 ± 1.03	3.831	0.45
6/7/2017	1.2	486	327	7.1	2260	4740	< 0.0010	< 0.0050	0.015	<0.0010	< 0.0010	<0.0050	0.0058	<0.0050	0.62	<0.00020	<0.020	< 0.010	< 0.00050	0.941 ± 0.658	2.76 ± 0.765	3.701	0.57
8/24/2017	1.1	519	401	6.5	2890	6160	< 0.0010	< 0.010	0.014	< 0.0010	< 0.0020	<0.0050	0.0084	<0.010	1.03	<0.00020	<0.020	<0.020	< 0.00050	1.26 ± 0.600	4.41 ± 1.07	5.67	<0.30
12/20/2017	1.3	563	380	6.8	2830	5790	<0.0010	<0.0060	0.034	<0.0010	< 0.0050	<0.0070	0.0086	<0.010	0.92	<0.00020	<0.030	<0.020	<0.00050	0.626 ± 0.567	2.77 ± 0.728	3.396	0.61
BW-1																							
12/14/2015	1.8	465	727	9.5	2130	4900	<0.0010	<0.0050	0.17	<0.0010	<0.0010	0.015	0.0026	<0.0050	0.7	<0.00020	<0.010	<0.010	0.00073	0.900 ± 0.728	1.13 ± 0.513	2.03	< 0.30
2/25/2016	3.5	586	1050	7.4	2690	6420	<0.0010	0.015	0.055	<0.0010	<0.0010	0.0053	0.0020	0.0050	0.71	<0.00020	<0.010	<0.010	< 0.00050	0.900 ± 0.728 0.887 ± 0.697	1.13 ± 0.513	2.707	0.30
5/11/2016	4	566	1120	7	2610	6360	<0.0010	0.0084	0.033	<0.0010	<0.0010	0.0033	0.0035	0.0003	0.71	<0.00020	<0.010	<0.010	<0.00050	2.40 ± 0.944	2.80 ± 0.710	5.2	0.32
8/16/2016	3.7	566	1130	7.2	2720	6280	<0.0010	0.0064	0.04	<0.0010	<0.0010	0.0073	0.0029	< 0.0050	0.78	<0.00020	<0.010	<0.010	<0.00050	0.610 ± 0.483	3.42 ± 0.777	4.03	0.94
11/17/2016	2.8	548	991	6.8	2590	6400	< 0.0010	0.0066	0.023	< 0.0010	< 0.0010	< 0.0050	< 0.0025	< 0.0050	0.74	< 0.00020	0.022	< 0.010	< 0.00050	0.605 ± 0.548	2.94 ± 0.799	3.545	0.85
2/23/2017	3.1	532	1080	7.2	2760	6280	< 0.0010	<0.010	<0.20	< 0.0050	< 0.0050	<0.010	<0.010	< 0.0050	0.73	< 0.00020	< 0.010	<0.020	< 0.00050	0.816 ± .0983	4.07 ± 1.08	4.886	< 0.30
6/7/2017	3.8	539	1020	7.7	2220	7320	< 0.0010	< 0.0050	0.026	< 0.0010	< 0.0010	<0.0050	< 0.0025	< 0.0050	0.79	<0.00020	<0.020	<0.010	< 0.00050	1.36 ± 0.685	3.13 ± 0.783	4.49	<0.30
8/24/2017	3.4	531	1160	7.1	2870	7260	<0.0010	<0.010	0.037	<0.0010	<0.0020	< 0.0050	<0.0050	<0.010	0.738	<0.00020	<0.020	<0.020	<0.00050	1.58 ± 0.602	2.80 ± 0.759	4.38	0.37
12/20/2017	3.5	658	1030	7.2	2620	6140	<0.0010	<0.0060	0.044	<0.0010	<0.0050	<0.0070	0.0034	<0.010	0.73	<0.00020	<0.030	<0.020	<0.00050	1.07 ± 0.681	$\textbf{3.13} \pm \textbf{0.788}$	4.2	<0.50
MCL	n/a	n/a	n/a	n/a	n/a	n/a	0.006	0.01	2	0.004	0.005	0.1	n/a	0.015	n/a	0.002	n/a	0.05	0.002	n/a	n/a	5	4

MCL - EPA Primary Drinking Water Maximum Contaminant Level

0.015 Exceedance of EPA Primary MCL

40 CFR 257 Appendix III Constituent

40 CFR 257 Appendix IV Constituent

40 CFR 257 Appendix III & IV Constituent

"<" - Indicates analyte was not detected above the laboratory reporting limit

"n/a" - Indicates constituent has no EPA Primary MCL

APPENDIX D DECEMBER 2017 RESULTS AND STATISTICAL LIMITS

		Appendix D – Decei	mber 2017 Resu	lts and Stat	tistical Limits - MW	/-1
MW-ID	CFR 257 Appendix	Constituent	Lab Result	MCL	Statistical Limit	Statistical Method
		Boron (mg/L)	1.3	n/a	2.6	Non-Parametric Prediction Limit
		Calcium (mg/L)	548	n/a	1030	Non-Parametric Prediction Limit
		Chloride (mg/L)	248	n/a	402	Non-Parametric Prediction Limit
	ш	pH at 25°C	7.4	n/a	6.136 - 8.289	Parametric Prediction Limit
		Sulfate (mg/L)	2340	n/a	3402	Shewhart-Cusum Control Chart
		TDS (mg/L)	4250	n/a	6765	Shewhart-Cusum Control Chart
		Fluoride (mg/L)	1.1	4	0.4	Statistical Method Non-Parametric Prediction Limit Shewhart-Cusum Control Chart Shewhart-Cusum Control Chart Non-Parametric Prediction Limit No
		Antimony (mg/L)	<0.0010	0.006	0.001	Non-Parametric Prediction Limit
		Arsenic (mg/L)	<0.0060	0.01	0.12	Non-Parametric Prediction Limit
		Barium (mg/L)	0.017	2	1	Non-Parametric Prediction Limit
		Beryllium (mg/L)	<0.0010	0.004	0.029	Non-Parametric Prediction Limit
		Cadmium (mg/L)	<0.0050	0.005	0.001	Non-Parametric Prediction Limit
MW-1		Chromium (mg/L)	<0.0070	0.1	0.69	Non-Parametric Prediction Limit
		Cobalt (mg/L)	<0.0025	n/a	0.087	Non-Parametric Prediction Limit
		Lead (mg/L)	<0.010	0.015	0.21	Non-Parametric Prediction Limit
	IV	Lithium (mg/L)	0.38	n/a	0.78	Non-Parametric Prediction Limit
		Mercury (mg/L)	<0.00020	0.002	0.0002	Non-Parametric Prediction Limit
		Molybdenum (mg/L)	<0.030	n/a	0.02	Non-Parametric Prediction Limit
		Selenium (mg/L)	0.18	0.05	0.2535	Shewhart-Cusum Control Chart
		Thallium (mg/L)	<0.00050	0.002	0.00089	Non-Parametric Prediction Limit
		Radium - 226 (pCi/L)	1.26 ± 0.680	n/a	n/a	n/a
		Radium - 228 (pCi/L)	2.46 ± 0.888	n/a	n/a	n/a
		Combined Radium (pCi/L)	3.72	5	12.33	Non-Parametric Prediction Limit
		Fluoride (mg/L)	1.1	4	0.4	Non-Parametric Prediction Limit

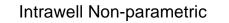
Bolded value indicates that consituent exceeded intrawell statistical limit

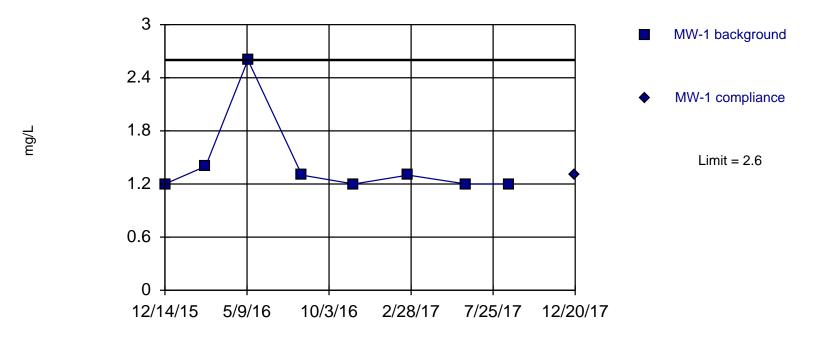
		Appendix D – Decer	mber 2017 Resu	lts and Stat	tistical Limits - MW	-2
MW-ID	CFR 257 Appendix	Constituent	Lab Result	MCL	Statistical Limit	Statistical Method
		Boron (mg/L)	2.2	n/a	2.4	Non-Parametric Prediction Limit
		Calcium (mg/L)	716	n/a	874.4	Shewhart-Cusum Control Chart
		Chloride (mg/L)	2590	n/a	3336	Shewhart-Cusum Control Chart
	ш	pH at 25°C	7.2	n/a	6.7 - 7.5	Non-Parametric Prediction Limit
		Sulfate (mg/L)	3100	n/a	4635	Shewhart-Cusum Control Chart
		TDS (mg/L)	9600	n/a	23969	Shewhart-Cusum Control Chart
		Fluoride* (mg/L)	<0.50	4	2.831	Shewhart-Cusum Control Chart
		Antimony (mg/L)	<0.0010	0.006	0.001	Non-Parametric Prediction Limit
		Arsenic (mg/L)	<0.012	0.01	0.014	Non-Parametric Prediction Limit
		Barium (mg/L)	0.022	2	0.5299	Shewhart-Cusum Control Chart
		Beryllium (mg/L)	<0.0010	0.004	0.001	Non-Parametric Prediction Limit
MW-2		Cadmium (mg/L)*	<0.010	0.005	0.002	Non-Parametric Prediction Limit
10100-2		Chromium (mg/L)*	<0.014	0.1	0.005	Non-Parametric Prediction Limit
		Cobalt (mg/L)	0.0072	n/a	0.02189	Shewhart-Cusum Control Chart
		Lead (mg/L)	<0.020	0.015	0.01	Non-Parametric Prediction Limit
	IV	Lithium (mg/L)	0.74	n/a	1.09	Shewhart-Cusum Control Chart
		Mercury (mg/L)	<0.00020	0.002	0.0002	Non-Parametric Prediction Limit
		Molybdenum (mg/L)	<0.030	n/a	0.024	Non-Parametric Prediction Limit
		Selenium (mg/L)	<0.040	0.05	0.026	Non-Parametric Prediction Limit
		Thallium (mg/L)	<0.00050	0.002	0.0005	Non-Parametric Prediction Limit
		Radium - 226 (pCi/L)	0.945 ± 0.578	n/a	n/a	n/a
		Radium - 228 (pCi/L)	4.07 ± 0.940	n/a	n/a	n/a
		Combined Radium (pCi/L)	5.015	5	8.09	Shewhart-Cusum Control Chart
		Fluoride (mg/L)	<0.50	4	2.831	Shewhart-Cusum Control Chart

Bolded value indicates that consituent exceeded intrawell statistical limit

		Appendix D – Dece	mber 2017 Resu	Its and Stat	tistical Limits - MW	-3
MW-ID	CFR 257 Appendix	Constituent	Lab Result	MCL	Statistical Limit	Statistical Method
		Boron (mg/L)	1.3	n/a	1.2	Non-Parametric Prediction Limit
		Calcium (mg/L)	563	n/a	688.1	Shewhart-Cusum Control Chart
		Chloride (mg/L)	380	n/a	606.9	Shewhart-Cusum Control Chart
	ш	pH at 25°C	6.8	n/a	8.09 - 5.71	Parametric Prediction Limit
		Sulfate (mg/L)	2830	n/a	4447	Shewhart-Cusum Control Chart
		TDS (mg/L)	5790	n/a	9375	Shewhart-Cusum Control Chart
		Fluoride* (mg/L)	0.61	4	2.201	Shewhart-Cusum Control Chart
		Antimony (mg/L)	<0.0010	0.006	0.001	Non-Parametric Prediction Limit
		Arsenic (mg/L)	<0.0060	0.01	0.0061	Non-Parametric Prediction Limit
		Barium (mg/L)	0.034		0.3241	Shewhart-Cusum Control Chart
		Beryllium (mg/L)	<0.0010	0.004	0.001	Non-Parametric Prediction Limit
		Cadmium (mg/L)	<0.0050	0.005	0.002	Non-Parametric Prediction Limit
MW-3		Chromium (mg/L)	<0.0070	0.1	0.005	Non-Parametric Prediction Limit
		Cobalt (mg/L)	0.0086	n/a	0.02018	Shewhart-Cusum Control Chart
		Lead (mg/L)	<0.010	0.015	0.01	Non-Parametric Prediction Limit
	IV	Lithium (mg/L)	0.92	n/a	2.336	Shewhart-Cusum Control Chart
		Mercury (mg/L)	<0.00020	0.002	0.0002	Non-Parametric Prediction Limit
		Molybdenum (mg/L)	< 0.030	n/a	0.02	Non-Parametric Prediction Limit
		Selenium (mg/L)	<0.020	0.05	0.02	Non-Parametric Prediction Limit
		Thallium (mg/L)	<0.00050	0.002	0.0005	Non-Parametric Prediction Limit
		Radium - 226 (pCi/L)	0.626 ± 0.567	n/a	n/a	n/a
		Radium - 228 (pCi/L)	2.77 ± 0.728	n/a	n/a	n/a
		Combined Radium (pCi/L)	3.396	5	11.97	Shewhart-Cusum Control Chart
		Fluoride (mg/L)	0.61	4	2.201	Shewhart-Cusum Control Chart

Bolded value indicates that consituent exceeded intrawell statistical limit


		Appendix D – Dece	mber 2017 Resu	lts and Sta	tistical Limits - BW	-1
MW-ID	CFR 257 Appendix	Constituent	Lab Result	MCL	Statistical Limit	Statistical Method
		Boron (mg/L)	3.5	n/a	6.787	Shewhart-Cusum Control Chart
		Calcium (mg/L)	658	n/a	723.7	Shewhart-Cusum Control Chart
		Chloride (mg/L)	1030	n/a	1540	Shewhart-Cusum Control Chart
	ш	pH at 25°C	7.2	n/a	6.8 - 9.5	Non-Parametric Prediction Limit
		Sulfate (mg/L)	2620	n/a	3884	Shewhart-Cusum Control Chart
		TDS (mg/L)	6140	n/a	10119	Shewhart-Cusum Control Chart
		Fluoride* (mg/L)	<0.50	4	2.356	Shewhart-Cusum Control Chart
		Antimony (mg/L)	<0.0010	0.006	0.001	Non-Parametric Prediction Limit
		Arsenic (mg/L)	<0.0060	0.01	0.02645	Shewhart-Cusum Control Chart
		Barium (mg/L)	0.044	2	0.4562	Shewhart-Cusum Control Chart
		Beryllium (mg/L)	<0.0010	0.004	0.001	Non-Parametric Prediction Limit
BW-1		Cadmium (mg/L)	<0.0050	0.005	0.002	Non-Parametric Prediction Limit
DVV-1		Chromium (mg/L)	<0.0070	0.1	0.02912	Shewhart-Cusum Control Chart
		Cobalt (mg/L)	0.0034	n/a	0.04052	Shewhart-Cusum Control Chart
		Lead (mg/L)	<0.010	0.015	0.0091	Non-Parametric Prediction Limit
	IV	Lithium (mg/L)	0.73	n/a	0.9244	Shewhart-Cusum Control Chart
		Mercury (mg/L)	<0.00020	0.002	0.0002	Non-Parametric Prediction Limit
		Molybdenum (mg/L)	<0.030	n/a	0.022	Non-Parametric Prediction Limit
		Selenium (mg/L)	<0.020	0.05	0.02	Non-Parametric Prediction Limit
		Thallium (mg/L)	<0.00050	0.002	0.00073	Non-Parametric Prediction Limit
		Radium - 226 (pCi/L)	1.07 ± 0.681	n/a	n/a	n/a
		Radium - 228 (pCi/L)	3.13 ± 0.788	n/a	n/a	n/a
		Combined Radium (pCi/L)	4.2	5	9.354	Shewhart-Cusum Control Chart
		Fluoride (mg/L)	<0.50	4	2.356	Shewhart-Cusum Control Chart


Bolded value indicates that consituent exceeded intrawell statistical limit

APPENDIX E STATISTICAL ANALYSIS GRAPHS

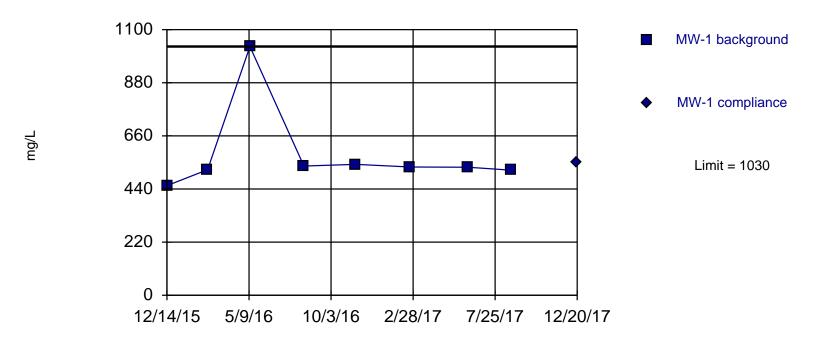
Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because the Shapiro Wilk normality test showed the data to be nonnormal at the 0.05 alpha level. Limit is highest of 8 background values. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Boron Analysis Run 1/25/2018 11:37 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Control Chart Alternate


Constituent: Boron (mg/L) Analysis Run 1/25/2018 11:38 AM

	MW-1	MW-1
12/14/2015	1.2	
2/25/2016	1.4	
5/11/2016	2.6	
8/16/2016	1.3	
11/17/2016	1.2	
2/23/2017	1.3	
6/7/2017	1.2	
8/24/2017	1.2	
12/20/2017		1.3

Within Limit

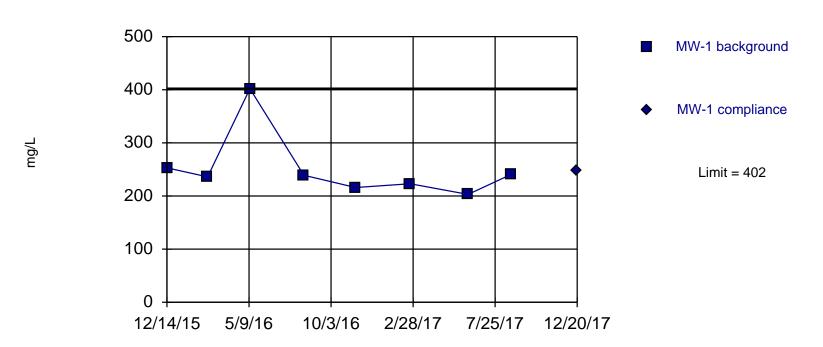
Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because the Shapiro Wilk normality test showed the data to be nonnormal at the 0.05 alpha level. Limit is highest of 8 background values. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Calcium Analysis Run 1/26/2018 10:15 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

VI.C-63


Control Chart Alternate

Constituent: Calcium (mg/L) Analysis Run 1/26/2018 10:16 AM

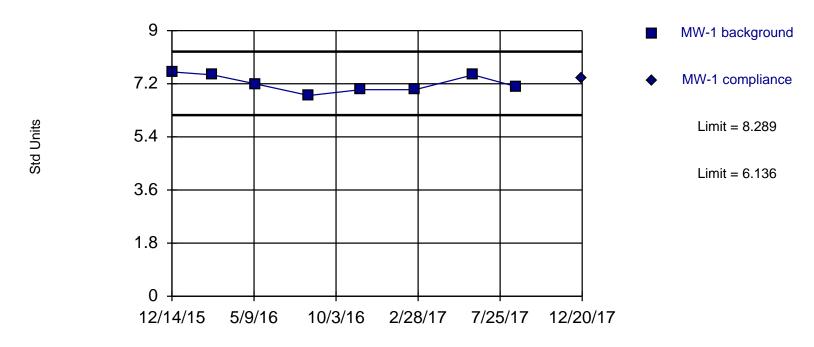
Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because the Shapiro Wilk normality test showed the data to be nonnormal at the 0.05 alpha level. Limit is highest of 8 background values. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Chloride Analysis Run 1/25/2018 11:37 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

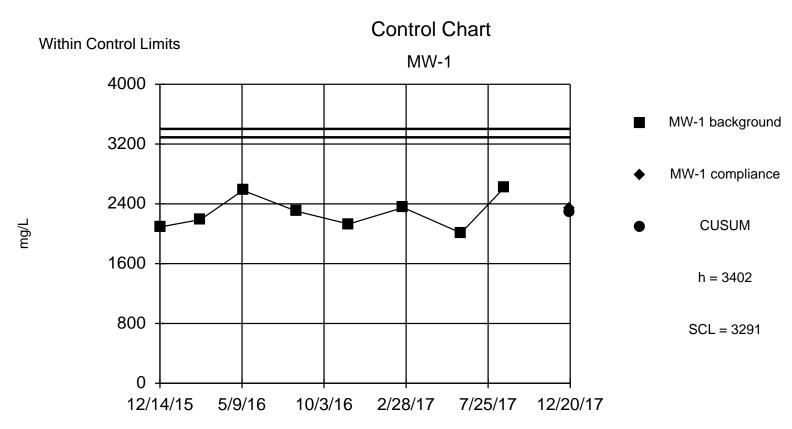

Control Chart Alternate

Constituent: Chloride (mg/L) Analysis Run 1/25/2018 11:38 AM

	MW-1	MW-1
12/14/2015	253	
2/25/2016	236	
5/11/2016	402	
8/16/2016	239	
11/17/2016	216	
2/23/2017	223	
6/7/2017	203	
8/24/2017	241	
12/20/2017		248

Within Limits

Prediction Limit Intrawell Parametric

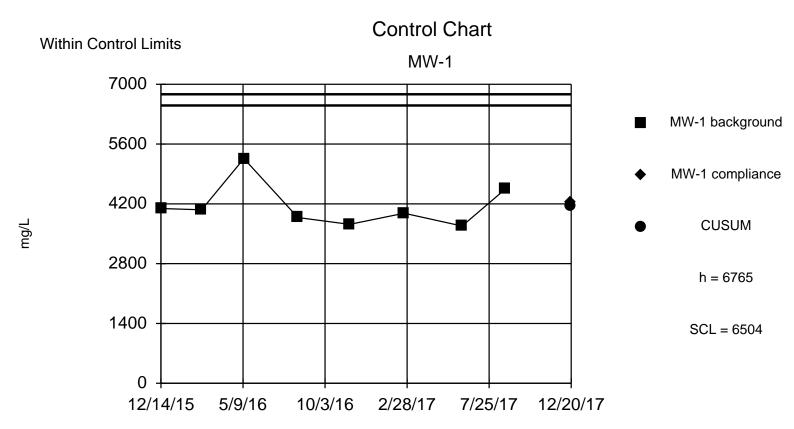

Background Data Summary: Mean=7.213, Std. Dev.=0.29, n=8. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9179, critical = 0.818. Report alpha = 0.01. Most recent point compared to limit.

Constituent: pH Analysis Run 1/25/2018 11:42 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Prediction Limit

Constituent: pH (Std Units) Analysis Run 1/25/2018 11:43 AM

	MW-1	MW-1
12/14/2015	7.6	
2/25/2016	7.5	
5/11/2016	7.2	
8/16/2016	6.8	
11/17/2016	7	
2/23/2017	7	
6/7/2017	7.5	
8/24/2017	7.1	
12/20/2017		7.4


Background Data Summary: Mean=2284, Std. Dev.=223.7, n=8. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9231, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Sulfate Analysis Run 1/25/2018 11:37 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Control Chart

Constituent: Sulfate (mg/L) Analysis Run 1/25/2018 11:38 AM

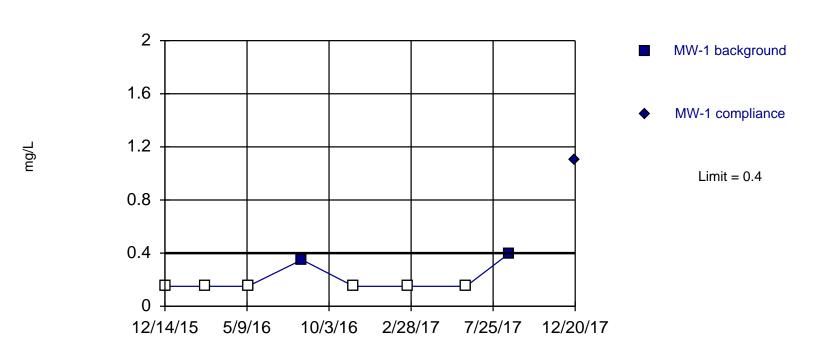
	MW-1	MW-1	Std. Mean	CUSUM
12/14/2015	2090			
2/25/2016	2190			
5/11/2016	2580			
8/16/2016	2300			
11/17/2016	2130			
2/23/2017	2350			
6/7/2017	2010			
8/24/2017	2620			
12/20/2017		2340	0.2514	2284

Background Data Summary: Mean=4153, Std. Dev.=522.5, n=8. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8305, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Total Dissolved Solids Analysis Run 1/25/2018 11:37 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Control Chart

Constituent: Total Dissolved Solids (mg/L) Analysis Run 1/25/2018 11:38 AM


	MW-1	MW-1	Std. Mean	CUSUM
12/14/20				
2/25/201	6 4060			
5/11/201	6 5260			
8/16/201	6 3880			
11/17/20	16 3720			
2/23/201	7 3980			
6/7/2017	3680			
8/24/201	7 4550			
12/20/20	17	4250	0.1866	4153

Sanitas[™] v.9.5.27 Software licensed to SCS Engineers. EPA Hollow symbols indicate censored values.

Exceeds Limit

Prediction Limit

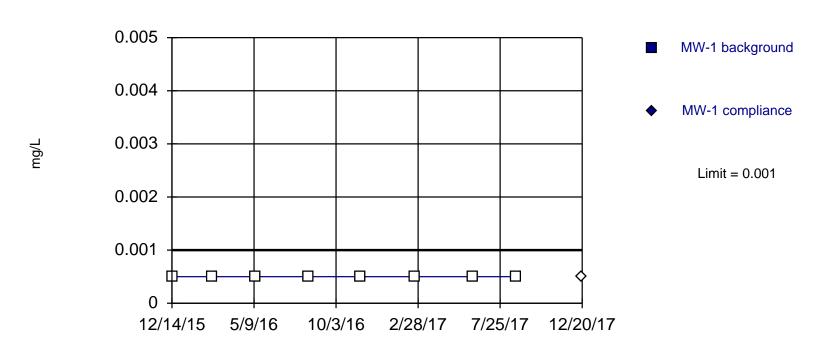
Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. Limit is highest of 8 background values. 75% NDs. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Fluoride Analysis Run 1/25/2018 11:37 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Control Chart Alternate

Constituent: Fluoride (mg/L) Analysis Run 1/25/2018 11:38 AM


	MW-1	MW-1
12/14/2015	<0.3	
2/25/2016	<0.3	
5/11/2016	<0.3	
8/16/2016	0.35	
11/17/2016	<0.3	
2/23/2017	<0.3	
6/7/2017	<0.3	
8/24/2017	0.4	
12/20/2017		1.1

Sanitas[™] v.9.5.27 Software licensed to SCS Engineers. EPA Hollow symbols indicate censored values.

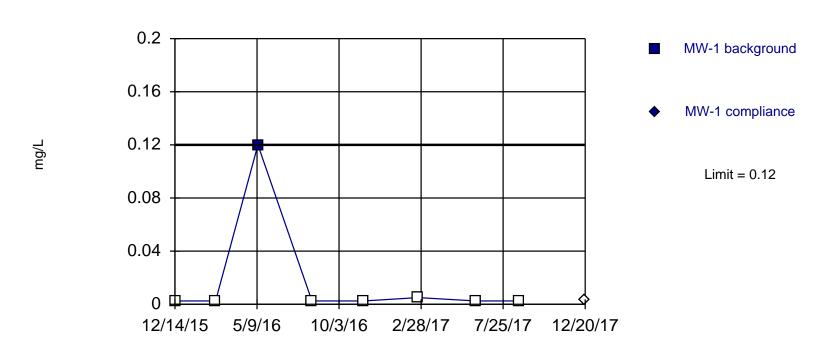
Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Antimony Analysis Run 1/25/2018 11:58 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18


Constituent: Antimony (mg/L) Analysis Run 1/25/2018 12:04 PM

	MW-1	MV
12/14/2015	<0.001	
2/25/2016	<0.001	
5/11/2016	<0.001	
8/16/2016	<0.001	
11/17/2016	<0.001	
2/23/2017	<0.001	
6/7/2017	<0.001	
8/24/2017	<0.001	
12/20/2017		<0.001

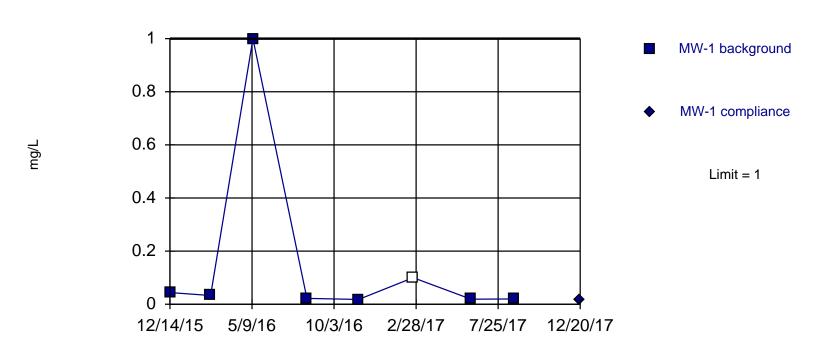
Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. Limit is highest of 8 background values. 87.5% NDs. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Arsenic Analysis Run 1/25/2018 11:58 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18


Constituent: Arsenic (mg/L) Analysis Run 1/25/2018 12:04 PM

	MW-1	MW-1
12/14/2015	<0.005	
2/25/2016	<0.005	
5/11/2016	0.12	
8/16/2016	<0.005	
11/17/2016	<0.005	
2/23/2017	<0.01	
6/7/2017	<0.005	
8/24/2017	<0.005	
12/20/2017		<0.006

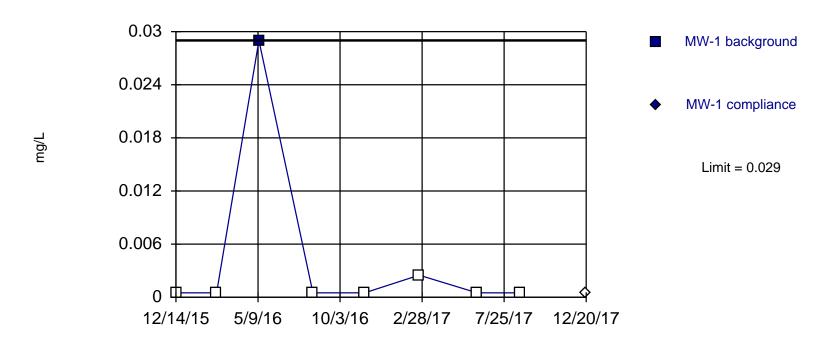
Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because the Shapiro Wilk normality test showed the data to be nonnormal at the 0.05 alpha level. Limit is highest of 8 background values. 12.5% NDs. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Barium Analysis Run 1/25/2018 11:58 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18


Constituent: Barium (mg/L) Analysis Run 1/25/2018 12:04 PM

	MW-1	MW-1
12/14/2015	0.044	
2/25/2016	0.033	
5/11/2016	1	
8/16/2016	0.022	
11/17/2016	0.018	
2/23/2017	<0.2	
6/7/2017	0.019	
8/24/2017	0.02	
12/20/2017		0.017

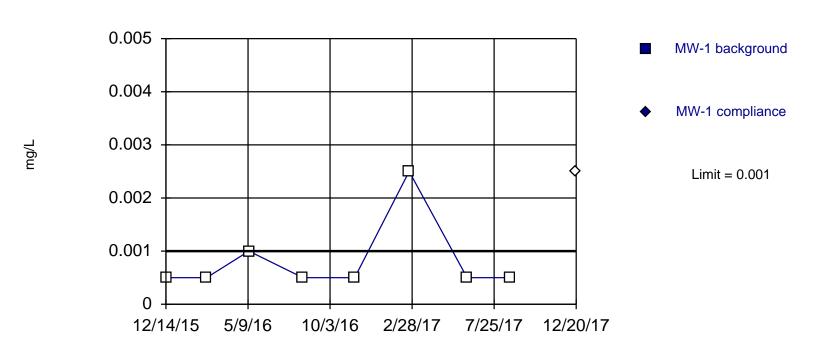
Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. Limit is highest of 8 background values. 87.5% NDs. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Beryllium Analysis Run 1/25/2018 11:58 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18


Constituent: Beryllium (mg/L) Analysis Run 1/25/2018 12:04 PM

	MW-1	MW-1
12/14/2015	<0.001	
2/25/2016	<0.001	
5/11/2016	0.029	
8/16/2016	<0.001	
11/17/2016	<0.001	
2/23/2017	<0.005	
6/7/2017	<0.001	
8/24/2017	<0.001	
12/20/2017		<0.001

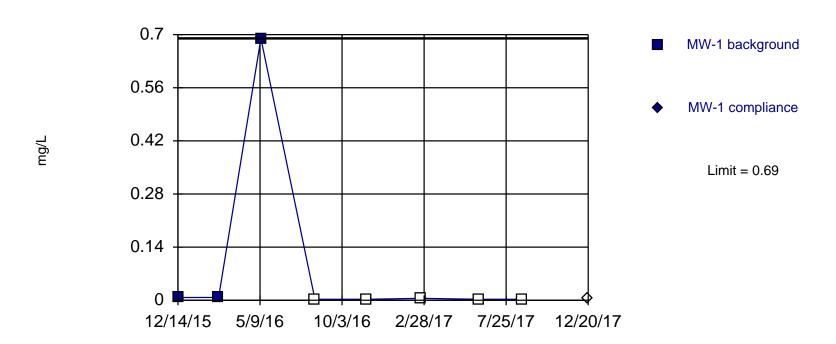
Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Cadmium Analysis Run 1/25/2018 11:58 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18


Constituent: Cadmium (mg/L) Analysis Run 1/25/2018 12:04 PM

	MW-1	MW-1
12/14/2015	<0.001	
2/25/2016	<0.001	
5/11/2016	<0.002	
8/16/2016	<0.001	
11/17/2016	<0.001	
2/23/2017	<0.005	
6/7/2017	<0.001	
8/24/2017	<0.001	
12/20/2017		<0.005

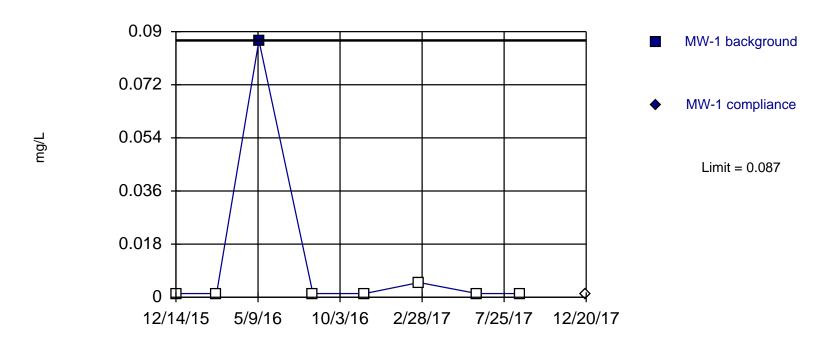
Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. Limit is highest of 8 background values. 62.5% NDs. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Chromium Analysis Run 1/25/2018 11:58 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18


Constituent: Chromium (mg/L) Analysis Run 1/25/2018 12:04 PM

	MW-1	MW-1
12/14/2015	0.0073	
2/25/2016	0.0074	
5/11/2016	0.69	
8/16/2016	<0.005	
11/17/2016	<0.005	
2/23/2017	<0.01	
6/7/2017	<0.005	
8/24/2017	<0.005	
12/20/2017		<0.007

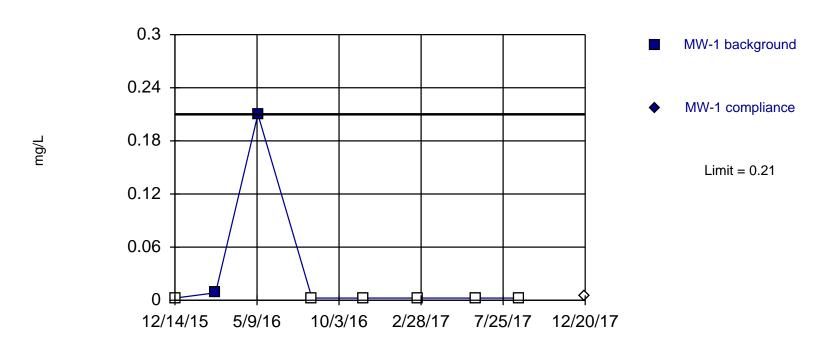
Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. Limit is highest of 8 background values. 87.5% NDs. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Cobalt Analysis Run 1/25/2018 11:58 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18


Constituent: Cobalt (mg/L) Analysis Run 1/25/2018 12:04 PM

	MW-1	MW-1
12/14/2015	< 0.0025	
2/25/2016	<0.0025	
5/11/2016	0.087	
5/11/2010		
8/16/2016	<0.0025	
11/17/2016	<0.0025	
2/23/2017	<0.01	
6/7/2017	<0.0025	
8/24/2017	<0.0025	
12/20/2017	,	<0.0025

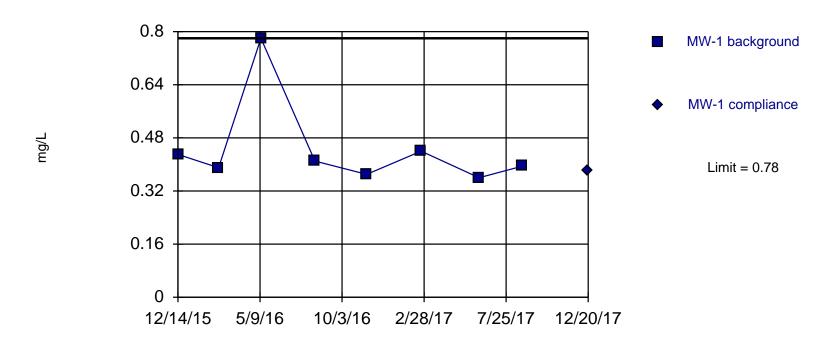
Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. Limit is highest of 8 background values. 75% NDs. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Lead Analysis Run 1/25/2018 11:58 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18


Constituent: Lead (mg/L) Analysis Run 1/25/2018 12:04 PM

	MW-1	MW-1
12/14/2015	<0.005	
2/25/2016	0.0084	
5/11/2016	0.21	
8/16/2016	<0.005	
11/17/2016	<0.005	
2/23/2017	<0.005	
6/7/2017	<0.005	
8/24/2017	<0.005	
12/20/2017		<0.01

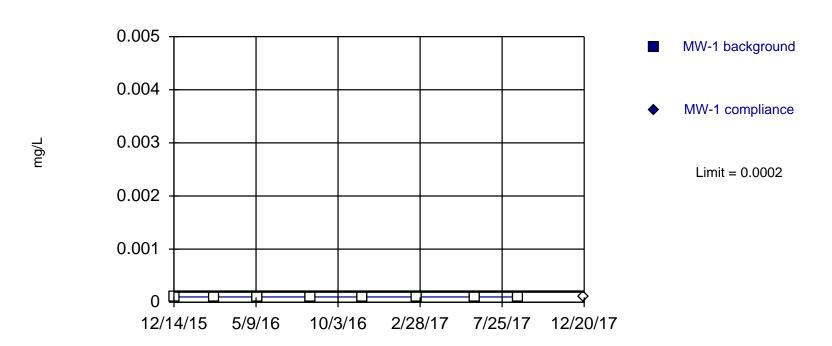
Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because the Shapiro Wilk normality test showed the data to be nonnormal at the 0.05 alpha level. Limit is highest of 8 background values. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Lithium Analysis Run 1/25/2018 11:58 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18


Constituent: Lithium (mg/L) Analysis Run 1/25/2018 12:04 PM

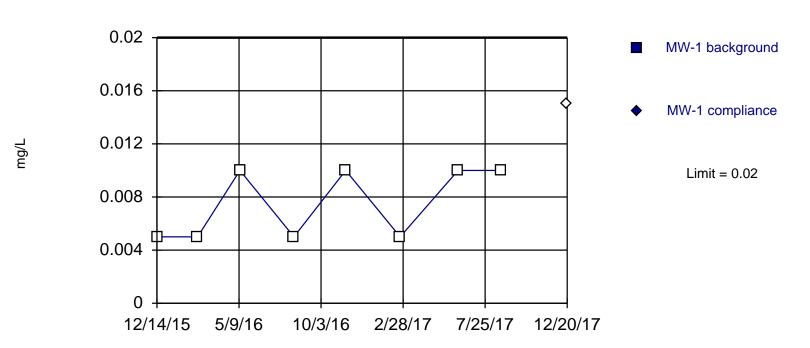
	MW-1	MW-1
12/14/2015	0.43	
2/25/2016	0.39	
5/11/2016	0.78	
8/16/2016	0.41	
11/17/2016	0.37	
2/23/2017	0.44	
6/7/2017	0.36	
8/24/2017	0.395	
12/20/2017		0.38

Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Report alpha = 0.1111. Most recent point compared to limit.

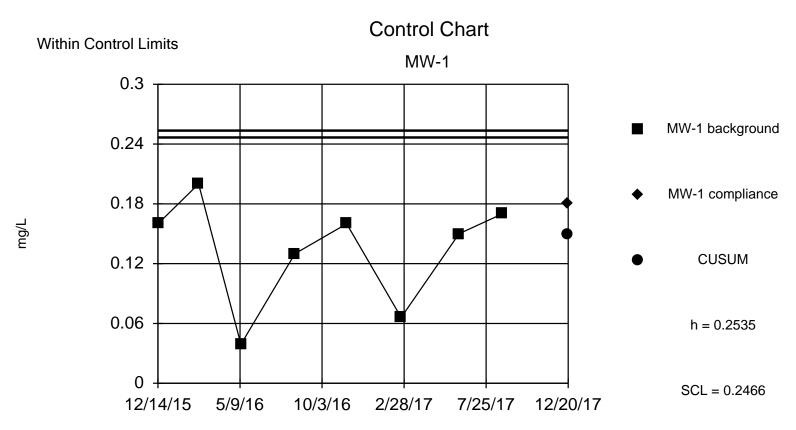

Constituent: Mercury Analysis Run 1/25/2018 11:58 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Constituent: Mercury (mg/L) Analysis Run 1/25/2018 12:04 PM

	MW-1	MW-1
12/14/2015	<0.0002	
2/25/2016	<0.0002	
5/11/2016	<0.0002	
8/16/2016	<0.0002	
11/17/2016	<0.0002	
2/23/2017	<0.0002	
6/7/2017	<0.0002	
8/24/2017	<0.0002	
12/20/2017		<0.0002

Within Limit

Prediction Limit


Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Molybdenum Analysis Run 1/25/2018 11:58 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

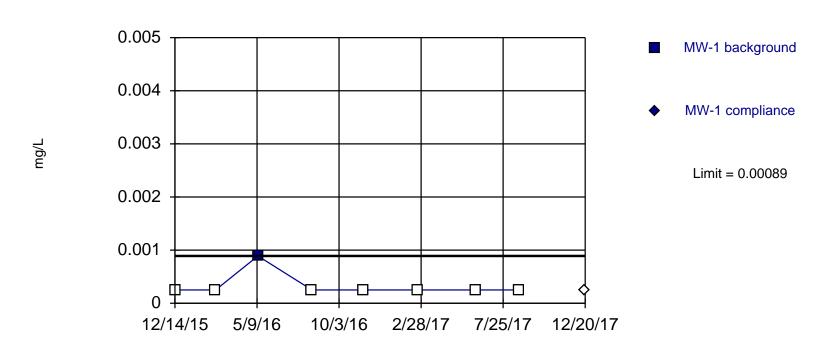
Constituent: Molybdenum (mg/L) Analysis Run 1/25/2018 12:04 PM

	MW-1	MW-1
12/14/2015	<0.01	
2/25/2016	<0.01	
5/11/2016	<0.02	
8/16/2016	<0.01	
11/17/2016	<0.02	
2/23/2017	<0.01	
6/7/2017	<0.02	
8/24/2017	<0.02	
12/20/2017		<0.03

Background Data Summary (based on cube transformation): Mean=0.003378, Std. Dev.=0.002583, n=8. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9441, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Selenium Analysis Run 1/25/2018 11:58 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Control Chart


Constituent: Selenium (mg/L) Analysis Run 1/25/2018 12:04 PM

	MW-1	MW-1	Cube	Std. Mean	CUSUM
12/14/2015	0.16		0.004096		
2/25/2016	0.2		0.008		
5/11/2016	0.039		5.9319E-05		
8/16/2016	0.13		0.002197		
11/17/2016	0.16		0.004096		
2/23/2017	0.066		0.000287496		
6/7/2017	0.15		0.003375		
8/24/2017	0.17		0.004913		
12/20/2017		0.18	0.005832	0.95	0.15

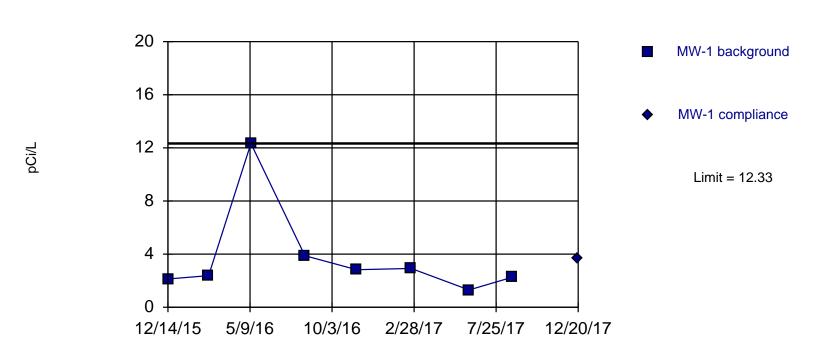
Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. Limit is highest of 8 background values. 87.5% NDs. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Thallium Analysis Run 1/25/2018 11:58 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18


Constituent: Thallium (mg/L) Analysis Run 1/25/2018 12:04 PM

	MW-1	MW-1
12/14/2015	< 0.0005	
2/25/2016	<0.0005	
5/11/2016	0.00089	
8/16/2016	<0.0005	
11/17/2016	< 0.0005	
2/23/2017	<0.0005	
6/7/2017	<0.0005	
8/24/2017	<0.0005	
12/20/2017	,	<0.0005

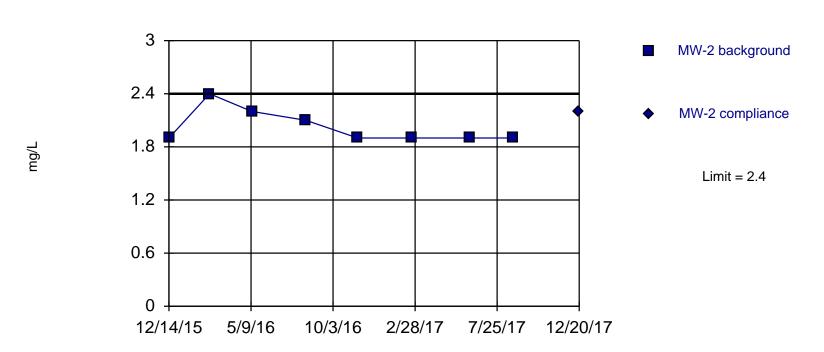
Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because the Shapiro Wilk normality test showed the data to be nonnormal at the 0.05 alpha level. Limit is highest of 8 background values. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Combined Radium Analysis Run 1/25/2018 12:05 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

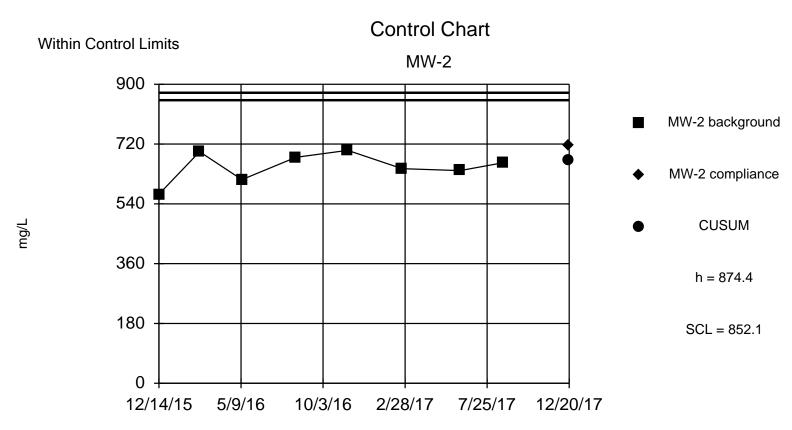

Constituent: Combined Radium (pCi/L) Analysis Run 1/25/2018 12:05 PM

	MW-1	MW-1
12/14/2015	2.13	
2/25/2016	2.382	
5/11/2016	12.33	
8/16/2016	3.883	
11/17/2016	2.828	
2/23/2017	2.923	
6/7/2017	1.3	
8/24/2017	2.267	
12/20/2017		3.72

Within Limit

Prediction Limit

Intrawell Non-parametric

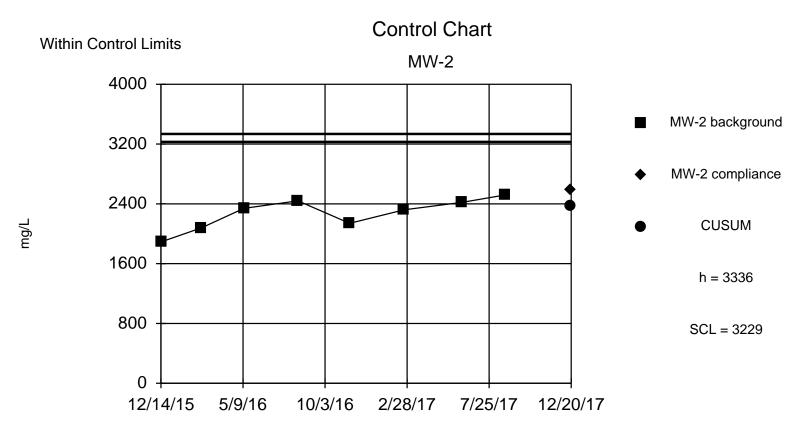


Non-parametric test used in lieu of control chart because the Shapiro Wilk normality test showed the data to be nonnormal at the 0.05 alpha level. Limit is highest of 8 background values. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Boron Analysis Run 1/25/2018 12:10 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Constituent: Boron (mg/L) Analysis Run 1/25/2018 12:12 PM

	MW-2	MW-2
12/14/2015	1.9	
2/25/2016	2.4	
5/11/2016	2.2	
8/16/2016	2.1	
11/17/2016	1.9	
2/23/2017	1.9	
6/7/2017	1.9	
8/24/2017	1.9	
12/20/2017		2.2


Background Data Summary: Mean=651.3, Std. Dev.=44.62, n=8. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9396, critical = 0.818. Report alpha = 0.001952. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Calcium Analysis Run 1/26/2018 10:16 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

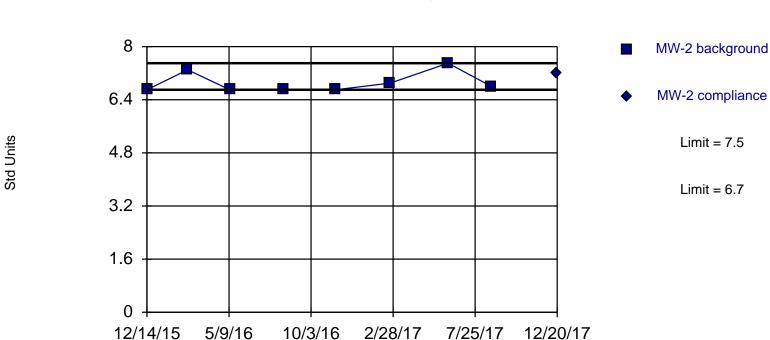
Control Chart

Constituent: Calcium (mg/L) Analysis Run 1/26/2018 10:16 AM

		MW-2	MW-2	Std. Mean	CUSUM
	12/14/2015	569			
2	2/25/2016	697			
Ę	5/11/2016	613			
8	8/16/2016	680			
	11/17/2016	701			
2	2/23/2017	646			
6	6/7/2017	640			
8	8/24/2017	664			
	12/20/2017		716	1.451	671.4

Background Data Summary: Mean=2269, Std. Dev.=213.4, n=8. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9324, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Chloride Analysis Run 1/25/2018 12:10 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18


Control Chart

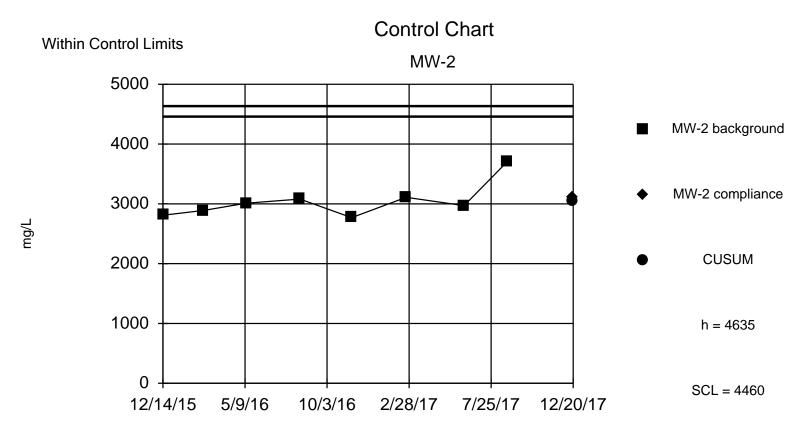
Constituent: Chloride (mg/L) Analysis Run 1/25/2018 12:12 PM

	MW-2	MW-2	Std. Mean	CUSUM
12/14/2015	1890			
2/25/2016	2080			
5/11/2016	2340			
8/16/2016	2440			
11/17/2016	2140			
2/23/2017	2320			
6/7/2017	2420			
8/24/2017	2520			
12/20/2017		2590	1.506	2377

Within Limits

Prediction Limit

Intrawell Non-parametric

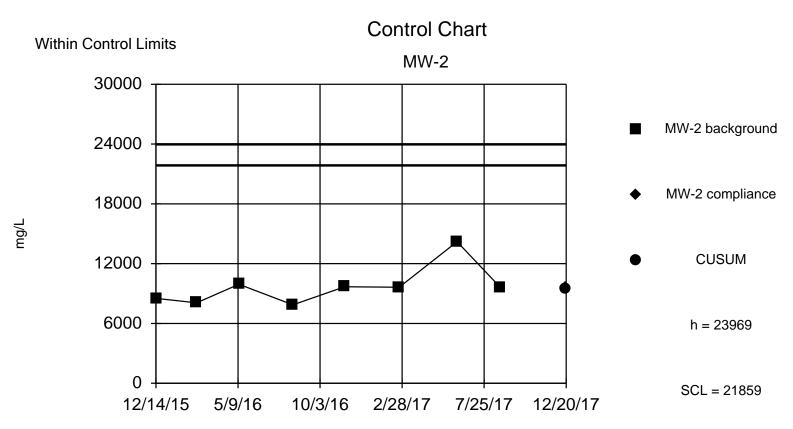

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limits are highest and lowest of 8 background values. Report alpha = 0.2222. Most recent point compared to limit.

Constituent: pH Analysis Run 1/25/2018 12:06 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Prediction Limit

Constituent: pH (Std Units) Analysis Run 1/25/2018 12:07 PM

	MW-2	MW-2
12/14/2015	6.7	
2/25/2016	7.3	
5/11/2016	6.7	
8/16/2016	6.7	
11/17/2016	6.7	
2/23/2017	6.9	
6/7/2017	7.5	
8/24/2017	6.8	
12/20/2017		7.2

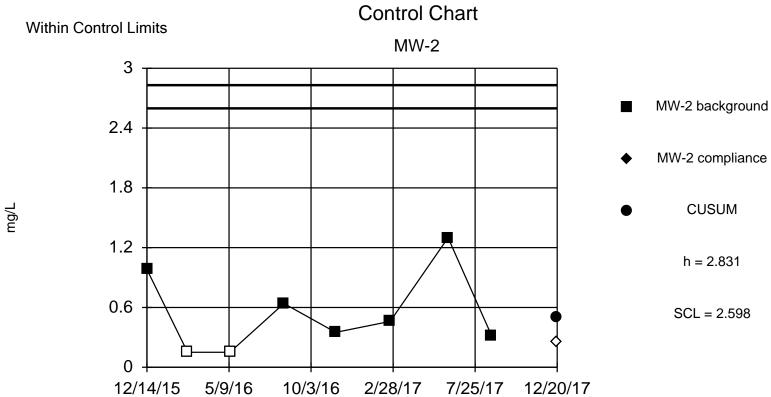

Background Data Summary (based on square root transformation): Mean=55.12, Std. Dev.=2.592, n=8. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8189, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Sulfate Analysis Run 1/25/2018 12:10 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Control Chart

Constituent: Sulfate (mg/L) Analysis Run 1/25/2018 12:12 PM

	MW-2	MW-2	Square Root	Std. Mean	CUSUM
12/14/2015	2810		53.01		
2/25/2016	2890		53.76		
5/11/2016	3010		54.86		
8/16/2016	3080		55.5		
11/17/2016	2770		52.63		
2/23/2017	3110		55.77		
6/7/2017	2970		54.5		
8/24/2017	3710		60.91		
12/20/2017		3100	55.68	0.2163	3038


Background Data Summary (based on natural log transformation): Mean=9.163, Std. Dev.=0.1844, n=8. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.833, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Total Dissolved Solids Analysis Run 1/25/2018 12:11 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Control Chart

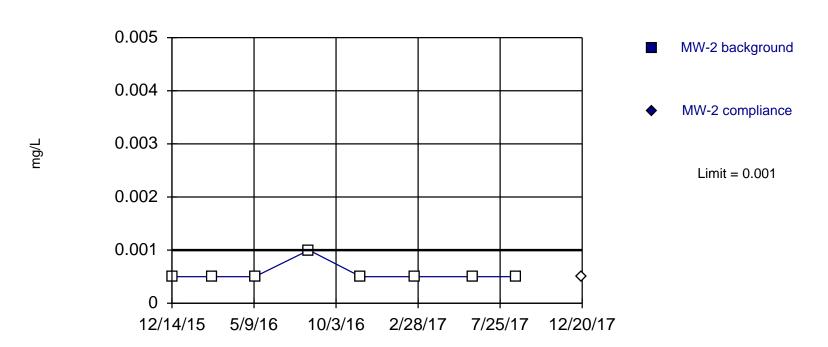
Constituent: Total Dissolved Solids (mg/L) Analysis Run 1/25/2018 12:12 PM

	MW-2	MW-2	Natural Log	Std. Mean	CUSUM
12/14/2015	8520		9.05		
2/25/2016	8070		8.996		
5/11/2016	9930		9.203		
8/16/2016	7870		8.971		
11/17/2016	9680		9.178		
2/23/2017	9630		9.173		
6/7/2017	14200		9.561		
8/24/2017	9600		9.17		
12/20/2017		9600	9.17	0.03726	9538

Background Data Summary (after Cohen's Adjustment): Mean=0.5048, Std. Dev.=0.4652, n=8, 25% NDs. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8855, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Fluoride Analysis Run 1/25/2018 12:10 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Control Chart


Constituent: Fluoride (mg/L) Analysis Run 1/25/2018 12:12 PM

	MW-2	MW-2	Std. Mean	CUSUM
12/14/2015	0.98			
2/25/2016	<0.3			
5/11/2016	<0.3			
8/16/2016	0.64			
11/17/2016	0.35			
2/23/2017	0.46			
6/7/2017	1.3			
8/24/2017	0.32			
12/20/2017		<0.5	-0.5478	0.5048

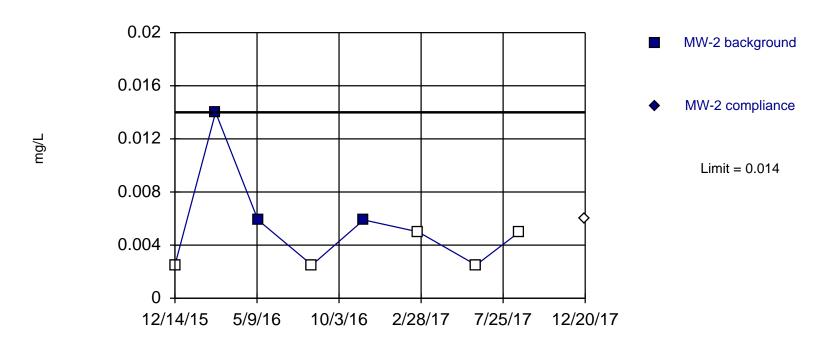
Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Report alpha = 0.1111. Most recent point compared to limit.

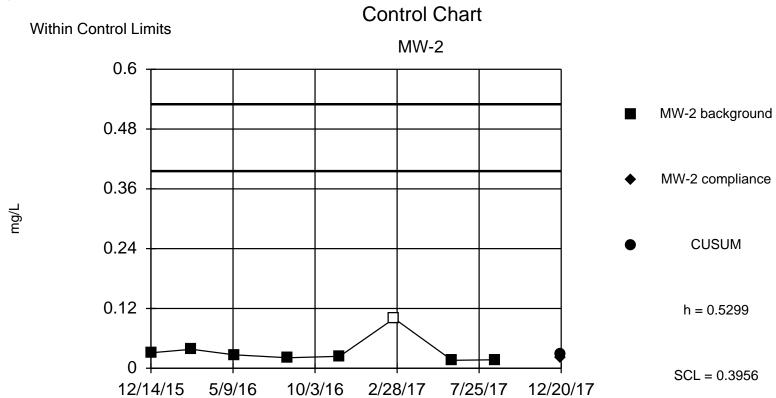
Constituent: Antimony Analysis Run 1/25/2018 12:13 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18


Constituent: Antimony (mg/L) Analysis Run 1/25/2018 12:21 PM

	MW-2	MW-2
12/14/2015	<0.001	
2/25/2016	<0.001	
5/11/2016	<0.001	
8/16/2016	<0.002	
11/17/2016	<0.001	
2/23/2017	<0.001	
6/7/2017	<0.001	
8/24/2017	<0.001	
12/20/2017		<0.001

Within Limit

Prediction Limit


Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. Limit is highest of 8 background values. 62.5% NDs. Report alpha = 0.1111. Most recent point compared to limit.

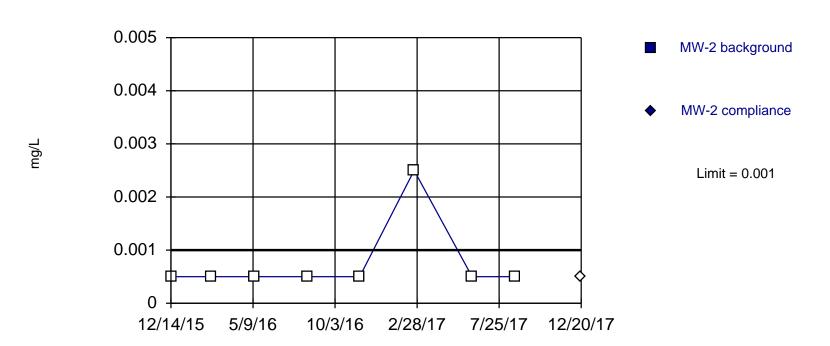
Constituent: Arsenic Analysis Run 1/25/2018 12:13 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Constituent: Arsenic (mg/L) Analysis Run 1/25/2018 12:21 PM

Background Data Summary (based on natural log transformation): Mean=-3.558, Std. Dev.=0.5845, n=8, 12.5% NDs. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8648, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Barium Analysis Run 1/25/2018 12:13 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Control Chart


Constituent: Barium (mg/L) Analysis Run 1/25/2018 12:21 PM

	MW-2	MW-2	Natural Log	Std. Mean	CUSUM
12/14/2015	0.031		-3.474		
2/25/2016	0.038		-3.27		
5/11/2016	0.027		-3.612		
8/16/2016	0.021		-3.863		
11/17/2016	0.024		-3.73		
2/23/2017	<0.2		-2.303		
6/7/2017	0.016		-4.135		
8/24/2017	0.017		-4.075		
12/20/2017		0.022	-3.817	-0.4432	0.0285

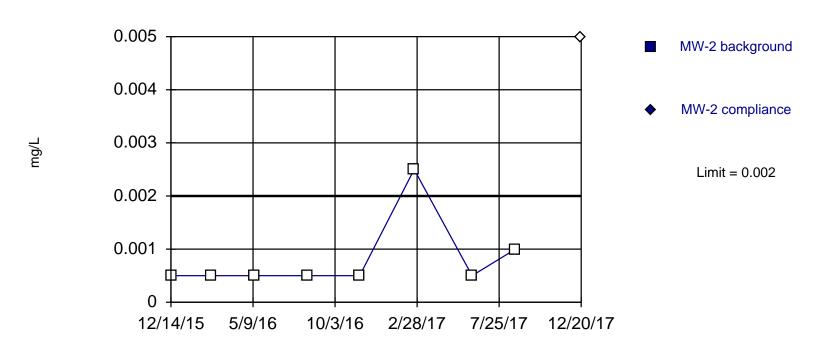
Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Beryllium Analysis Run 1/25/2018 12:13 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18


Constituent: Beryllium (mg/L) Analysis Run 1/25/2018 12:21 PM

	MW-2	MW-2
12/14/2015	<0.001	
2/25/2016	<0.001	
5/11/2016	<0.001	
8/16/2016	<0.001	
11/17/2016	<0.001	
2/23/2017	<0.005	
6/7/2017	<0.001	
8/24/2017	<0.001	
12/20/2017		<0.001

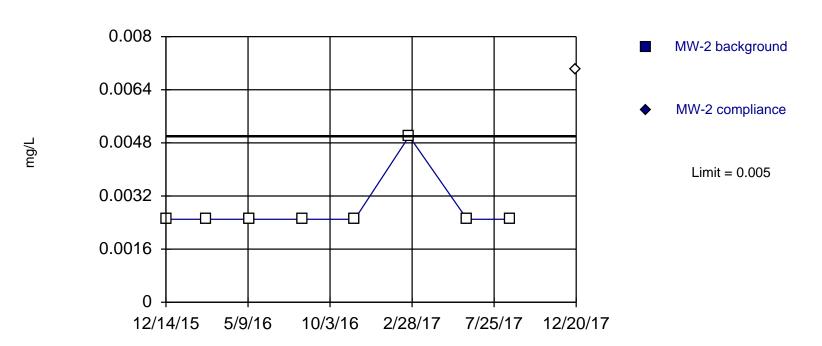
Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Cadmium Analysis Run 1/25/2018 12:13 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

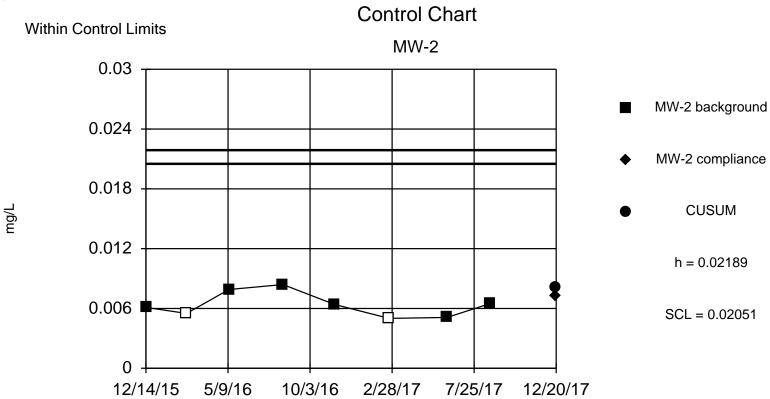

Constituent: Cadmium (mg/L) Analysis Run 1/25/2018 12:21 PM

	MW-2	MW-2
12/14/2015	<0.001	
2/25/2016	<0.001	
5/11/2016	<0.001	
8/16/2016	<0.001	
11/17/2016	<0.001	
2/23/2017	<0.005	
6/7/2017	<0.001	
8/24/2017	<0.002	
12/20/2017		<0.01

Within Limit

Prediction Limit

Intrawell Non-parametric



Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Chromium Analysis Run 1/25/2018 12:13 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

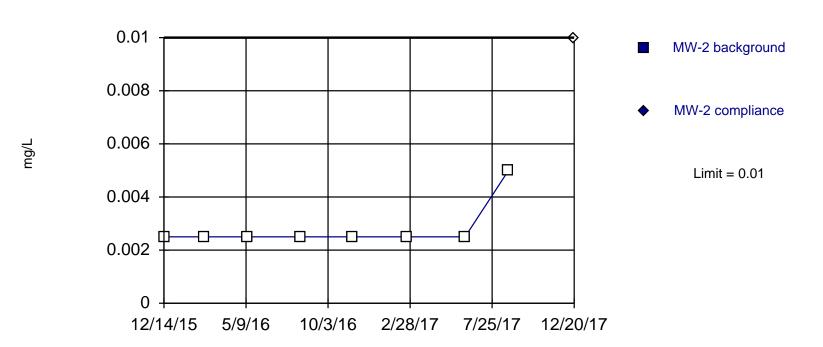
Constituent: Chromium (mg/L) Analysis Run 1/25/2018 12:21 PM

	MW-2	MW-2
12/14/2015	<0.005	
2/25/2016	<0.005	
5/11/2016	<0.005	
8/16/2016	<0.005	
11/17/2016	<0.005	
2/23/2017	<0.01	
6/7/2017	<0.005	
8/24/2017	<0.005	
12/20/2017		<0.014

Background Data Summary (after Cohen's Adjustment): Mean=0.008155, Std. Dev.=0.002746, n=8, 25% NDs. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.91, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Cobalt Analysis Run 1/25/2018 12:13 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Control Chart

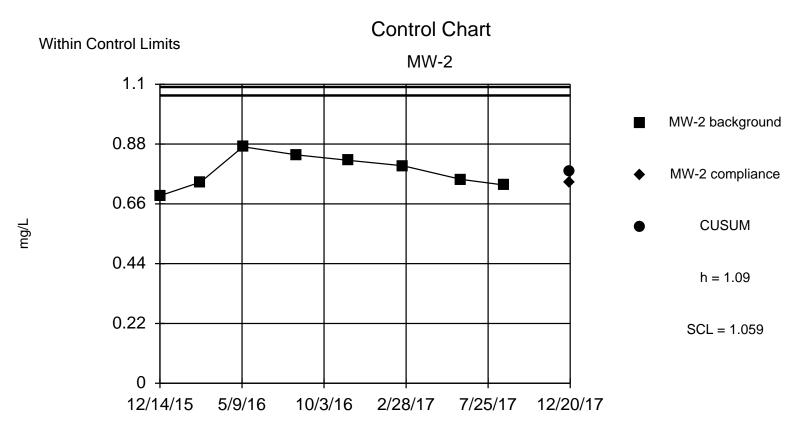

Constituent: Cobalt (mg/L) Analysis Run 1/25/2018 12:21 PM

	MW-2	MW-2	Std. Mean	CUSUM	
12/14/2015	0.0061				
2/25/2016	<0.011				
5/11/2016	0.0079				
8/16/2016	0.0084				
11/17/2016	0.0064				
2/23/2017	<0.01				
6/7/2017	0.0051				
8/24/2017	0.0065				
12/20/2017		0.0072	-0.3479	0.008155	

Within Limit

Prediction Limit

Intrawell Non-parametric



Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Lead Analysis Run 1/25/2018 12:13 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

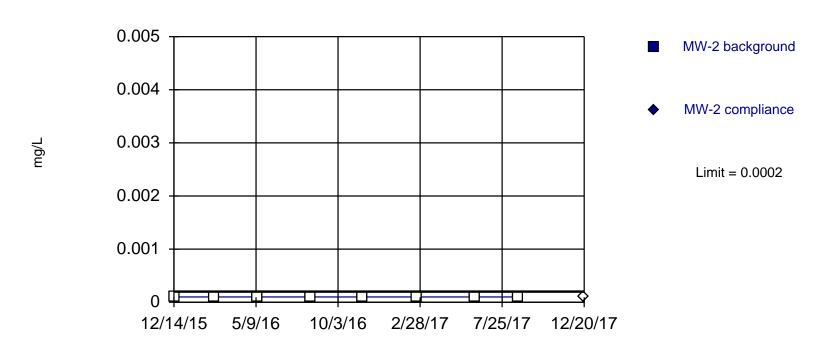
Constituent: Lead (mg/L) Analysis Run 1/25/2018 12:21 PM

	MW-2	MW-2
12/14/2015	<0.005	
2/25/2016	<0.005	
5/11/2016	<0.005	
8/16/2016	<0.005	
11/17/2016	<0.005	
2/23/2017	<0.005	
6/7/2017	<0.005	
8/24/2017	<0.01	
12/20/2017		<0.02

Background Data Summary: Mean=0.7799, Std. Dev.=0.06199, n=8. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9612, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Lithium Analysis Run 1/25/2018 12:13 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Control Chart


Constituent: Lithium (mg/L) Analysis Run 1/25/2018 12:21 PM

	MW-2	MW-2	Std. Mean	CUSUM
12/14/2015	0.69			
2/25/2016	0.74			
5/11/2016	0.87			
8/16/2016	0.84			
11/17/2016	0.82			
2/23/2017	0.8			
6/7/2017	0.75			
8/24/2017	0.729			
12/20/2017		0.74	-0.6432	0.7799

Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Mercury Analysis Run 1/25/2018 12:13 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Constituent: Mercury (mg/L) Analysis Run 1/25/2018 12:21 PM

	MW-2	MW-2
10/14/0015		
12/14/2015	<0.0002	
2/25/2016	< 0.0002	
5/11/2016	<0.0002	
8/16/2016	< 0.0002	
11/17/2016		
2/23/2017	<0.0002	
6/7/2017	<0.0002	
8/24/2017	<0.0002	
12/20/2017		<0.0002
12/20/2017		-0.0002

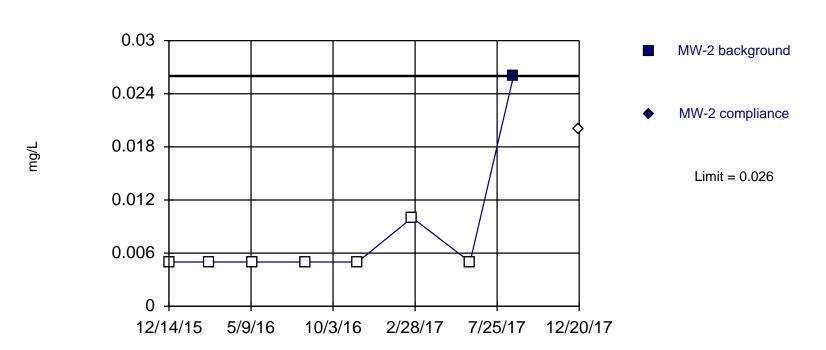
Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. Limit is highest of 8 background values. 87.5% NDs. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Molybdenum Analysis Run 1/25/2018 12:13 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18


Constituent: Molybdenum (mg/L) Analysis Run 1/25/2018 12:21 PM

	MW-2	MW-2
12/14/2015	<0.01	
2/25/2016	<0.01	
5/11/2016	<0.01	
8/16/2016	<0.01	
11/17/2016	0.024	
2/23/2017	<0.01	
6/7/2017	<0.02	
8/24/2017	<0.02	
12/20/2017		<0.03

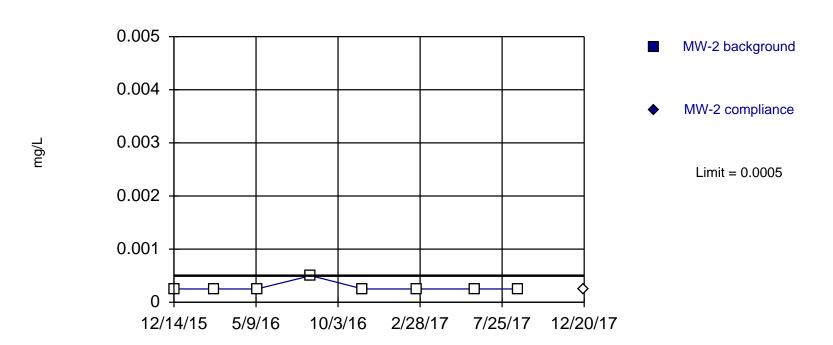
Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. Limit is highest of 8 background values. 87.5% NDs. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Selenium Analysis Run 1/25/2018 12:13 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

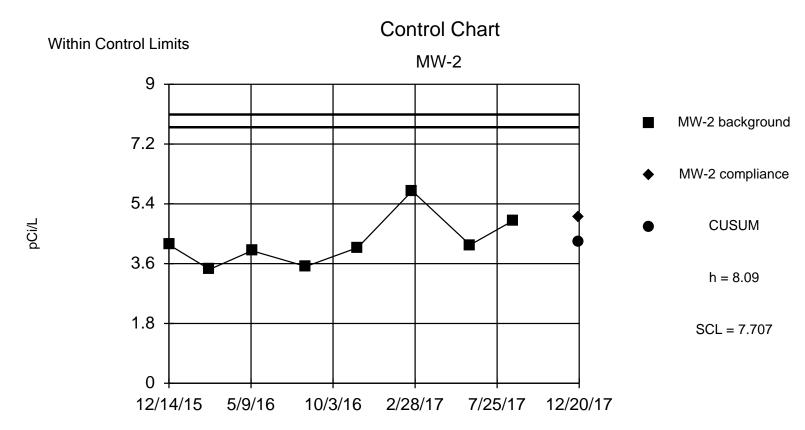

Constituent: Selenium (mg/L) Analysis Run 1/25/2018 12:21 PM

	MW-2	MW-2
12/14/2015	<0.01	
2/25/2016	<0.01	
5/11/2016	<0.01	
8/16/2016	<0.01	
11/17/2016	<0.01	
2/23/2017	<0.02	
6/7/2017	<0.01	
8/24/2017	0.026	
12/20/2017		<0.04

Within Limit

Prediction Limit

Intrawell Non-parametric



Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Thallium Analysis Run 1/25/2018 12:13 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

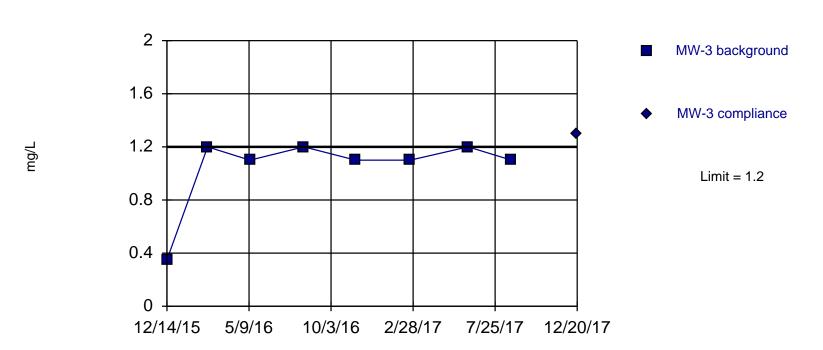
Constituent: Thallium (mg/L) Analysis Run 1/25/2018 12:21 PM

	MW-2	MW-2
12/14/2015	<0.0005	
2/25/2016	<0.0005	
5/11/2016	<0.0005	
8/16/2016	<0.001	
11/17/2016	<0.0005	
2/23/2017	<0.0005	
6/7/2017	<0.0005	
8/24/2017	<0.0005	
12/20/2017		<0.0005

Background Data Summary: Mean=4.255, Std. Dev.=0.767, n=8. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.88, critical = 0.818. Report alpha = 0.001916. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Combined Radium Analysis Run 1/25/2018 2:47 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Control Chart

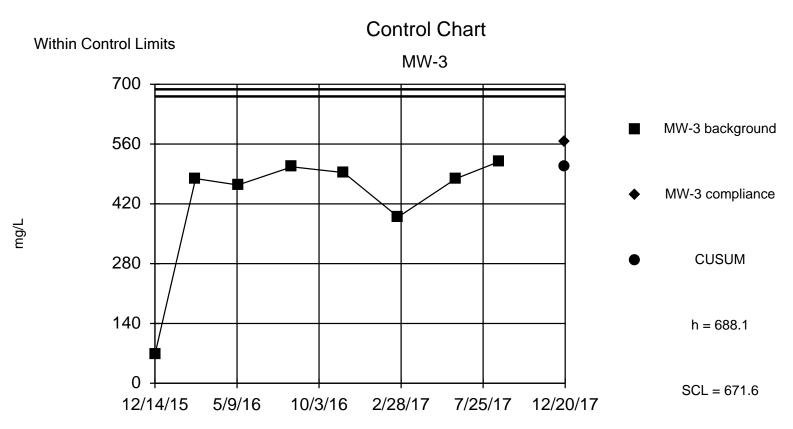

Constituent: Combined Radium (pCi/L) Analysis Run 1/25/2018 2:47 PM

	MW-2	MW-2	Std. Mean	CUSUM
12/14/2015	4.17			
2/25/2016	3.427			
5/11/2016	3.989			
8/16/2016	3.517			
11/17/2016	4.083			
2/23/2017	5.79			
6/7/2017	4.164			
8/24/2017	4.9			
12/20/2017		5.015	0.9908	4.255

Exceeds Limit

Prediction Limit

Intrawell Non-parametric

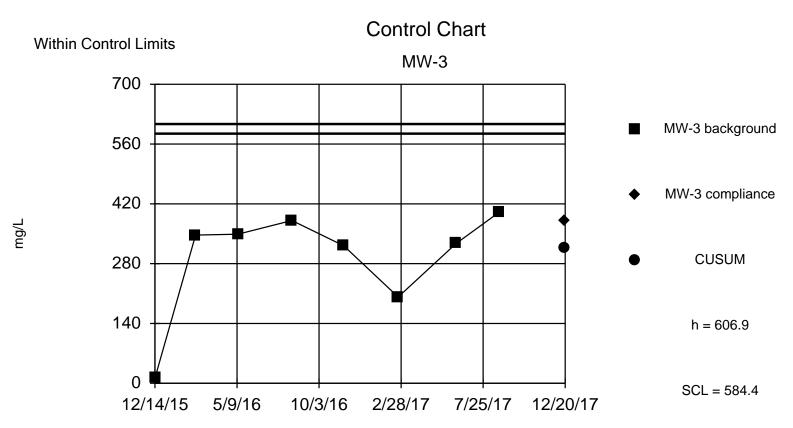


Non-parametric test used in lieu of control chart because the Shapiro Wilk normality test showed the data to be nonnormal at the 0.05 alpha level. Limit is highest of 8 background values. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Boron Analysis Run 1/25/2018 12:25 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Constituent: Boron (mg/L) Analysis Run 1/25/2018 12:27 PM

	MW-3	MW-3
12/14/2015	0.35	
2/25/2016	1.2	
5/11/2016	1.1	
8/16/2016	1.2	
11/17/2016	1.1	
2/23/2017	1.1	
6/7/2017	1.2	
8/24/2017	1.1	
12/20/2017		1.3



Background Data Summary (based on cube transformation): Mean=9.7e7, Std. Dev.=4.6e7, n=8. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.828, critical = 0.818. Report alpha = 0.001952. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

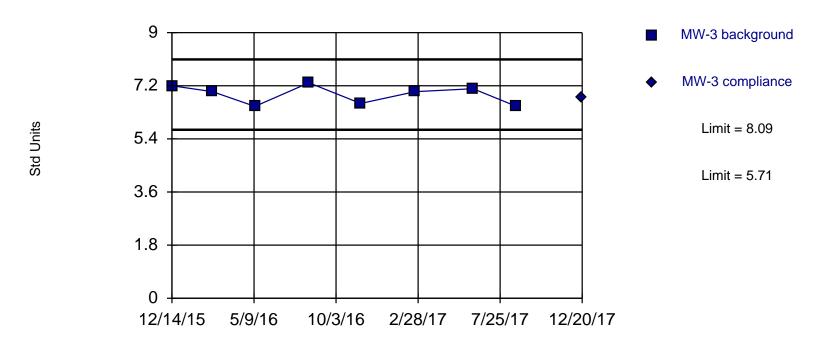
Constituent: Calcium Analysis Run 1/26/2018 10:17 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Constituent: Calcium (mg/L) Analysis Run 1/26/2018 10:17 AM

	MW-3	MW-3	Cube	Std. Mean	CUSUM
12/14/2015	67.6		308915.776		
2/25/2016	479		109902239		
5/11/2016	465		100544625		
8/16/2016	505		128787625		
11/17/2016	494		120553784		
2/23/2017	389		58863869		
6/7/2017	486		114791256		
8/24/2017	519		139798359		
12/20/2017		563	178453547	1.784	506.6

Background Data Summary (based on square transformation): Mean=99968, Std. Dev.=53670, n=8. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8926, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Chloride Analysis Run 1/25/2018 12:25 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

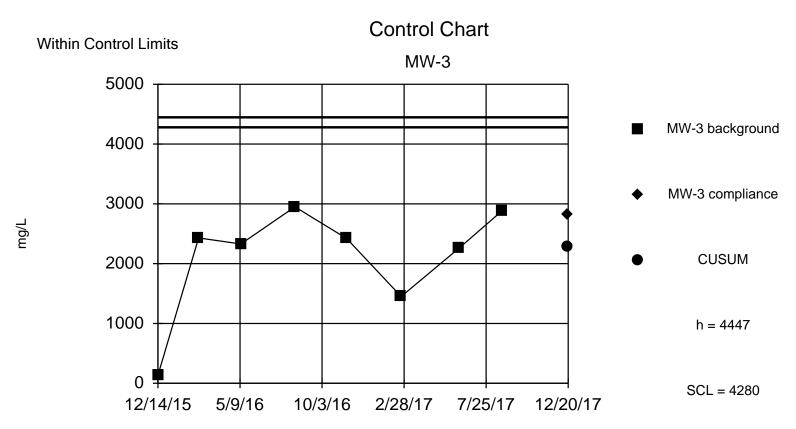

Constituent: Chloride (mg/L) Analysis Run 1/25/2018 12:27 PM

	MW-3	MW-3	Square	Std. Mean	CUSUM	
12/14/2015	12.3		151.29			
2/25/2016	347		120409			
5/11/2016	349		121801			
8/16/2016	381		145161			
11/17/2016	322		103684			
2/23/2017	202		40804			
6/7/2017	327		106929			
8/24/2017	401		160801			
12/20/2017		380	144400	0.8279	316.2	

Sanitas™ v.9.5.27 Software licensed to SCS Engineers. EPA

Within Limits

Prediction Limit Intrawell Parametric

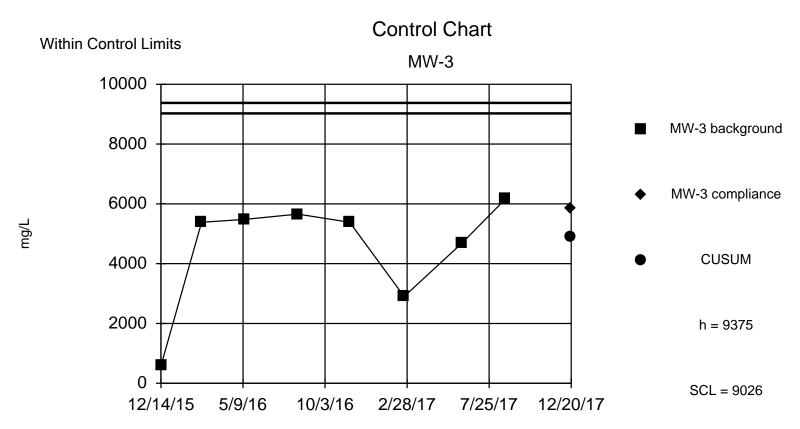

Background Data Summary: Mean=6.9, Std. Dev.=0.3207, n=8. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8729, critical = 0.818. Report alpha = 0.01. Most recent point compared to limit.

Constituent: pH Analysis Run 1/25/2018 12:23 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Prediction Limit

Constituent: pH (Std Units) Analysis Run 1/25/2018 12:24 PM

	MW-3	MW-3
12/14/2015	7.2	
2/25/2016	7	
5/11/2016	6.5	
8/16/2016	7.3	
11/17/2016	6.6	
2/23/2017	7	
6/7/2017	7.1	
8/24/2017	6.5	
12/20/2017		6.8

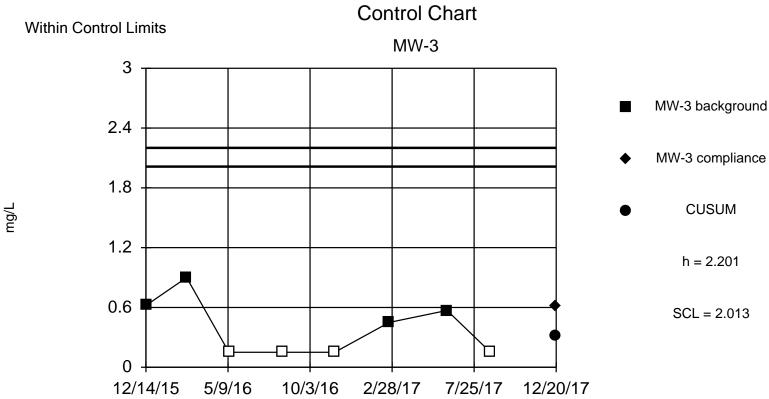


Background Data Summary (based on square transformation): Mean=5184141, Std. Dev.=2918787, n=8. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9173, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Sulfate Analysis Run 1/25/2018 12:25 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Constituent: Sulfate (mg/L) Analysis Run 1/25/2018 12:27 PM

	MW-3	MW-3	Square	Std. Mean	CUSUM
12/14/2015	135		18225		
2/25/2016	2430		5904900		
5/11/2016	2330		5428900		
8/16/2016	2950		8702500		
11/17/2016	2420		5856400		
2/23/2017	1450		2102500		
6/7/2017	2260		5107600		
8/24/2017	2890		8352100		
12/20/2017		2830	8008900	0.9678	2277



Background Data Summary (based on square transformation): Mean=2.4e7, Std. Dev.=1.3e7, n=8. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8631, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

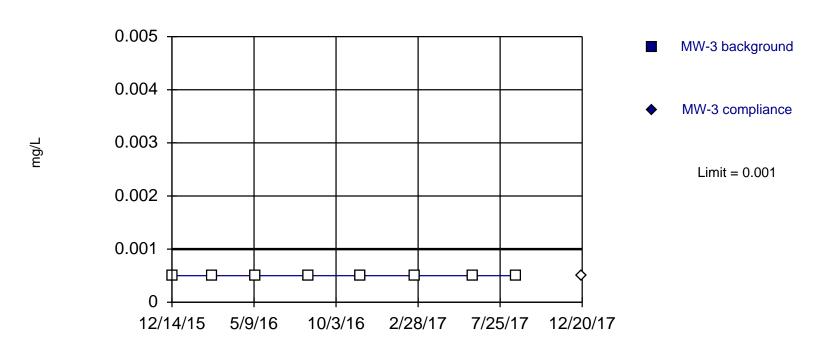
Constituent: Total Dissolved Solids Analysis Run 1/25/2018 12:25 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Constituent: Total Dissolved Solids (mg/L) Analysis Run 1/25/2018 12:27 PM

	MW-3	MW-3	Square	Std. Mean	CUSUM
12/14/2015	586		343396		
2/25/2016	5400		29160000		
5/11/2016	5440		29593600		
8/16/2016	5680		32262400		
11/17/2016	5420		29376400		
2/23/2017	2900		8410000		
6/7/2017	4740		22467600		
8/24/2017	6160		37945600		
12/20/2017		5790	33524100	0.7656	4899

Background Data Summary (after Cohen's Adjustment): Mean=0.3213, Std. Dev.=0.376, n=8, 50% NDs. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8281, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Fluoride Analysis Run 1/25/2018 12:25 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18


Constituent: Fluoride (mg/L) Analysis Run 1/25/2018 12:27 PM

		MW-3	MW-3	Std. Mean	CUSUM
1	12/14/2015	0.62			
2	2/25/2016	0.9			
5	5/11/2016	<0.3			
8	8/16/2016	<0.3			
1	11/17/2016	<0.3			
2	2/23/2017	0.45			
e	6/7/2017	0.57			
8	8/24/2017	<0.3			
1	12/20/2017		0.61	0.7678	0.3213

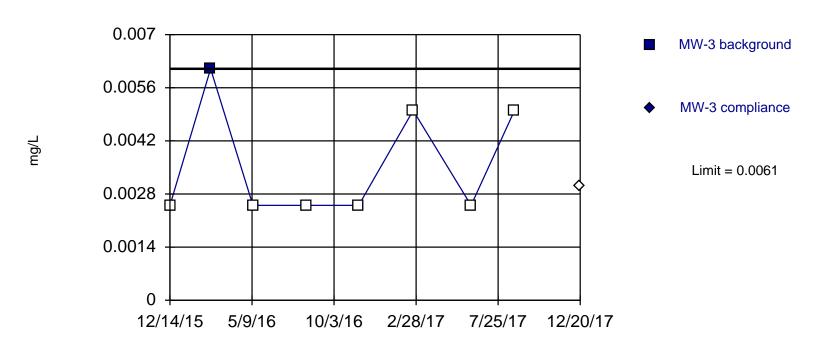
Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Antimony Analysis Run 1/25/2018 12:31 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

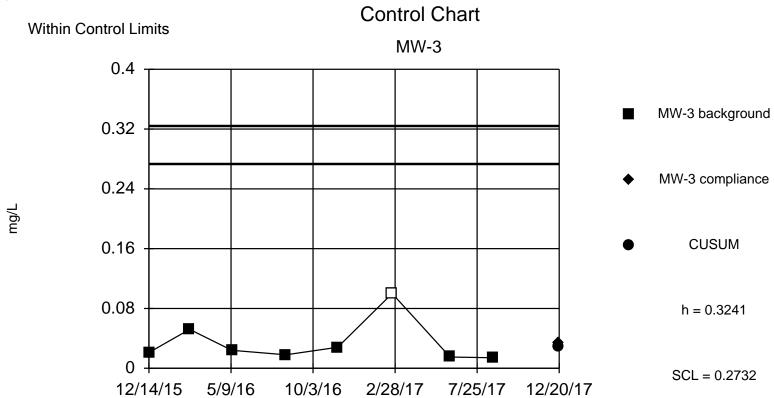

Constituent: Antimony (mg/L) Analysis Run 1/25/2018 12:36 PM

	MW-3	MW-3
12/14/2015	<0.001	
2/25/2016	<0.001	
5/11/2016	<0.001	
8/16/2016	<0.001	
11/17/2016	<0.001	
2/23/2017	<0.001	
6/7/2017	<0.001	
8/24/2017	<0.001	
12/20/2017		<0.001

Within Limit

Prediction Limit

Intrawell Non-parametric



Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. Limit is highest of 8 background values. 87.5% NDs. Report alpha = 0.1111. Most recent point compared to limit.

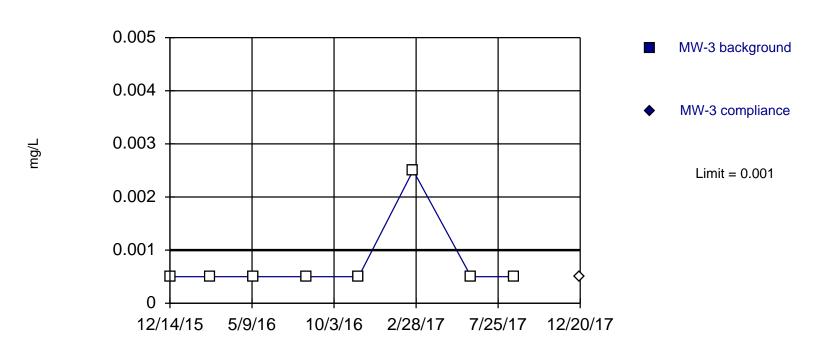
Constituent: Arsenic Analysis Run 1/25/2018 12:31 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Constituent: Arsenic (mg/L) Analysis Run 1/25/2018 12:36 PM

	MW-3	MW-3
12/14/2015	<0.005	
2/25/2016	0.0061	
5/11/2016	<0.005	
8/16/2016	<0.005	
11/17/2016	<0.005	
2/23/2017	<0.01	
6/7/2017	<0.005	
8/24/2017	<0.01	
12/20/2017		<0.006

Background Data Summary (based on cube root transformation): Mean=0.3069, Std. Dev.=0.076, n=8, 12.5% NDs. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8289, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Barium Analysis Run 1/25/2018 12:31 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18


Constituent: Barium (mg/L) Analysis Run 1/25/2018 12:36 PM

	MW-3	MW-3	Cube Root	Std. Mean	CUSUM
12/14/2015	0.021		0.2759		
2/25/2016	0.052		0.3733		
5/11/2016	0.024		0.2884		
8/16/2016	0.018		0.2621		
11/17/2016	0.028		0.3037		
2/23/2017	<0.2		0.4642		
6/7/2017	0.015		0.2466		
8/24/2017	0.014		0.241		
12/20/2017		0.034	0.324	0.2246	0.02891

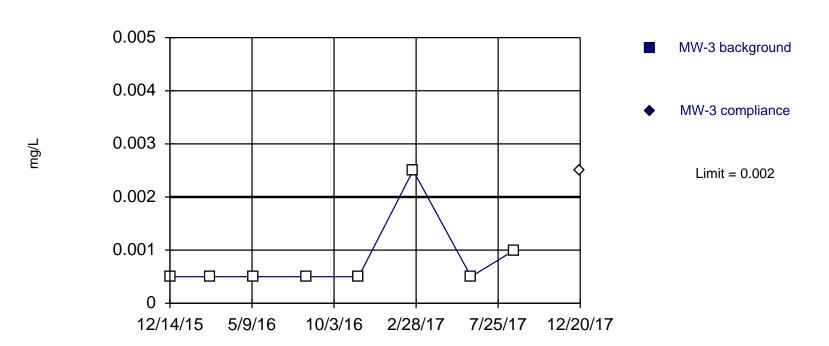
Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Beryllium Analysis Run 1/25/2018 12:31 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18


Constituent: Beryllium (mg/L) Analysis Run 1/25/2018 12:36 PM

	MW-3	MW-3
12/14/2015	<0.001	
2/25/2016	<0.001	
5/11/2016	<0.001	
8/16/2016	<0.001	
11/17/2016	<0.001	
2/23/2017	<0.005	
6/7/2017	<0.001	
8/24/2017	<0.001	
12/20/2017		<0.001

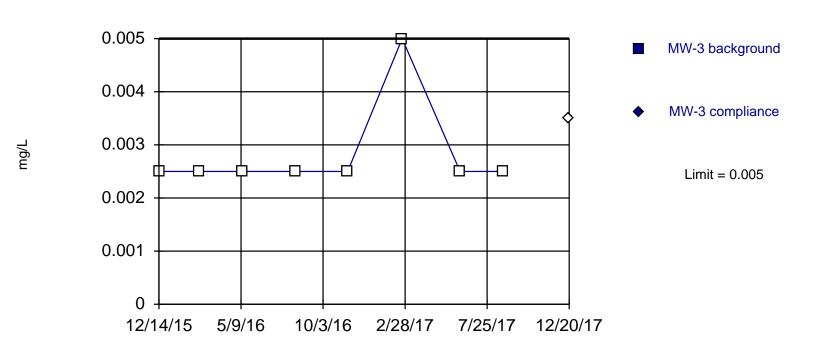
Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Cadmium Analysis Run 1/25/2018 12:31 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

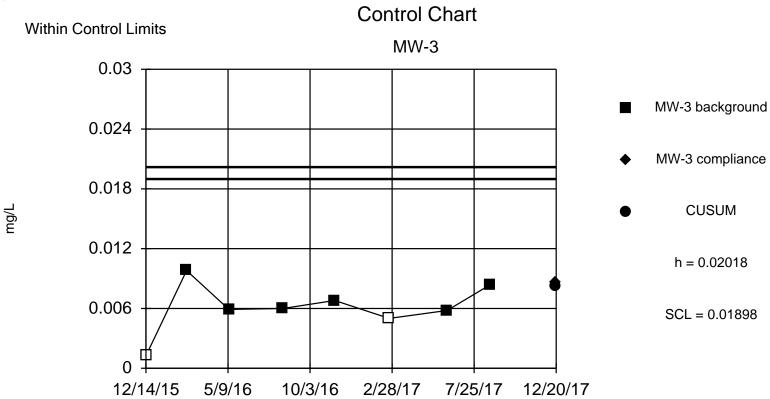

Constituent: Cadmium (mg/L) Analysis Run 1/25/2018 12:36 PM

	MW-3	MW-3
12/14/2015	<0.001	
2/25/2016	<0.001	
5/11/2016	<0.001	
8/16/2016	<0.001	
11/17/2016	<0.001	
2/23/2017	<0.005	
6/7/2017	<0.001	
8/24/2017	<0.002	
12/20/2017		<0.005

Within Limit

Prediction Limit

Intrawell Non-parametric



Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Report alpha = 0.1111. Most recent point compared to limit.

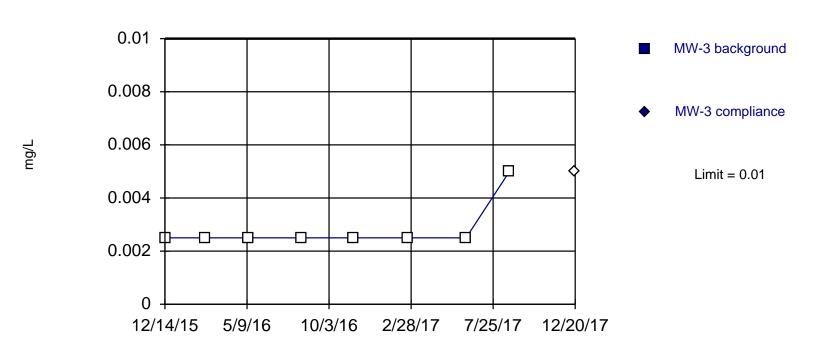
Constituent: Chromium Analysis Run 1/25/2018 12:31 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Constituent: Chromium (mg/L) Analysis Run 1/25/2018 12:36 PM

	MW-3	MW-3
12/14/2015	<0.005	
2/25/2016	<0.005	
5/11/2016	<0.005	
8/16/2016	<0.005	
11/17/2016	<0.005	
2/23/2017	<0.01	
6/7/2017	<0.005	
8/24/2017	<0.005	
12/20/2017		<0.007

Background Data Summary (after Cohen's Adjustment): Mean=0.008184, Std. Dev.=0.0024, n=8, 25% NDs. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9325, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Cobalt Analysis Run 1/25/2018 12:31 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

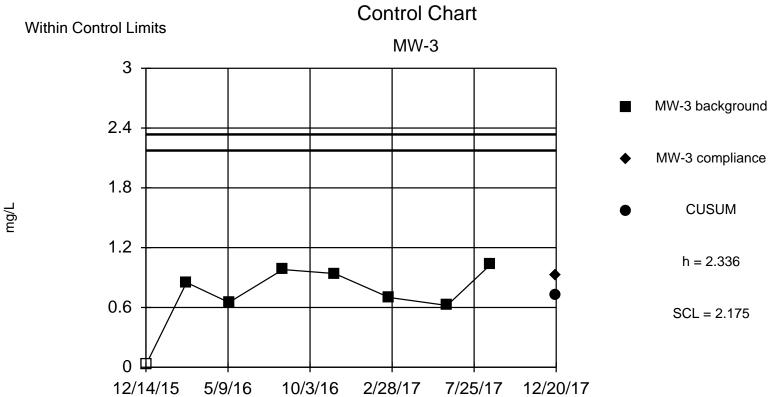

Constituent: Cobalt (mg/L) Analysis Run 1/25/2018 12:36 PM

	MW-3	MW-3	Std. Mean	CUSUM
12/14/2015	<0.0025			
2/25/2016	0.0098			
5/11/2016	0.0059			
8/16/2016	0.006			
11/17/2016	0.0068			
2/23/2017	<0.01			
6/7/2017	0.0058			
8/24/2017	0.0084			
12/20/2017		0.0086	0.1735	0.008184

Within Limit

Prediction Limit

Intrawell Non-parametric



Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Report alpha = 0.1111. Most recent point compared to limit.

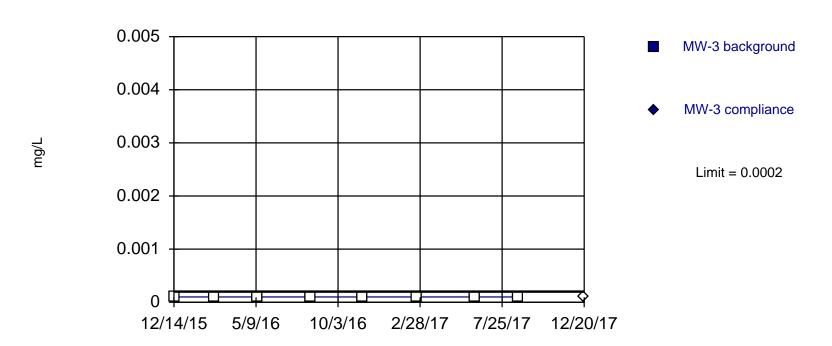
Constituent: Lead Analysis Run 1/25/2018 12:31 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Constituent: Lead (mg/L) Analysis Run 1/25/2018 12:36 PM

	MW-3	MW-3
12/14/2015	<0.005	
2/25/2016	<0.005	
5/11/2016	<0.005	
8/16/2016	<0.005	
11/17/2016	<0.005	
2/23/2017	<0.005	
6/7/2017	<0.005	
8/24/2017	<0.01	
12/20/2017		<0.01

Background Data Summary: Mean=0.7244, Std. Dev.=0.3223, n=8, 12.5% NDs. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.839, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Lithium Analysis Run 1/25/2018 12:31 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18


Constituent: Lithium (mg/L) Analysis Run 1/25/2018 12:36 PM

	MW-3	MW-3	Std. Mean	CUSUM
12/14/2015	<0.05			
2/25/2016	0.85			
5/11/2016	0.65			
8/16/2016	0.98			
11/17/2016	0.94			
2/23/2017	0.7			
6/7/2017	0.62			
8/24/2017	1.03			
12/20/2017		0.92	0.607	0.7244

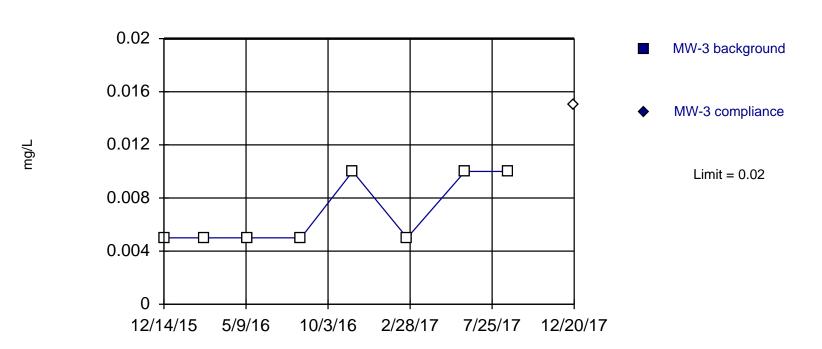
Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Mercury Analysis Run 1/25/2018 12:31 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18


Constituent: Mercury (mg/L) Analysis Run 1/25/2018 12:36 PM

MW-3 MW-3 12/14/2015 <0.0002 2/25/2016 <0.0002 5/11/2016 <0.0002 8/16/2016 <0.0002 11/17/2016 <0.0002 2/23/2017 <0.0002 6/7/2017 <0.0002 8/24/2017 <0.0002 12/20/2017 <0.0002	
12/14/2015<0.00022/25/2016<0.0002	
2/25/2016 <0.0002	
5/11/2016<0.00028/16/2016<0.0002	
8/16/2016 <0.0002	
11/17/2016 <0.0002	
11/17/2016 <0.0002	
2/23/2017 <0.0002 6/7/2017 <0.0002 8/24/2017 <0.0002	
6/7/2017 <0.0002 8/24/2017 <0.0002	
8/24/2017 <0.0002	
12/20/2017 <0.0002	

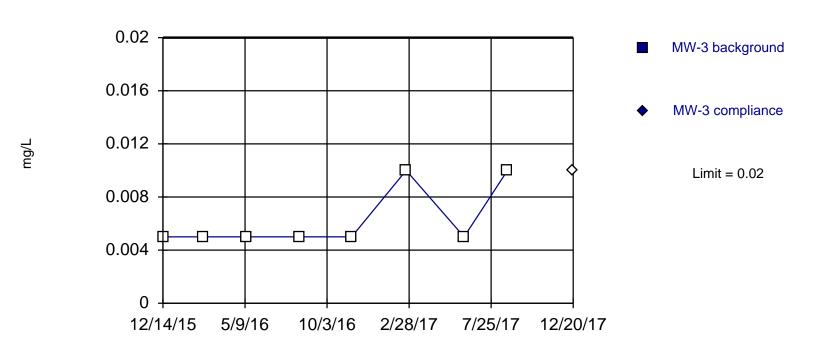
Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Molybdenum Analysis Run 1/25/2018 12:31 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18


Constituent: Molybdenum (mg/L) Analysis Run 1/25/2018 12:36 PM

	MW-3	MW-3
12/14/2015	<0.01	
2/25/2016	<0.01	
5/11/2016	<0.01	
8/16/2016	<0.01	
11/17/2016	<0.02	
2/23/2017	<0.01	
6/7/2017	<0.02	
8/24/2017	<0.02	
12/20/2017		<0.03

Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Selenium Analysis Run 1/25/2018 12:31 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

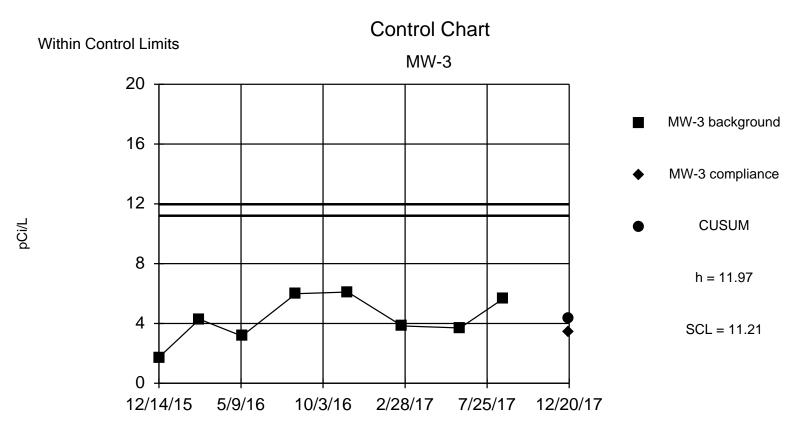

Constituent: Selenium (mg/L) Analysis Run 1/25/2018 12:36 PM

	MW-3	MW-3
12/14/2015	<0.01	
2/25/2016	<0.01	
5/11/2016	<0.01	
8/16/2016	<0.01	
11/17/2016	<0.01	
2/23/2017	<0.02	
6/7/2017	<0.01	
8/24/2017	<0.02	
12/20/2017		<0.02

Within Limit

Prediction Limit

Intrawell Non-parametric


Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Thallium Analysis Run 1/25/2018 12:31 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Control Chart Alternate

Constituent: Thallium (mg/L) Analysis Run 1/25/2018 12:36 PM

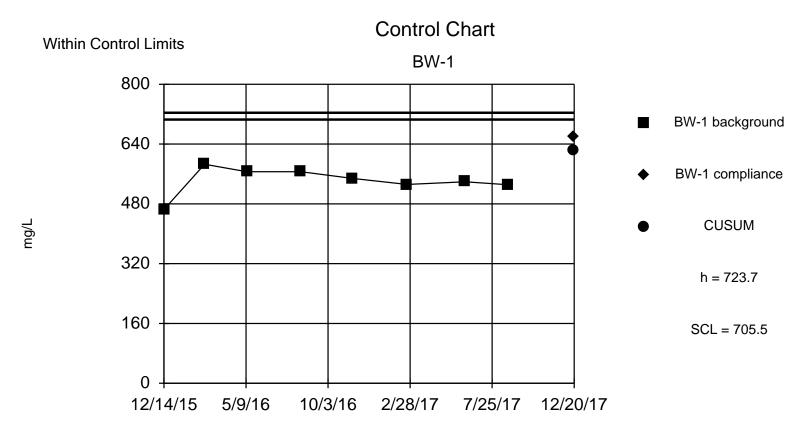
	MW-3	MW-3
12/14/2015		
2/25/2016	<0.0005	
5/11/2016	<0.0005	
8/16/2016	<0.0005	
11/17/2016		
2/23/2017	<0.0005	
6/7/2017	<0.0005	
8/24/2017	<0.0005	
12/20/2017		<0.0005

Background Data Summary: Mean=4.309, Std. Dev.=1.533, n=8. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9285, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Combined Radium Analysis Run 1/25/2018 12:38 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Constituent: Combined Radium (pCi/L) Analysis Run 1/25/2018 12:39 PM

	MW-3	MW-3	Std. Mean	CUSUM
12/14/2015	1.733			
2/25/2016	4.28			
5/11/2016	3.16			
8/16/2016	5.991			
11/17/2016	6.102			
2/23/2017	3.831			
6/7/2017	3.701			
8/24/2017	5.67			
12/20/2017		3.396	-0.5952	4.309

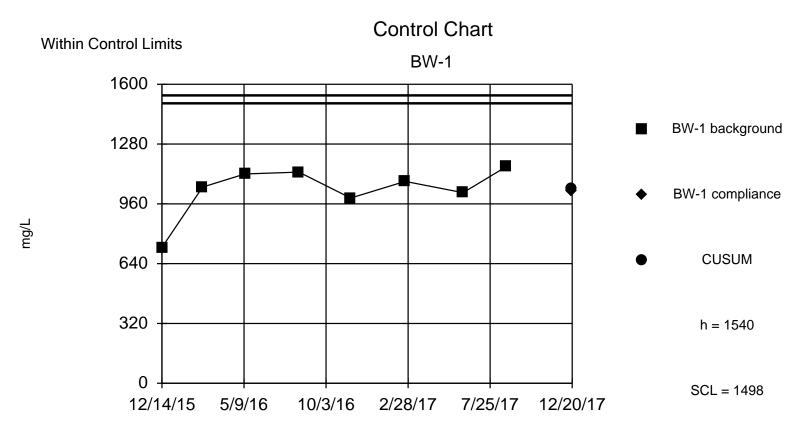


Background Data Summary: Mean=3.263, Std. Dev.=0.705, n=8. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8884, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Boron Analysis Run 1/25/2018 12:41 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Constituent: Boron (mg/L) Analysis Run 1/25/2018 12:43 PM

	BW-1	BW-1	Std. Mean	CUSUM
12/14/2015	1.8			
2/25/2016	3.5			
5/11/2016	4			
8/16/2016	3.7			
11/17/2016	2.8			
2/23/2017	3.1			
6/7/2017	3.8			
8/24/2017	3.4			
12/20/2017		3.5	0.3369	3.263



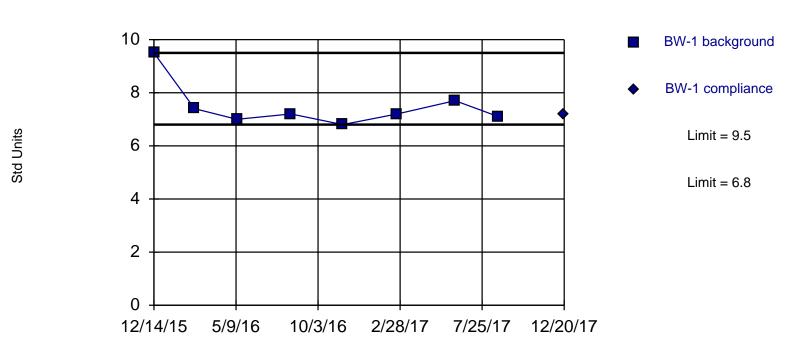
Background Data Summary: Mean=541.6, Std. Dev.=36.41, n=8. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.887, critical = 0.818. Report alpha = 0.001952. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Calcium Analysis Run 1/26/2018 10:17 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Constituent: Calcium (mg/L) Analysis Run 1/26/2018 10:18 AM

	BW-1	BW-1	Std. Mean	CUSUM
12/14/2015	465			
2/25/2016	586			
5/11/2016	566			
8/16/2016	566			
11/17/2016	548			
2/23/2017	532			
6/7/2017	539			
8/24/2017	531			
12/20/2017		658	3.196	621.6

Background Data Summary (based on square transformation): Mean=1087101, Std. Dev.=257064, n=8. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8544, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.


Constituent: Chloride Analysis Run 1/25/2018 12:41 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

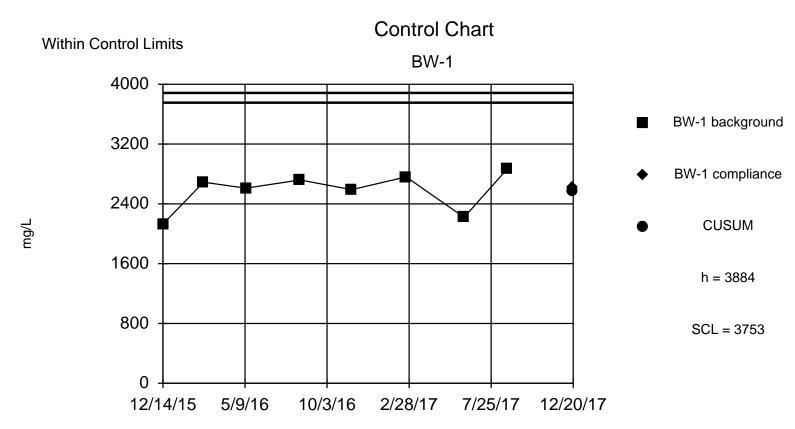
Constituent: Chloride (mg/L) Analysis Run 1/25/2018 12:43 PM

	BW-1	BW-1	Square	Std. Mean	CUSUM
12/14/2015	727		528529		
2/25/2016	1050		1102500		
5/11/2016	1120		1254400		
8/16/2016	1130		1276900		
11/17/2016	991		982081		
2/23/2017	1080		1166400		
6/7/2017	1020		1040400		
8/24/2017	1160		1345600		
12/20/2017		1030	1060900	-0.1019	1043

Within Limits

Prediction Limit

Intrawell Non-parametric

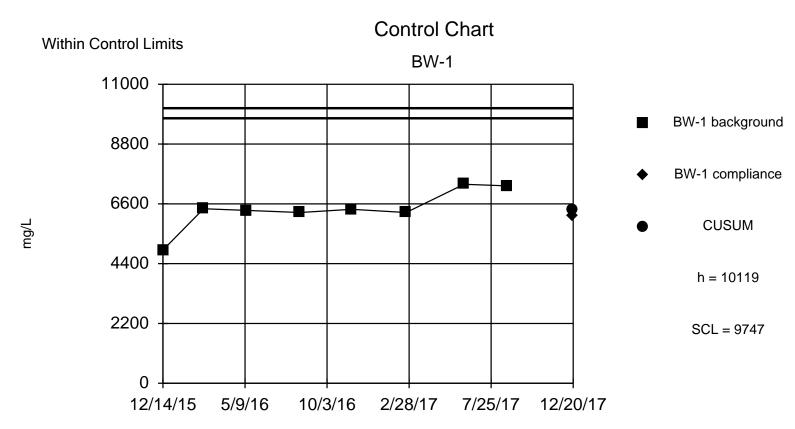

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limits are highest and lowest of 8 background values. Report alpha = 0.2222. Most recent point compared to limit.

Constituent: pH Analysis Run 1/25/2018 12:40 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Prediction Limit

Constituent: pH (Std Units) Analysis Run 1/25/2018 12:41 PM

	I BW-1	BW-1
12/14/2015	9.5	
2/25/2016	7.4	
5/11/2016	7	
8/16/2016	7.2	
11/17/2016	6.8	
2/23/2017	7.2	
6/7/2017	7.7	
8/24/2017	7.1	
12/20/2017		7.2

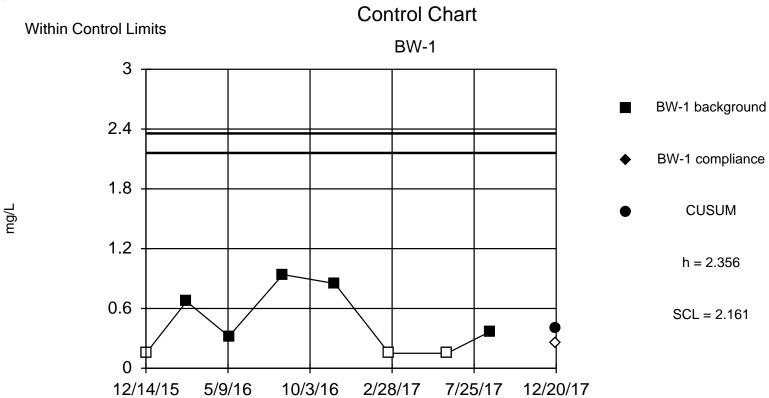


Background Data Summary: Mean=2574, Std. Dev.=262.1, n=8. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8672, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Sulfate Analysis Run 1/25/2018 12:41 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Constituent: Sulfate (mg/L) Analysis Run 1/25/2018 12:43 PM

	BW-1	BW-1	Std. Mean	CUSUM
12/14/2015	2130			
2/25/2016	2690			
5/11/2016	2610			
8/16/2016	2720			
11/17/2016	2590			
2/23/2017	2760			
6/7/2017	2220			
8/24/2017	2870			
12/20/2017		2620	0.1764	2574



Background Data Summary: Mean=6403, Std. Dev.=743.2, n=8. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8391, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

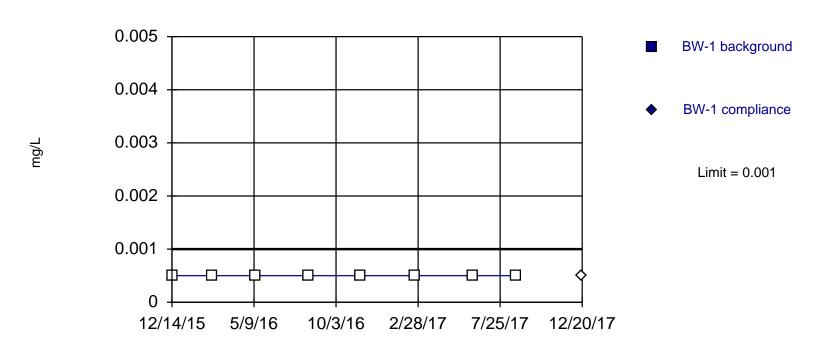
Constituent: Total Dissolved Solids Analysis Run 1/25/2018 12:41 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Constituent: Total Dissolved Solids (mg/L) Analysis Run 1/25/2018 12:43 PM

		BW-1	BW-1	Std. Mean	CUSUM
12/14/	/2015	4900			
2/25/2	2016	6420			
5/11/2	2016	6360			
8/16/2	2016	6280			
11/17/	/2016	6400			
2/23/2	2017	6280			
6/7/20	017	7320			
8/24/2	2017	7260			
12/20/	/2017		6140	-0.3532	6403

Background Data Summary (after Cohen's Adjustment): Mean=0.4018, Std. Dev.=0.3908, n=8, 37.5% NDs. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8478, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Fluoride Analysis Run 1/25/2018 12:41 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

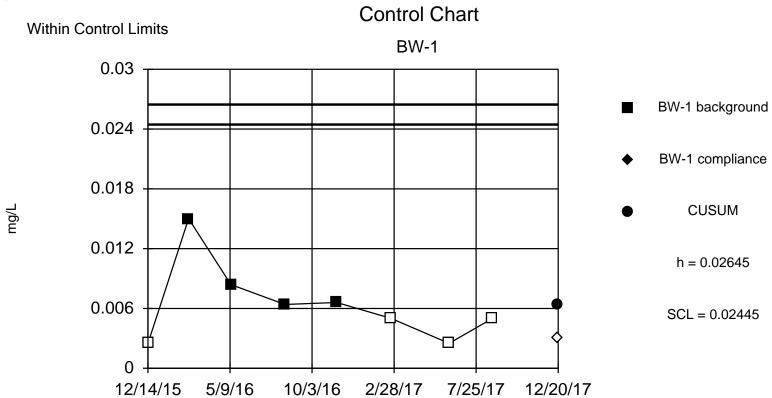

Constituent: Fluoride (mg/L) Analysis Run 1/25/2018 12:43 PM

	BW-1	BW-1	Std. Mean	CUSUM
12/14/2015	<0.3			
2/25/2016	0.67			
5/11/2016	0.32			
8/16/2016	0.94			
11/17/2016	0.85			
2/23/2017	<0.3			
6/7/2017	<0.3			
8/24/2017	0.37			
12/20/2017		<0.5	-0.3884	0.4018

Within Limit

Prediction Limit

Intrawell Non-parametric

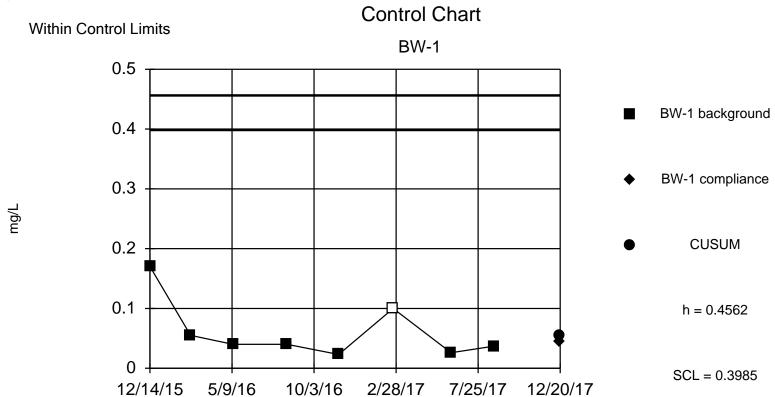

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Antimony Analysis Run 1/25/2018 12:45 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Control Chart Alternate

Constituent: Antimony (mg/L) Analysis Run 1/25/2018 12:51 PM

	BW-1	BW-
12/14/2015	<0.001	
2/25/2016	<0.001	
5/11/2016	<0.001	
8/16/2016	<0.001	
11/17/2016	<0.001	
2/23/2017	<0.001	
6/7/2017	<0.001	
8/24/2017	<0.001	
12/20/2017		<0.001



Background Data Summary: Mean=0.006425, Std. Dev.=0.004006, n=8, 50% NDs. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8531, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

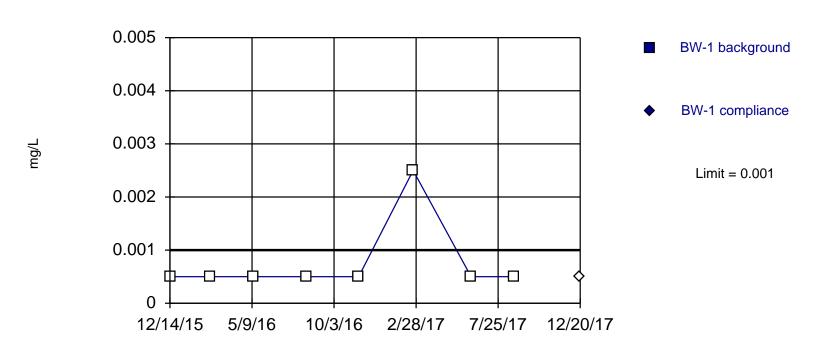
Constituent: Arsenic Analysis Run 1/25/2018 12:45 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Constituent: Arsenic (mg/L) Analysis Run 1/25/2018 12:51 PM

	BW-1	BW-1	Std. Mean	CUSUM
12/14/2015	<0.005			
2/25/2016	0.015			
5/11/2016	0.0084			
8/16/2016	0.0064			
11/17/2016	0.0066			
2/23/2017	<0.01			
6/7/2017	<0.005			
8/24/2017	<0.01			
12/20/2017		<0.006	-0.855	0.006425

Background Data Summary (based on square root transformation): Mean=0.2335, Std. Dev.=0.08838, n=8, 12.5% NDs. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8387, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Barium Analysis Run 1/25/2018 12:45 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18


Constituent: Barium (mg/L) Analysis Run 1/25/2018 12:51 PM

	BW-1	BW-1	Square Root	Std. Mean	CUSUM
12/14/2015	0.17		0.4123		
2/25/2016	0.055		0.2345		
5/11/2016	0.04		0.2		
8/16/2016	0.04		0.2		
11/17/2016	0.023		0.1517		
2/23/2017	<0.2		0.3162		
6/7/2017	0.026		0.1612		
8/24/2017	0.037		0.1924		
12/20/2017		0.044	0.2098	-0.269	0.05452

Within Limit

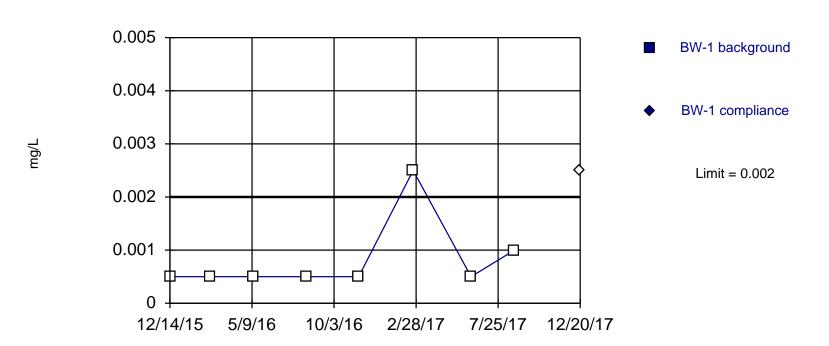
Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Beryllium Analysis Run 1/25/2018 12:45 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Control Chart Alternate

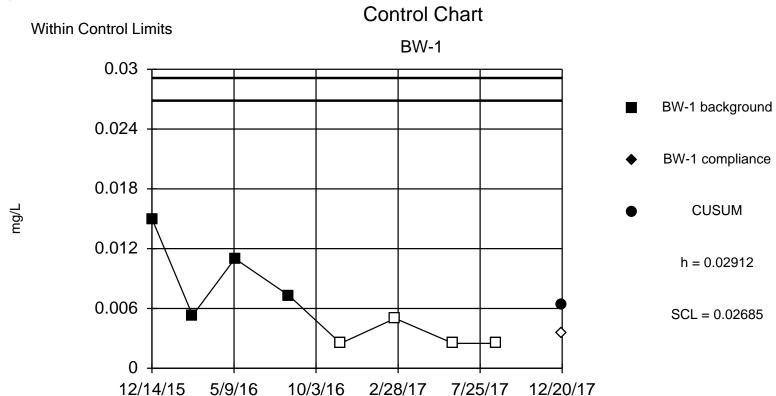

Constituent: Beryllium (mg/L) Analysis Run 1/25/2018 12:51 PM

	BW-1	BW-1
12/14/2015	<0.001	
2/25/2016	<0.001	
5/11/2016	<0.001	
8/16/2016	<0.001	
11/17/2016	<0.001	
2/23/2017	<0.005	
6/7/2017	<0.001	
8/24/2017	<0.001	
12/20/2017		<0.001

Within Limit

Prediction Limit

Intrawell Non-parametric

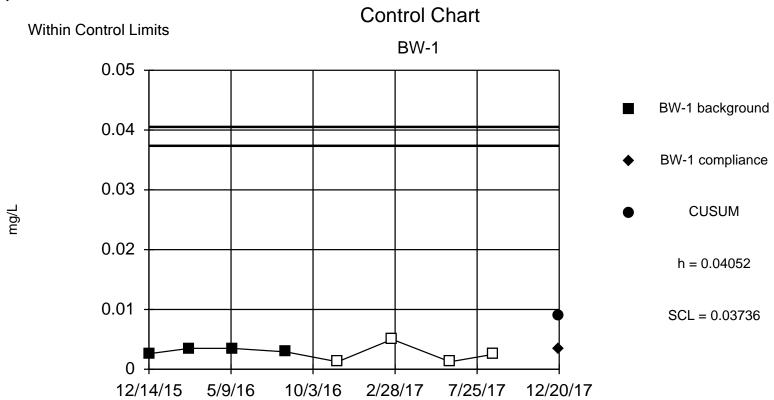

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Cadmium Analysis Run 1/25/2018 12:45 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Control Chart Alternate

Constituent: Cadmium (mg/L) Analysis Run 1/25/2018 12:51 PM

	BW-1	BW-1
12/14/2015	<0.001	
2/25/2016	<0.001	
5/11/2016	<0.001	
8/16/2016	<0.001	
11/17/2016	<0.001	
2/23/2017	<0.005	
6/7/2017	<0.001	
8/24/2017	<0.002	
12/20/2017		<0.005



Background Data Summary: Mean=0.006387, Std. Dev.=0.004547, n=8, 50% NDs. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8525, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

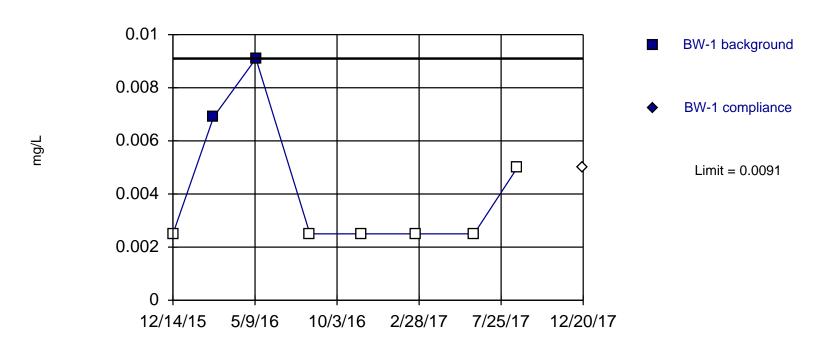
Constituent: Chromium Analysis Run 1/25/2018 12:45 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Constituent: Chromium (mg/L) Analysis Run 1/25/2018 12:51 PM

	BW-1	BW-1	Std. Mean	CUSUM	
12/14/2015	0.015				
2/25/2016	0.0053				
5/11/2016	0.011				
8/16/2016	0.0073				
11/17/2016	<0.005				
2/23/2017	<0.01				
6/7/2017	<0.005				
8/24/2017	<0.005				
12/20/2017		<0.007	-0.635	0.006387	

Background Data Summary (after Cohen's Adjustment): Mean=0.00891, Std. Dev.=0.006323, n=8, 50% NDs. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9351, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Cobalt Analysis Run 1/25/2018 12:45 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

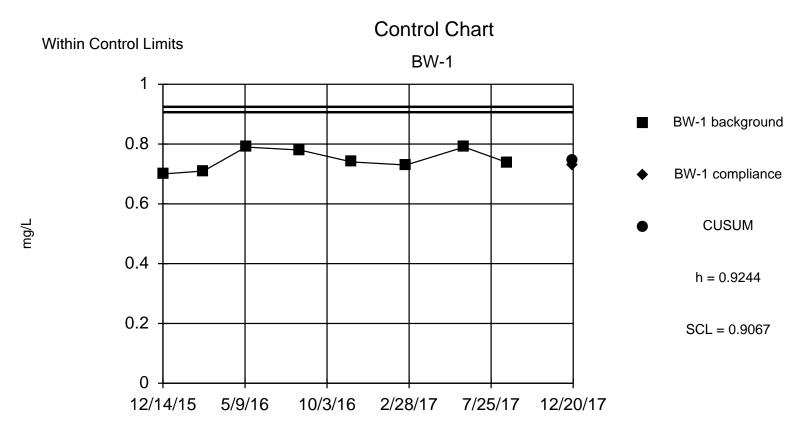

Constituent: Cobalt (mg/L) Analysis Run 1/25/2018 12:51 PM

	BW-1	BW-1	Std. Mean	CUSUM
12/14/2015	0.0026			
2/25/2016	0.0035			
5/11/2016	0.0035			
8/16/2016	0.0029			
11/17/2016	<0.0025			
2/23/2017	<0.01			
6/7/2017	<0.0025			
8/24/2017	<0.005			
12/20/2017		0.0034	-0.8715	0.00891

Within Limit

Prediction Limit

Intrawell Non-parametric


Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. Limit is highest of 8 background values. 75% NDs. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Lead Analysis Run 1/25/2018 12:45 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

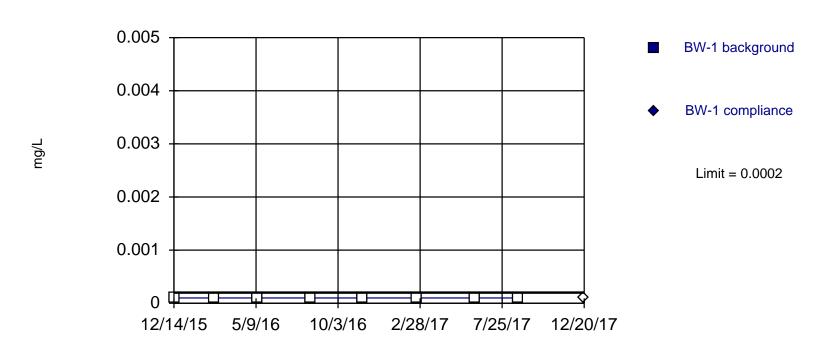
Control Chart Alternate

Constituent: Lead (mg/L) Analysis Run 1/25/2018 12:51 PM

	BW-1	BW-1
12/14/2015	<0.005	
2/25/2016	0.0069	
5/11/2016	0.0091	
8/16/2016	<0.005	
11/17/2016	<0.005	
2/23/2017	<0.005	
6/7/2017	<0.005	
8/24/2017	<0.01	
12/20/2017		<0.01

Background Data Summary: Mean=0.7473, Std. Dev.=0.03542, n=8. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8939, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Lithium Analysis Run 1/25/2018 12:45 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18


Constituent: Lithium (mg/L) Analysis Run 1/25/2018 12:51 PM

	BW-1	BW-1	Std. Mean	CUSUM
12/14/2015	0.7			
2/25/2016	0.71			
5/11/2016	0.79			
8/16/2016	0.78			
11/17/2016	0.74			
2/23/2017	0.73			
6/7/2017	0.79			
8/24/2017	0.738			
12/20/2017		0.73	-0.487	0.7473

Within Limit

Prediction Limit

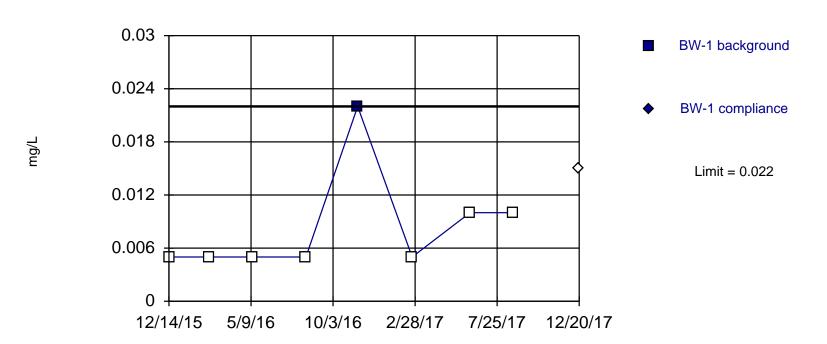
Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Mercury Analysis Run 1/25/2018 12:45 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Control Chart Alternate

Constituent: Mercury (mg/L) Analysis Run 1/25/2018 12:51 PM


BW-1 BW-1 12/14/2015 <0.0002 2/25/2016 <0.0002 5/11/2016 <0.0002 8/16/2016 <0.0002 11/17/2016 <0.0002 2/23/2017 <0.0002 6/7/2017 <0.0002 8/24/2017 <0.0002 12/20/2017 <0.0002			
12/14/2015<0.0002		BW-1	BW-1
2/25/2016 <0.0002	12/14/2015		
5/11/2016<0.00028/16/2016<0.0002			
8/16/2016 <0.0002			
11/17/2016 <0.0002	5/11/2016	<0.0002	
2/23/2017 <0.0002 6/7/2017 <0.0002 8/24/2017 <0.0002	8/16/2016	<0.0002	
6/7/2017 <0.0002 8/24/2017 <0.0002	11/17/2016	<0.0002	
8/24/2017 <0.0002	2/23/2017	<0.0002	
	6/7/2017	<0.0002	
12/20/2017 <0.0002	8/24/2017	<0.0002	
	12/20/2017		<0.0002

Sanitas[™] v.9.5.27 Software licensed to SCS Engineers. EPA Hollow symbols indicate censored values.

Within Limit

Prediction Limit

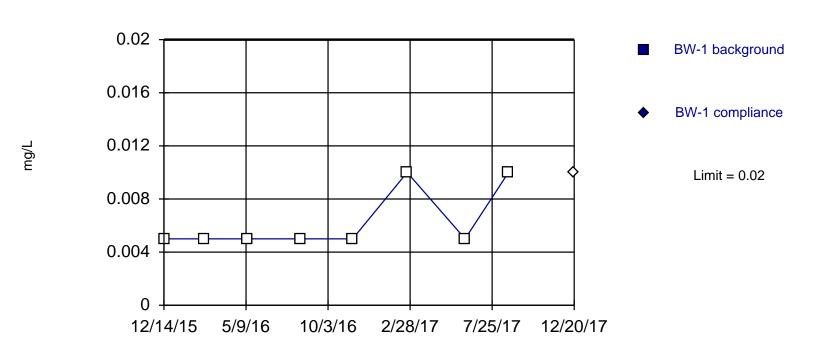
Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. Limit is highest of 8 background values. 87.5% NDs. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Molybdenum Analysis Run 1/25/2018 12:45 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Control Chart Alternate

Constituent: Molybdenum (mg/L) Analysis Run 1/25/2018 12:51 PM


	BW-1	DVA
	DVV-I	BW-1
12/14/2015	<0.01	
2/25/2016	<0.01	
5/11/2016	<0.01	
8/16/2016	<0.01	
11/17/2016	0.022	
2/23/2017	<0.01	
6/7/2017	<0.02	
8/24/2017	<0.02	
	-0.02	
12/20/2017		<0.03

Sanitas[™] v.9.5.27 Software licensed to SCS Engineers. EPA Hollow symbols indicate censored values.

Within Limit

Prediction Limit

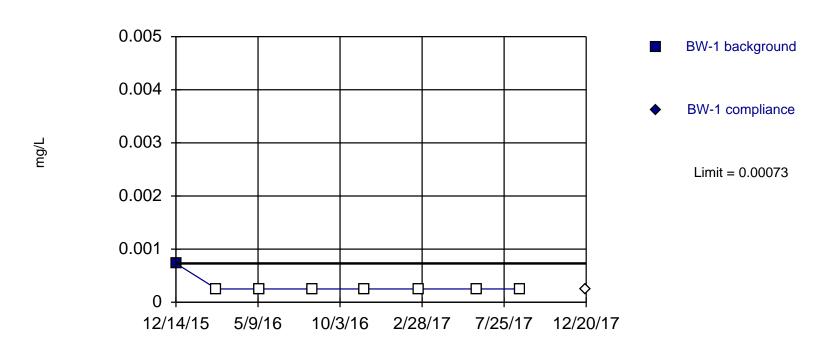
Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Selenium Analysis Run 1/25/2018 12:45 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Control Chart Alternate

Constituent: Selenium (mg/L) Analysis Run 1/25/2018 12:51 PM

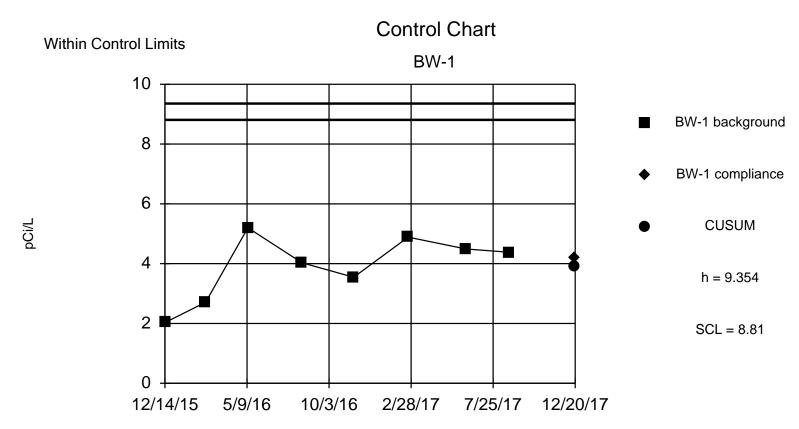

016 <0.01 0016 <0.01 0016 <0.01 2016 <0.01 017 <0.02 107 <0.02		
2015 <0.01		BW 1 BW 1
016 <0.01		
016 <0.01	12/14/2015	<0.01
016 <0.01	2/25/2016	<0.01
2016 <0.01	5/11/2016	<0.01
2016 <0.01	8/16/2016	<0.01
017 <0.02 17 <0.01 017 <0.02	11/17/2016	
17 <0.01 017 <0.02		
017 <0.02	2/23/2017	<0.02
	6/7/2017	<0.01
2017 <0.02	8/24/2017	<0.02
	12/20/2017	<0.02

Sanitas[™] v.9.5.27 Software licensed to SCS Engineers. EPA Hollow symbols indicate censored values.

Within Limit

Prediction Limit

Intrawell Non-parametric


Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. Limit is highest of 8 background values. 87.5% NDs. Report alpha = 0.1111. Most recent point compared to limit.

Constituent: Thallium Analysis Run 1/25/2018 12:45 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Control Chart Alternate

Constituent: Thallium (mg/L) Analysis Run 1/25/2018 12:51 PM

	BW-1	BW-1
12/14/2015	0.00073	
2/25/2016	<0.0005	
5/11/2016	< 0.0005	
8/16/2016	<0.0005	
11/17/2016		
2/23/2017	<0.0005	
6/7/2017	< 0.0005	
8/24/2017	<0.0005	
12/20/2017		<0.0005

Background Data Summary: Mean=3.909, Std. Dev.=1.089, n=8. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.939, critical = 0.818. Report alpha = 0.00205. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Combined Radium Analysis Run 1/25/2018 12:43 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Control Chart

Constituent: Combined Radium (pCi/L) Analysis Run 1/25/2018 12:44 PM

	BW-1	BW-1	Std. Mean	CUSUM
12/14/2015	2.03			
2/25/2016	2.707			
5/11/2016	5.2			
8/16/2016	4.03			
11/17/2016	3.545			
2/23/2017	4.886			
6/7/2017	4.49			
8/24/2017	4.38			
12/20/2017		4.2	0.2676	3.909

APPENDIX F DECEMBER 2017 ALTERNATE SOURCE DEMONSTRATIONS: 1: FLUORIDE IN MW-1 2: BORON IN MW-3

SCS ENGINEERS

January 30, 2018 SCS Project 16215106.00

Mr. Darryl Sparks Compliance Manager NAES Corporation 2161 Rattlesnake Road Riesel, Texas 76682

Subject: Sandy Creek Energy Station McLennan County, Texas 2017 Annual Groundwater Monitoring and Corrective Action Report Alternate Source Demonstration for Fluoride in MW-1

Dear Mr. Sparks:

On behalf of the Sandy Creek Energy Station (SCES), SCS Engineers (SCS) is submitting this Alternate Source Demonstration (ASD) in accordance with the site Groundwater Sampling and Analysis Plan (GWSAP) prepared by SCS, dated March 2, 2016, and Coal Combustion Residual Rule (CCR) 40 CFR §257.94(e)(2) for a fluoride detection in groundwater monitoring well MW-1. Fluoride was detected in MW-1 at a concentration of 1.1 mg/L during the December 2017 groundwater monitoring event. This ASD is being submitted to demonstrate that the fluoride detection is caused by a source other than the SCES landfill. In accordance with 40 CFR §257.94(e)(2), this ASD is being submitted within 90 days of detecting a statistically significant increase (SSI) above background values.

Project Background

SCES is a pulverized coal-fired electric generation facility which operates a landfill for disposal of dry scrubber ash and bottom ash generated during the coal combustion process at the facility. Incidental wastes generated during the operation of the facility may also be disposed in the landfill, as described in the initial registration notification to TCEQ and the most recent version of the Operations Plan for the facility. The landfill is currently comprised of two CCR disposal cells, Cells 1 and 2, which commenced receiving waste in early 2013 and October 2014, respectively. The approximate area of Cells 1 and 2 are 10.0 and 14.3 acres, respectively.

In accordance with 40 CFR §257 Appendix III and IV, the list of constituents for monitoring at SCES includes 18 inorganic compounds, total dissolved solids, radium-226, and radium-228.

Fluoride Detection at MW-1

Fluoride was detected in MW-1 during the December 2017 groundwater monitoring event at 1.1 mg/L. This laboratory result exceeded the intrawell statistical limit for fluoride at MW-1 (0.4 mg/L). Initial statistical analysis of fluoride in MW-1 included the use of a non-parametric

Mr. Darryl Sparks January 30, 2017 Page 2

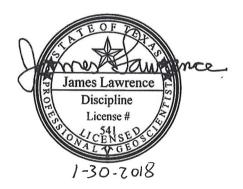
prediction limit using background fluoride data collected from only MW-1. This test is appropriate because the background data for fluoride in MW-1 are non-normally distributed. This intrawell statistical limit is represented as the highest of the eight fluoride background values from MW-1.

The Texas Commission on Environmental Quality (TCEQ) Texas-Specific Soil Background Concentration (TSBC) for fluoride is 190 mg/kg (equivalent mg/L) in soil (see attached TCEQ TSBC guidance). Note that this naturally-occurring median fluoride concentration in soil is multiple orders of magnitude greater than the 1.1 mg/L concentration in water that was detected on December 20, 2017. Therefore, the fluoride detection in MW-1 is most likely a naturallyderived component of the site geology, which can result in a natural variation in groundwater quality.

Closing

SCS recommends that the facility remain in detection monitoring, in accordance with 40 CFR §257.94, as this ASD satisfies the 90-day demonstration period requirement outlined in 40 CFR §257.94(e)(2). Please contact Jim Lawrence at (817) 358-6106 if you have comments or require additional information.

Sincerely,


Doug Steen Associate Professional SCS ENGINEERS **TBPE Registration No. F-3407**

Brett DeVries, Ph.D., P.E. **Project Engineer SCS ENGINEERS**

James Lawrence, P.G. **Project Director SCS ENGINEERS**

Attachment: TCEQ Texas-Specific Soil Background Concentrations Guidance

Texas-Specific Soil Background Concentrations milligrams per kilogram (mg/kg) ¹					
Metal	Median Background Concentration (mg/kg)				
Aluminum	30,000				
Antimony	1				
Arsenic	5.9				
Barium	300				
Beryllium	1.5				
Boron	30				
Total Chromium	30				
Cobalt	7				
Copper	15				
Fluoride	190				
Iron	15,000				
Lead	15				
Manganese	300				
Mercury	0.04				
Nickel	10				
Selenium	0.3				
Strontium	100				
Tin	0.9				
Titanium	2,000				
Thorium	9.3				
Vanadium	50				
Zinc	30				

¹ Source: "Background Geochemistry of Some Rocks, Soils, Plants, and Vegetables in the Conterminous United States", by Jon J. Connor, Hansford T. Shacklette, et al., Geological Survey Professional Paper 574-F, US Geological Survey. Dallas / Fort Worth Office 1901 Central Drive Suite 550 Bedford, Texas 76021 817-571-2288 Main 800-579-6671 817-571-2188 FAX

SCS ENGINEERS

SCS ENGINEERS

January 30, 2018 SCS Project 16215106.00

Mr. Darryl Sparks Compliance Manager NAES Corporation 2161 Rattlesnake Road Riesel, Texas 76682

Subject: Sandy Creek Energy Station McLennan County, Texas 2017 Annual Groundwater Monitoring and Corrective Action Report Alternate Source Demonstration for Boron in MW-3

Dear Mr. Sparks:

On behalf of the Sandy Creek Energy Station (SCES), SCS Engineers (SCS) is submitting this Alternate Source Demonstration (ASD) in accordance with the site Groundwater Sampling and Analysis Plan (GWSAP) prepared by SCS, dated March 2, 2016, and Coal Combustion Residual Rule (CCR) 40 CFR Part §257.94(e)(2) for a boron detection in groundwater monitoring well MW-3. Boron was detected in MW-3 at 1.3 mg/L during the December 2017 groundwater monitoring event. This ASD is being submitted to demonstrate that the boron detection is caused by a source other than the SCES landfill. In accordance with 40 CFR §257.94(e)(2), this ASD is being submitted within 90 days of detecting a statistically significant increase (SSI) above background values.

Project Background

SCES is a pulverized coal-fired electric generation facility which operates a landfill for disposal of dry scrubber ash and bottom ash generated during the coal combustion process at the facility. Incidental wastes generated during the operation of the facility may also be disposed in the landfill, as described in the initial registration notification to TCEQ and the most recent version of the Operations Plan for the facility. The landfill is currently comprised of two CCR disposal cells, Cells 1 and 2, which commenced receiving waste in early 2013 and October 2014, respectively. The approximate area of Cells 1 and 2 are 10.0 and 14.3 acres, respectively.

In accordance with 40 CFR §257 Appendix III and IV, the list of constituents for monitoring at SCES includes 18 inorganic compounds, total dissolved solids, radium-226, and radium-228.

Boron Detection at MW-3

Boron was detected in MW-3 during the December 2017 groundwater monitoring event at 1.3 mg/L. The Texas Commission on Environmental Quality (TCEQ) Texas-Specific Soil Background Concentration (TSBC) for boron is 30 mg/kg (equivalent mg/L) in soil (see attached

Mr. Darryl Sparks January 30, 2017 Page 2

TCEQ TSBC guidance). Note that this naturally-occurring median boron concentration in soil is an order of magnitude greater than the 1.3 mg/L concentration in water that was detected on December 20, 2017.

Statistical Analysis

Initial statistical analysis of boron in MW-3 included the use of a non-parametric prediction limit using background boron data collected from only MW-3. This test is appropriate because the background data for boron in MW-3 are non-normally distributed. This intrawell statistical limit is represented as the highest of the eight background values from MW-3 (see "Intrawell Limit" in Table 1 below).

Since the December 2017 laboratory result for boron in MW-3 exceeded its intrawell limit, additional statistical evaluation was performed in accordance with 40 CFR §257.94(e)(2). This additional analysis consisted of an interwell parametric prediction limit (see "Interwell Limit" in Table 1 below). This test is commonly used to provide a comparison between a detection in a downgradient monitoring well and a statistical limit derived from background data from one or more upgradient monitoring wells. If the detection falls below the interwell statistical limit, it can be inferred that the detection likely resulted from natural variations in groundwater quality at the site.

Table 1 – December 2017 Unconfirmed SSIs (mg/L)					
MW-ID	Constituent	Lab Result	Intrawell Limit	Interwell Limit	
MW-3	Boron	1.3	1.2	4.591	

As a result of this analysis comparing upgradient to downgradient data, the statistical limit was raised above the December 2017 laboratory result for boron in MW-3. The boron appears to be coming from a non-landfill, upgradient source, so no further action is recommended. The boron detection in MW-1 is most likely a naturally-derived component of the site geology, which can result in a natural variation in groundwater quality.

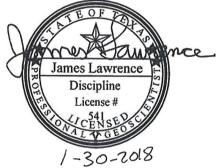
Mr. Darryl Sparks January 30, 2017 Page 3

Closing

Attached are the interwell statistical graphs and data, as well as the ANOVA calculations demonstrating a lack of significant spatial variation of the constituents between wells.

SCS recommends that the facility remain in detection monitoring, in accordance with 40 CFR §257.94, as this ASD satisfies the 90-day demonstration period requirement outlined in 40 CFR §257.94(e)(2). Please contact Jim Lawrence at (817) 358-6106 if you have comments or require additional information.

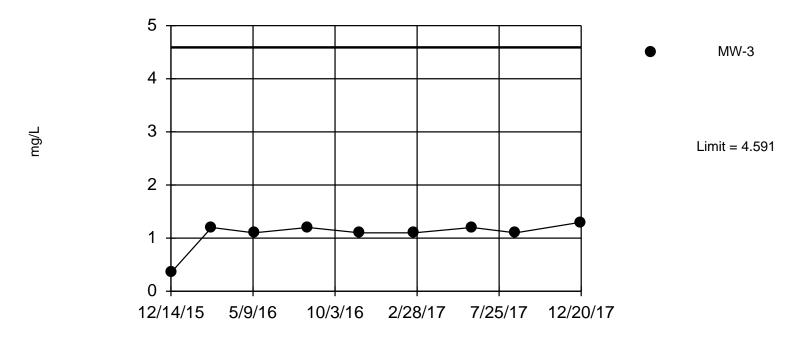
Sincerely,


Doug Steen Associate Professional **SCS ENGINEERS TBPE Registration No. F-3407**

Dayle P Str Breat Della James Lawrence

Brett DeVries, Ph.D., P.E. **Project Engineer SCS ENGINEERS**

James Lawrence, P.G. **Project Director SCS ENGINEERS**



Attachments: Interwell Statistical Graphs and Data ANOVA Calculations and Data TCEQ Texas-Specific Soil Background Concentrations Guidance

Within Limit

Prediction Limit Interwell Parametric

Background Data Summary: Mean=3.289, Std. Dev.=0.6642, n=9. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8656, critical = 0.829. Report alpha = 0.05. Most recent point compared to limit.

Constituent: Boron Analysis Run 1/25/2018 3:25 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

Prediction Limit

Constituent: Boron (mg/L) Analysis Run 1/25/2018 3:31 PM

	BW-1 (bg)	MW-3
12/14/2015	1.8	0.35
2/25/2016	3.5	1.2
5/11/2016	4	1.1
8/16/2016	3.7	1.2
11/17/2016	2.8	1.1
2/23/2017	3.1	1.1
6/7/2017	3.8	1.2
8/24/2017	3.4	1.1
12/20/2017	3.5	1.3

Non-Parametric ANOVA

Constituent: Boron Analysis Run 1/25/2018 3:32 PM

Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.22.18

For observations made between 12/14/2015 and 12/20/2017, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 12.99

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 3 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 12.79 Adjusted Kruskal-Wallis statistic (H') = 12.99

The contrast test was performed to determine if any compliance group concentration was significantly higher than the background concentration. The contrast test indicates statistical significance in none of the compliance wells.

Contrast table:			
Well	Difference	Contrast	Significant?
MW-3	-9	4.138	No

The critical (contrast) value was computed with 1 degree of freedom and a 5% error level for each well comparison. (Note: In this case, with Anova indicating differences that are not reflected in the contrast test, it should be concluded that it is the median of the Background data which is significantly higher.)

Non-parametric test used in lieu of parametric anova because the Shapiro Wilk normality test showed the residuals to be non-normal at the 0.05 alpha level.

Non-Parametric ANOVA

Constituent: Boron (mg/L) Analysis Run 1/25/2018 3:32 PM

		BW-1 (bg)	MW-3
	12/14/2015	1.8	0.35
:	2/25/2016	3.5	1.2
;	5/11/2016	4	1.1
;	8/16/2016	3.7	1.2
	11/17/2016	2.8	1.1
:	2/23/2017	3.1	1.1
	6/7/2017	3.8	1.2
;	8/24/2017	3.4	1.1
	12/20/2017	3.5	1.3

Texas-Specific Soil Background Concentrations milligrams per kilogram (mg/kg) ¹					
Metal	Median Background Concentration (mg/kg)				
Aluminum	30,000				
Antimony	1				
Arsenic	5.9				
Barium	300				
Beryllium	1.5				
Boron	30				
Total Chromium	30				
Cobalt	7				
Copper	15				
Fluoride	190				
Iron	15,000				
Lead	15				
Manganese	300				
Mercury	0.04				
Nickel	10				
Selenium	0.3				
Strontium	100				
Tin	0.9				
Titanium	2,000				
Thorium	9.3				
Vanadium	50				
Zinc	30				

¹ Source: "Background Geochemistry of Some Rocks, Soils, Plants, and Vegetables in the Conterminous United States", by Jon J. Connor, Hansford T. Shacklette, et al., Geological Survey Professional Paper 574-F, US Geological Survey.

2018 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

SCS ENGINEERS

January 31, 2019 SCS Project 16215106.00

Mr. Darryl Sparks **Compliance Manager NAES** Corporation 2161 Rattlesnake Road Riesel, Texas 76682

Subject: 2018 Annual Groundwater Monitoring and Corrective Action Report Submittal Sandy Creek Energy Station, McLennan County, Texas

Dear Mr. Sparks:

SCS Engineers (SCS) is pleased to submit the 2018 Annual Groundwater Monitoring and Corrective Action Report to the Sandy Creek Energy Station (SCES), in accordance with Coal Combustion Residual Rule (CCR) 40 CFR Part §257.94, and the site Groundwater Sampling and Analysis Plan (GWSAP), prepared by SCS, dated March 2, 2016.

Please contact James Lawrence at (817) 358-6106 if you have comments or require additional information.

Sincerely,

Doug Steen Staff Professional SCS ENGINEERS TBPE Registration No. F-3407

Attachments:

Dayle P Str Breett Della James Lawrence

Brett DeVries, Ph.D., P.E. Project Engineer SCS ENGINEERS

2018 Annual Groundwater Monitoring and Corrective Action Report

James Lawrence, P.G. Project Director SCS ENGINEERS

Paulette Heuer at PHeuer@lspower.com cc: Alan Riddle at ariddle@sandycreekservices.com

2018 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

SANDY CREEK ENERGY STATION RIESEL, TEXAS

Prepared for:

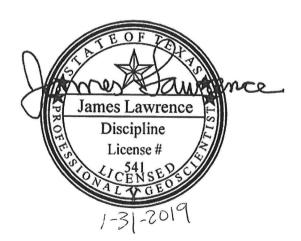
Sandy Creek Energy Station 2161 Rattlesnake Road Riesel, Texas 76682

SCS ENGINEERS

Project No. 16215106.00 | January 31, 2018

1901 Central Drive, Suite 550 Bedford, TX 76021 817-571-2288

Table of Contents


Sect	ion	Pc	ge
1.0	INTR	RODUCTION AND PROJECT BACKGROUND	1
2.0	GRO	UNDWATER MONITORING SUMMARY	2
	2.1	Groundwater Monitoring System	2
	2.2	Summary of 2018 Sampling Events	2
3.0	RESI	ULTS AND STATISTICAL ANALYSIS	3
4.0	REC	OMMENDATIONS	4

Figures

Figure 1 Monitoring Well Location Map

Appendices

- Appendix A 2018 Groundwater Monitoring Field Forms
- Appendix B 2018 Laboratory Reports with Chain of Custody Forms
- Appendix C Historical Groundwater Analytical Data
- Appendix D 2018 Results and Statistical Limits
- Appendix E 2018 Statistical Analysis Graphs
- Appendix F December 2018 Alternate Source Demonstrations

1.0 INTRODUCTION AND PROJECT BACKGROUND

SCS Engineers (SCS) is submitting the 2018 Annual Groundwater Monitoring and Corrective Action Report for the Sandy Creek Energy Station (SCES), in accordance with Coal Combustion Residual Rule (CCR) 40 CFR §257.93, and the site Groundwater Sampling and Analysis Plan (GWSAP). This report includes results for two semiannual detection monitoring events, conducted in June 2018 and December 2018.

SCES is a pulverized coal-fired electric generation facility which operates a landfill for disposal of dry scrubber ash and bottom ash generated during the coal combustion process at the facility. Incidental wastes generated during the operation of the facility may also be disposed in the landfill, as described in the initial registration notification to TCEQ and the most recent version of the Operations Plan for the facility. The landfill is currently comprised of two CCR disposal cells, Cells 1 and 2, which commenced receiving waste in early 2013 and October 2014, respectively. The approximate area of Cells 1 and 2 are 10.0 and 14.3 acres, respectively.

Sampling of monitoring wells is conducted in accordance with 40 CFR §257.93 and the GWSAP. Background monitoring of four wells (MW-1, MW-2, MW-3, and BW-1, as depicted in **Figure 1**) was performed for eight consecutive quarters in accordance with 40 CFR §257.94(b) (i.e., eight independent samples were collected for each well). The background monitoring described above commenced in December 2015 and was completed in August 2017. This report is for two semiannual detection monitoring events conducted at SCES. In accordance with 40 CFR §257 Appendix III and IV, the constituents for monitoring at SCES includes 18 inorganic compounds, total dissolved solids, radium-226, and radium-228. Currently, all monitoring wells are sampled and analyzed for 40 CFR §257 Appendix III constituents, in accordance with 40 CFR §257.94(a).

2.0 GROUNDWATER MONITORING SUMMARY

2.1 GROUNDWATER MONITORING SYSTEM

The current groundwater monitoring system at the SCES landfill consists of four wells (see Table 1 below). One is upgradient (BW-1) and three are downgradient (MW-1, MW-2, and MW-3). All four wells are currently in detection monitoring. Figure 1 shows monitoring well locations at the SCES.

Table 1 - Sandy Creek Energy Station Groundwater Monitoring System						
Well Name (U/D) ¹	Completion Date	Status	Top of Casing (TOC) Elevation (ft msl)²	Well Depth (ft below TOC) ²	Screen Interval (ft bgs) ²	Water Level Elevation (ft msl on 12/13/2018)
MW-1 (D)	9/21/2015	Detection	465.87	37.25	23.90 - 33.90	454.86
MW-2 (D)	9/23/2015	Detection	442.15	22.60	9.30 - 19.30	430.72
MW-3 (D)	9/1/2010	Detection	430.06	19.95	5.98 - 15.98	422.36
BW-1 (U)	9/22/2015	Detection	485.57	41.50	28.30 - 38.30	467.24

 1 (U) = upgradient; (D) = downgradient

² Top of Casing Elevation, Well Depth, and Screen Interval information obtained from Table 1 – Monitoring Well and Piezometer Construction Details and Groundwater Elevations prepared by Geosyntec Consultants, dated March 11, 2016

ft msl = feet above mean sea level

ft bgs = feet below ground surface

2.2 SUMMARY OF 2018 SAMPLING EVENTS

All sampling events followed the groundwater sampling and laboratory analysis procedures outlined in the GWSAP. A duplicate sample was collected from one well during each event for Quality Assurance & Quality Control (QA/QC) purposes. All monitoring wells were sampled and analyzed for 40 CFR §257 Appendix III constituents, in accordance with 40 CFR §257.94(a).

June 2018 – Semiannual Detection Monitoring Event

All four wells (MW-1, MW-2, MW-3, and BW-1) were purged and sampled on June 21, 2018 using the conventional purge and sampling method with disposable PVC bailers. The results of the sampling were provided to the SCES in a report dated August 20, 2018. Field forms and laboratory results are provided in **Appendices A** & **B**, respectively.

December 2018 – Semiannual Detection Monitoring Event

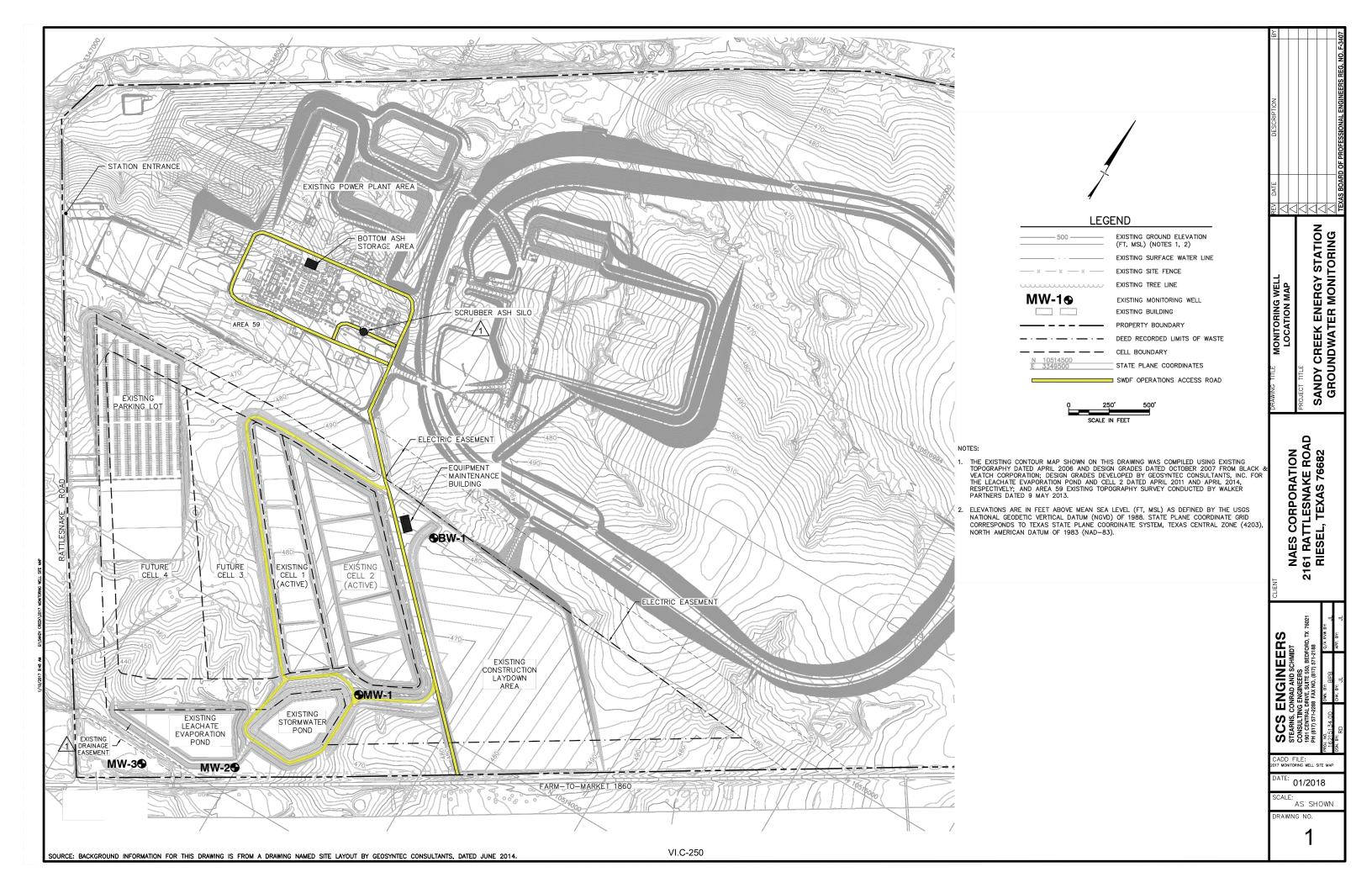
All four wells (MW-1, MW-2, MW-3, and BW-1) were purged and sampled on December 13, 2018 using the conventional purge and sampling method with disposable PVC bailers. Field forms and laboratory results are provided in **Appendices A** & **B**, respectively.

3.0 RESULTS AND STATISTICAL ANALYSIS

A summary of June 2018 and December 2018 laboratory results and statistical limits for each well – constituent pair is provided below in **Appendix D**. Statistical limits were determined in accordance with 40 CFR §257.93(g) using the software program Sanitas®. Limits are presented using Shewhart-CUSUM control charts, non-parametric prediction limits, or parametric prediction limits as deemed appropriate by background data distributions. EPA MCLs are also presented for comparison to current data. Statistical limits for all constituents were calculated using eight quarterly background events from December 2015 to August 2017; these limits were originally presented in the 2017 Annual Groundwater Monitoring and Corrective Action Report, dated January 30, 2018.

Unconfirmed statistically significant exceedances (SSIs) were determined for fluoride at MW-1 and boron in MW-2 (see **Appendix D**). In accordance with 40 CFR §257.94(e), two alternate source demonstrations (ASDs) are provided in **Appendix F** to demonstrate that these unconfirmed SSIs likely result from natural variation in groundwater quality at the site, and are not indicative of impacts from the SCES landfill.

4.0 RECOMMENDATIONS


As outlined in the attached ASDs for fluoride in MW-1 and boron in MW-2, no confirmed SSIs were identified for any wells during the June 2018 and December 2018 semiannual detection monitoring events at the SCES. SCS therefore recommends that the facility remain in detection monitoring, in accordance with 40 CFR §257.94.

Due to the lack of confirmed SSIs for 40 CFR §257 Appendix III constituents during the June 2018 and December 2018 detection monitoring events, the facility will continue monitoring for all constituents listed in 40 CFR §257 Appendix III, in accordance with 40 CFR §257.94(a). The Appendix IV constituent list will be analyzed if any confirmed SSIs of the Appendix III list are indicated in future events. The next groundwater monitoring event is a semiannual detection monitoring event scheduled for June 2019.

FIGURE 1

MONITORING WELL LOCATION MAP

APPENDIX A

2018 GROUNDWATER MONITORING FIELD FORMS

Groundwater Monitoring Form

Facility name:	Sandy Creek Energy Station		1. Facility Type:	Power Station	
Permittee:	Sandy Creek Energy Associates, L.P.		2. Monitor well no .:	MW-1	
County:	McLennan		3. Date of sampling:	6/21/2018	
Name of sample	er: Doug	Steen	Most recent previous	sampling: <u>12/20/2017</u>	
Affiliation of san	npler: SCS Engineers		Date of water level m	neasurements: <u>6/21/2018</u>	
If split sampled,	with whom? N/A		Datum reference poi	nt: Top of Casing	
Integrity of well:	GOOD		Datum elevation*: 465.87		
Installation date	: 9/21/2015		Depth to water(below	v datum)*: <u>12.02</u>	
			4. Water level elevat	ion*: 453.85	
	npling method: <u>Bailer</u>	,	11. Sample event: <u>D</u>		
	ow methods used? 🔲 yes 🔳	no (check one)	- Background - Corrective Action		
-	nat volume was purged? <u>N/A</u>	- Detectio			
6. Well volume		- Assessr			
	Il dry before purging? □yes ■	12. Sample schedule			
	ll dry after purging? ■ yes □	- Quarterl	,		
-	efore sampling? <u>1.5</u>		nnual - Other		
10. Unit of meas	sure? <u>hours</u> (Enter val	ue as days, hours, or mins.)	- Annual		
			13. Sample type: <u>R</u>		
			- Regular		
			- Duplicat		
Field Measurer			- Resamp	le	
	14. pH	7.05	_		
	15. Spec. cond.	4,670		m ☐ mmho/cm (check one)	
	17. Temp.	26.38		C (check one)	
	19. Turbidity	681	20. ■ NTU		
Laboratory:					
21. Nar			P	hone: (904) 739-2277	
Address: 9143 Phillips Highway, Jacksonville, FL 32256					

* Report depth to water and elevations to nearest 0.01 foot relative to mean sea level (msl).

Groundwater Monitoring Form

Facility name:	Sandy Creek Energy Station	1. Faci
Permittee:	Sandy Creek Energy Associates, L.P.	2. Mon
County:	McLennan	3. Date

Name of sampler:	Doug Steen
Affiliation of sampler:	SCS Engineers
If split sampled, with whom?	<u>N/A</u>
Integrity of well:	GOOD
Installation date: 9/23/2015	

1. Facility Type:	Power Station	
2. Monitor well no.:	MW-2	
3. Date of sampling:	6/21/2018	

Most recent previous sampling: <u>12/20/2017</u>				
Date of water level measurements: <u>6/21/2018</u>				
Datum reference point: Top of Casing				
Datum elevation*:4	42.15			
Depth to water(below datum)*:	12.13			
4. Water level elevation*:	430.02			

5.	Purging/Sampling method:	Bailer	(Enter bailer or pump)	11. Sample event: Deter	ction
	Were low-flow methods used?	🗆 yes 🔳	no (check one)	- Background	- Corrective Action
	If yes, what volume was pure	ged? <u>N/A</u>	<u>gal.</u>	- Detection	- Other
6.	Well volumes purged: 2.7			- Assessmen	t
7.	Was the well dry before purging	g? ⊡yes 🔳	no (check one)	12. Sample schedule:	Semi-Annual
8.	Was the well dry after purging?	🖬 yes 🛛	no (check one)	- Quarterly	- Fourth Year
9.	How long before sampling?	1.5		- Semi-Annua	al - Other
10	Unit of measure? hours	(Enter valu	ue as days, hours, or mins.)	- Annual	
				13. Sample type: Regu	ılar
				- Regular	- Split
				- Duplicate	- Other

Field Measurements:			- Resample		
	14. pH	6.80			
	15. Spec. cond.	12,660	16. 🔳 umho/cm	or mmho/cm (check one)	
	17. Temp.	25.17	18. 🗆 F 🛛 or	C (check one)	
	19. Turbidity	4.42	20. ■ NTU		
Laboratory:					
21. Name	ALS			Phone: (904) 739-2277	
Address:	9143 Phillips High	way, Jacksonville, FL 32256			

* Report depth to water and elevations to nearest 0.01 foot relative to mean sea level (msl).

Groundwater Monitoring Form

Facility name:	cility name: Sandy Creek Energy Station			Power Station						
Permittee:	Sandy Creek Energy Associates, L.P.		2. Monitor well no .:	MW-3						
County:	McLennan		3. Date of sampling:	6/21/2018						
Name of sample		j Steen	•	sampling: <u>12/20/2017</u>						
Affiliation of sar	•		Date of water level measurements: <u>6/21/2018</u>							
If split sampled,			Datum reference point: Top of Casing							
Integrity of well:			Datum elevation*:							
Installation date	9/1/2010			v datum)*: <u>11.38</u>						
			4. Water level elevat	ion*: 418.68						
5. Purging/Sa	mpling method: Bailer	_(Enter bailer or pump)	11. Sample event: <u>D</u>	etection						
Were low-flo	ow methods used? 🔲 yes 🔳	no (check one)	- Background - Corrective Action							
lf yes, w	hat volume was purged? <u>N/</u>	- Detectio	n - Other							
6. Well volume	es purged: <u>2.9</u>	- Assessr	nent							
7. Was the well dry before purging? □yes ■ no (check one)			12. Sample schedule	e: Semi-Annual						
 8. Was the well dry after purging? □ yes ■ no (check one) 9. How long before sampling? <u>1.5</u> 10. Unit of measure? <u>hours</u> (Enter value as days, hours, or mins.) 			- Quarterly - Fourth Year - Semi-Annual - Other - Annual							
									13. Sample type: <u>R</u>	egular
									- Regular	- Split
			- Duplicat	e - Other						
Field Measure	ments:		- Resamp	le						
	14. pH	6.46								
	15. Spec. cond.	6,633	16. 🔳 umho/cm oi	mmho/cm (check one)						
	17. Temp.	23.59	18. 🗆 F 🛛 or 🗖	C (check one)						
	19. Turbidity	51.1	20. ■ NTU							
Laboratory:										
21. Na	me <u>ALS</u>		P	hone: <u>(904) 739-2277</u>						
Ado	dress: 9143 Phillips Highwa									

* Report depth to water and elevations to nearest 0.01 foot relative to mean sea level (msl).

Facility name: Sanc	ly Creek Energy Station		1. Facility Type:	Power Station
Permittee: Sand	ly Creek Energy Associate	es, L.P.	2. Monitor well no .:	BW-1
County: McLe	ennan		3. Date of sampling:	6/21/2018
Name of sampler:	Doug	Steen	Most recent previous	s sampling: <u>12/20/2017</u>
Affiliation of sampler:	SCS Engineers		Date of water level n	neasurements: <u>6/21/2018</u>
If split sampled, with w	/hom? <u>N/A</u>		Datum reference poi	nt: Top of Casing
Integrity of well:	GOOD		Datum elevation*:	485.57
Installation date: 9/22/	2015		Depth to water(below	w datum)*:19.44
			4. Water level elevat	ion*: 466.13
5. Purging/Sampling	method: Bailer	(Enter bailer or pump)	11. Sample event: <u>D</u>	etection
Were low-flow met	hods used? 🔲 yes 🔳	no (check one)	- Backgro	ound - Corrective Action
lf yes, what volu	ume was purged? <u>N/A</u>	∖gal.	- Detectio	on - Other
6. Well volumes purg	ed: <u>3.1</u>		- Assessr	ment
7. Was the well dry b	efore purging? 🔲 yes 🔳	no (check one)	12. Sample schedule	e: <u>Semi-Annual</u>
8. Was the well dry a	fter purging? 🔲 yes 🔳	no (check one)	- Quarter	ly - Fourth Year
9. How long before sa	ampling? <u>1.5</u>		- Semi-Aı	nnual - Other
10. Unit of measure?	hours (Enter val	ue as days, hours, or mins.)	- Annual	
			13. Sample type: <u>R</u>	Regular
			- Regular	- Split
			- Duplicat	te - Other
Field Measurements:			- Resamp	ble
	14. pH	6.75		
	15. Spec. cond.	7,755	16. 🔳 umho/cm o	r 🔲 mmho/cm (check one)
	17. Temp.	24.79	18. 🗆 F 🛛 or 📕	C (check one)
	19. Turbidity	39.3	20. ■ NTU	
Laboratory:				
21. Name	ALS		P	hone: <u>(904) 739-2277</u>
Address:	9143 Phillips Highway	v, Jacksonville, FL 32256		

Facility name:	Sandy Creek Energy St	tation	1. Facility Type: Power Station
Permittee:	Sandy Creek Energy As	ssociates, L.P.	2. Monitor well no.: <u>DUP</u>
County:	McLennan		3. Date of sampling: <u>6/21/2018</u>
Name of sample	r:	Doug Steen	Most recent previous sampling: <u>N/A</u>
Affiliation of sam	pler: SCS Eng	gineers	Date of water level measurements: <u>N/A</u>
If split sampled,	with whom? <u>N/A</u>		Datum reference point: Top of Casing
Integrity of well:	N/A		Datum elevation*: N/A
Installation date:	N/A		Depth to water(below datum)*:N/A
			4. Water level elevation*: N/A
5. Purging/San	npling method: <u>N/A</u>	(Enter bailer or pump)	11. Sample event: Detection
Were low-flo	w methods used? 🔲 y	es 🔲 no (check one)	- Background - Corrective Action
lf yes, wh	at volume was purged?	<u>N/A</u> gal.	- Detection - Other
6. Well volume	s purged: <u>N/A</u>		- Assessment
7. Was the wel	I dry before purging?]yes 🔲 no (check one)	12. Sample schedule: <u>Semi-Annual</u>
8. Was the wel	l dry after purging? 🔲 y	es 🛛 no (check one)	- Quarterly - Fourth Year
9. How long be	fore sampling? <u>N/A</u>		- Semi-Annual - Other
10. Unit of meas	sure? <u>N/A</u> (E	inter value as days, hours, or mins.)	- Annual
			13. Sample type: Duplicate
			- Regular - Split
			- Duplicate - Other
Field Measuren	nents:		- Resample
	14. pH	N/A	
	15. Spec. cond.	N/A	16. 🔲 umho/cm or 🔲 mmho/cm (check one)
	17. Temp.	<u> </u>	18. 🗆 F or 🔤 C (check one)
	19. Turbidity	<u> </u>	20. 🗆 NTU
Laboratory:			
21. Nan	ne <u>ALS</u>		Phone: (904) 739-2277
Add	ress: 9143 Phillips H	Highway, Jacksonville, FL 32256	

Facility name:	Sandy Creek Energy Station		1. Facility Type:	Power Station
Permittee:	Sandy Creek Energy Associate	s, L.P.	2. Monitor well no .:	MW-1
County:	McLennan		3. Date of sampling:	12/13/2018
Name of sample	r: Doug Steen &	Tyson Milbrand	Most recent previous	sampling: 6/21/2018
Affiliation of sam				easurements: 12/13/2018
If split sampled,				nt: Top of Casing
Integrity of well:			Datum elevation*:	
Installation date:				v datum)*: 11.01
				on*: 454.86
5. Purging/Sam	pling method: Bailer	_(Enter bailer or pump)	11. Sample event: D	
Were low-flo	w methods used? yes	no (check one)	- Backgro	und - Corrective Action
lf yes, wh	at volume was purged? N/A	A gal.	- Detectio	n - Other
6. Well volume	s purged: 2.1		- Assessr	nent
7. Was the well	dry before purging? gyes	no (check one)	12. Sample schedule	: Semi-Annual
8. Was the well	dry after purging? 🔳 yes 🛛	no (check one)	- Quarterl	y - Fourth Year
9. How long be	fore sampling?1		- Semi-Ar	nnual - Other
10. Unit of meas	ure? hours (Enter val	ue as days, hours, or mins.)	- Annual	
			13. Sample type: R	egular
			- Regular	- Split
			- Duplicat	e - Other
Field Measurem	ients:		- Resamp	le
	14. pH	7.00		
	15. Spec. cond.	4.369	16. 🔳 mS/cm	
	17. Temp.	21.68	18. 🗌 F 🛛 or 📕	C (check one)
	19. Turbidity	30	20. ■ NTU	
Laboratory:				
21. Nan	ne <u>ALS</u>		P	hone: (281) 530-5656
Add	ress: 10450 Stancliff Rd., S	uite 210, Houston, Texas 77099		

Facility name:	Sandy Creek Energy Station		1. Facility Type:	Power Station
Permittee:	Sandy Creek Energy Associate	s, L.P.	2. Monitor well no .:	MW-2
County:	McLennan		3. Date of sampling:	12/13/2018
Name of sample	r: Doug Steen &	Tyson Milbrand	Most recent previous	sampling: 6/21/2018
Affiliation of sam				easurements: 12/13/2018
If split sampled,	· · · · · · · · · · · · · · · · · · ·			nt: Top of Casing
Integrity of well:	Cood		Datum elevation*:	
Installation date:				v datum)*: 11.43
			4. Water level elevati	on*: 430.72
5. Purging/Sam	npling method:Bailer	_(Enter bailer or pump)	11. Sample event: D	etection
Were low-flo	w methods used? yes	no (check one)	- Backgro	und - Corrective Action
lf yes, wh	at volume was purged? N/	A gal.	- Detectio	n - Other
6. Well volume	s purged: <u>3.1</u>		- Assessr	nent
7. Was the wel	I dry before purging? □yes	no (check one)	12. Sample schedule	: Semi-Annual
8. Was the wel	l dry after purging? 🔲 yes 📕	no (check one)	- Quarterl	y - Fourth Year
9. How long be	fore sampling?1		- Semi-Ar	nnual - Other
10. Unit of meas	sure? <u>hours</u> (Enter va	lue as days, hours, or mins.)	- Annual	
			13. Sample type: R	egular
			- Regular	- Split
			- Duplicat	e - Other
Field Measurem	nents:		- Resamp	le
	14. pH	6.68		
	15. Spec. cond.	11.89	16. 🔳 mS/cm	
	17. Temp.	22.19	18. 🗆 F 🛛 or 📕	C (check one)
	19. Turbidity	15.1	20. ■ NTU	
Laboratory:				
21. Nan	ne <u>ALS</u>		P	hone: (281) 530-5656
Add	Iress: 10450 Stancliff Rd., S	uite 210, Houston, Texas 77099		

Facility name:	Sandy Creek Energy Station		1. Facility Type:	Power Station	
Permittee:	Sandy Creek Energy Associate	s, L.P.	2. Monitor well no .:	MW-3	
County:	McLennan		3. Date of sampling:	12/13/2018	
		Turan Million d	M	e e e e e e e e e e e e e e e e e e e	104 1004 0
Name of sample		Tyson Milbrand	Most recent previous		/21/2018
Affiliation of sam	·		Date of water level m		
If split sampled,			Datum reference poir		
Integrity of well:			Datum elevation*:		
Installation date:	9/1/2010		Depth to water (below		
			4. Water level elevati	0114	22.30
5. Purging/Sam	pling method: Bailer	(Enter bailer or pump)	11. Sample event: D	etection	
Were low-flo	w methods used? 🔲 yes 🔳	no (check one)	- Backgro	und - Correc	ctive Action
lf yes, wh	at volume was purged? N//	A gal.	- Detectio	on - Other	
6. Well volume:	s purged: <u>3.1</u>		- Assessn	nent	
7. Was the well	dry before purging? □yes	no (check one)	12. Sample schedule	: <u>Semi-Annua</u>	al
8. Was the well	dry after purging?	no (check one)	- Quarterl	y - Fourth	ı Year
9. How long be	fore sampling?1		- Semi-Ar	nnual - Other	
10. Unit of meas	ure? hours (Enter val	lue as days, hours, or mins.)	- Annual		
			13. Sample type: R	egular	
			- Regular	- Split	
			- Duplicat	e - Other	
Field Measurem	ients:		- Resamp	le	
	14. pH	6.51			
	15. Spec. cond.	4.47	16. 🔳 mS/cm		
	17. Temp.	21.60	18. 🗆 F 🛛 or 🗖	C (check c	ne)
	19. Turbidity	10.6	20. ■ NTU		
Laboratory:					
21. Nan	ne <u>ALS</u>		P	hone: (281) 5	30-5656
Add	ress: 10450 Stancliff Rd., S	uite 210, Houston, Texas 77099			

Facility name:	Sandy Creek Energy Station		1. Facility Type:	Power Station
Permittee:	Sandy Creek Energy Associates	s, L.P.	2. Monitor well no .:	BW-1
County:	McLennan		3. Date of sampling:	12/13/2018
Name of sample	r Doug Steen &	Tyson Milbrand	Most recent previous	sampling: 6/21/2018
Affiliation of sam			-	easurements: 12/13/2018
If split sampled,				nt: Top of Casing
Integrity of well:	Cood		Datum elevation*:	
Installation date:			Depth to water(below	
				on*: 467.24
5. Purging/Sam	npling method: Bailer	_(Enter bailer or pump)	11. Sample event: D	
Were low-flo	w methods used?	no (check one)	- Backgro	und - Corrective Action
lf yes, wh	at volume was purged? N/A	<u>A</u> gal.	- Detectio	n - Other
6. Well volume	s purged: <u>3.1</u>		- Assessr	nent
7. Was the well	I dry before purging? □yes	no (check one)	12. Sample schedule	: Semi-Annual
8. Was the well	l dry after purging? 🔲 yes 🔳	no (check one)	- Quarterl	y - Fourth Year
9. How long be	fore sampling?1		- Semi-Ar	nnual - Other
10. Unit of meas	ure? hours (Enter val	ue as days, hours, or mins.)	- Annual	
			13. Sample type: R	egular
			- Regular	- Split
			- Duplicat	e - Other
Field Measurem	nents:		- Resamp	le
	14. pH	6.85		
	15. Spec. cond.	7.159	16. 🔳 mS/cm	
	17. Temp.	21.28	18. 🗆 F 🛛 or 📕	C (check one)
	19. Turbidity	81.8	20. ■ NTU	
Laboratory:				
21. Nan	ne <u>ALS</u>		P	hone: (281) 530-5656
Add	ress: 10450 Stancliff Rd., Se	uite 210, Houston, Texas 77099		

Facility name:	Sandy Creek	Energy Station	า	1. Facility	Туре:	Powe	er Station
Permittee:	Sandy Creek	Energy Assoc	iates, L.P.	2. Monitor	well no.:	DUP	
County:	McLennan			3. Date of	sampling:	12/13	3/2018
News of sevents		Davia Otaa	n 9 Turana Millanan d	Maatusaa			
Name of sample			n & Tyson Milbrand	Most rece			
Affiliation of sam	·	SCS Engine	ers				ements: <u>N/A</u>
If split sampled,					-		Top of Casing
Integrity of well:		N/A		Datum ele	-		
Installation date	: <u>N/A</u>			Depth to v			-
				4. Water le	evel eleva	tion*:	N/A
5. Purging/Sar	npling method:	N/A	(Enter bailer or pump)	11. Sampl	e event:	Detectic	on
Were low-flo	ow methods use	ed? □ yes	🔲 no (check one)		- Backgr	ound	- Corrective Action
lf yes, wh	nat volume was	purged?	N/A gal.		- Detecti	on	- Other
6. Well volume	es purged: N/A	L .			- Assess	ment	
7. Was the we	II dry before pu	rging? □yes	🔲 no (check one)	12. Sampl	e schedul	e: Se	mi-Annual
8. Was the we	ll dry after purg	ing? □ yes	no (check one)		- Quarte	rly	- Fourth Year
9. How long be	efore sampling?	? N/A			- Semi-A	Innual	- Other
10. Unit of meas	sure? N/A	(Enter	- [.] value as days, hours, or mins	6.)	- Annual		
				13. Sampl	e type:	Duplicat	te
					- Regula	r	- Split
					- Duplica	ate	- Other
Field Measurer	nents:				- Resam	ple	
	14. pH		N/A				
	15. Spe	ec. cond.	N/A	16. 🗖 ms	S/cm		
	17. Ter		N/A	18. 🗖 F	or [□C	(check one)
	19. Tur	bidity	N/A	20. 🗆 NTU	J		
Laboratory:							
21. Nai	me <u>ALS</u>	6				Phone:	(281) 530-5656
Ado	dress: 104	50 Stancliff Rd	., Suite 210, Houston, Texas 7	77099	_		

APPENDIX B

2018 LABORATORY REPORTS WITH CHAIN OF CUSTODY FORMS

Service Request No:J1804531

Mr. Jim Lawrence SCS Engineers 1901 Central Drive Suite 550 Bedford, TX 76021

Laboratory Results for: Sandy Creek Groundwater

Dear Mr.Lawrence,

Enclosed are the results of the sample(s) submitted to our laboratory June 22, 2018 For your reference, these analyses have been assigned our service request number **J1804531**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the NELAC 2003 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My extension is 4410. You may also contact me via email at Jerry.Allen@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Jerry Allen Project Manager

Narrative Documents

ALS Environmental—Jacksonville Laboratory 9143 Philips Highway, Suite 200, Jacksonville, FL 32256 Phone (904) 739-2277 Fax (904) 739-2011 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER VI.C-264 Page 2 of 36

Client:SCS EngineersProject:Sandy Creek Groundwater/16215106.00 T131Sample Matrix:Water

Service Request:J1804531 Date Received:6/22/18

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. When appropriate to the procedure, method blank results have been reported with each analytical test. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Parameters that are included in the NELAC Fields of Testing but are not included in the lab's NELAC accreditation are identified in the discussion of each analytical procedure.

Sample Receipt

5 water samples were received for analysis at ALS Environmental on 6/22/18. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at $\leq 6^{\circ}$ C upon receipt at the lab except for aqueous samples designated for metals analyses, which are stored at room temperature.

Metals Analyses:

No significant data anomalies were noted with this analysis.

General Chemistry Analyses:

Method 300.0/9056: The reporting limit is elevated for analyte(s) analyzed by IC in J1804531. These sample(s) had high conductivity which precludes their analysis without prior dilution via this technique.

Revision Notes:

This analytical report is a revision of the original report generated on 06/29/2018. The following specific changes were made to the report: samples reported to MDL.

Approved by

Date 8/20/2018

SAMPLE DETECTION SUMMARY

CLIENT ID: BW-1						
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Dissolved	6640		100	100	mg/L	SM 2540 C
Chloride	1200		3	20	mg/L	9056
рН	7.22				pH Units	9040C
Sulfate	3030		2	20	mg/L	9056
Boron, Total	3.31		0.025	0.050	mg/L	6010D
Calcium, Total	610		0.08	0.20	mg/L	6010D

Lab ID: J1804531-002					
Results	Flag	MDL	MRL	Units	Method
4270		40	40	mg/L	SM 2540 C
247		2	10	mg/L	9056
0.3	J	0.2	1.0	mg/L	9056
7.38				pH Units	9040C
2530		0.9	10	mg/L	9056
1.25		0.025	0.050	mg/L	6010D
587		0.08	0.20	mg/L	6010D
	4270 247 0.3 7.38 2530 1.25	Results Flag 4270 247 0.3 J 7.38 2530 1.25 J	Results Flag MDL 4270 40 247 2 0.3 J 0.2 7.38	ResultsFlagMDLMRL427040402472100.3J0.21.07.3825300.9101.250.0250.050	Results Flag MDL MRL Units 4270 40 40 mg/L 247 2 10 mg/L 0.3 J 0.2 1.0 mg/L 7.38

CLIENT ID: MW-2	Lab ID: J1804531-003					
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Dissolved	10200		200	200	mg/L	SM 2540 C
Chloride	2840		6	50	mg/L	9056
рН	7.09				pH Units	9040C
Sulfate	3400		5	50	mg/L	9056
Boron, Total	1.90		0.025	0.050	mg/L	6010D
Calcium, Total	706		0.08	0.20	mg/L	6010D

CLIENT ID: MW-3	Lab ID: J1804531-004					
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Dissolved	6090		100	100	mg/L	SM 2540 C
Chloride	396		3	20	mg/L	9056
рН	6.76				pH Units	9040C
Sulfate	3160		2	20	mg/L	9056
Boron, Total	1.13		0.025	0.050	mg/L	6010D
Calcium, Total	526		0.08	0.20	mg/L	6010D

CLIENT ID: DUP	Lab ID: J1804531-005					
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Dissolved	6690		100	100	mg/L	SM 2540 C
Chloride	1210		3	20	mg/L	9056
рН	7.30				pH Units	9040C
Sulfate	3040		2	20	mg/L	9056
Boron, Total	3.30		0.025	0.050	mg/L	6010D
Calcium, Total	609		0.08	0.20	mg/L	6010D
	VI.	C-266				

Page 4 of 36

Sample Receipt Information

ALS Environmental—Jacksonville Laboratory 9143 Philips Highway, Suite 200, Jacksonville, FL 32256 Phone (904) 739-2277 Fax (904) 739-2011 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER VI.C-267 Page 5 of 36

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	<u>TIME</u>
J1804531-001	BW-1	6/21/2018	1140
J1804531-002	MW-1	6/21/2018	1205
J1804531-003	MW-2	6/21/2018	1220
J1804531-004	MW-3	6/21/2018	1245
J1804531-005	DUP	6/21/2018	0000

ALS	Environment	49 i	Cooler Receipt	Form				
Client:	565 ENGLA	JEERS	Service I	Request #:		1180	453)	
Project:	· · · ·	EK GROUND	WATER			Shi	pping paid	by A
Cooler r	received on <u>(0.22</u>	13 and opene	ed on 6.22.18	by	KB_	Yes	No	>
COURI	ER: ALS UPS FED	EX DHL Client	Other	Airbill	# 3106	4509	4980	
I	Were custody se	als on outside of	cooler?		Ves	No		
	If yes, how many	and where?			#:_)_	on lid	other	
2	Were seals intact	and signature an	d date correct?		Yes	No	N/A	
3	Were custody page	pers properly fille	ed out?		Yes	No	N/A	
4	Temperature of coo	oler(s) upon receip	t (Should be 0° C and $\leq 6^{\circ}$	c) ().6°°			
5	Thermometer ID			······	<u>T136</u>			
6	Temperature Blar	k Present?			Yes	No		
7	Were Ice or Ice Pa	acks present			lce	Ice P	acks	No
8	Did all bottles arri	ve in good condi	tion (unbroken, etc)?	Yes	No	N/A	
9	Type of packing m	naterial present			Netting	Vial Ho	older Bubble	Wraj
					Paper	Styrofo	am Other	(N/.
10	Were all bottle lab	els complete (san	nple ID, preservation	, etc)?	<u>tes</u>	No	N/A	
11	Did all bottle label	s and tags agree v	with custody papers?		(es)	No	N/A	
12	Were the correct be	ottles used for the	e tests indicated?		(es)	No	N/A	
13	1.)4 pH<2 ZnAc2	ith the appropriate preser 2/NaOH pH>9 NaOI		Yes HCI pH<2	No	N/A	
14	Were all samples re	ceived within and	alysis holding times?		Yes	No	N/A	
15	Were VOA vials free of	air bubbles greater t	han 6mm? If present, note	e below	Yes	No	N/A)	
16	Where did the bottle	es originate?			(ALS)	Client		
							*2***	
	Sample ID	Reagent	Lot #	ml added	Initials D	ate/Time	-	
ł							-	
ļ								
┝							-	
			<u> </u>				1	
F]	
┝								
		1						
ional coi	mments and/or expla	nation of all disci	repancies noted abov	e:				
				. <u> </u>	and the second se	·····		
					,,,,,		····	
			-,-,-,					
approva	l to run samples if di	screpancies noted	d: VI.C-269		D	Date:		
The second s		والمحجم والمحجم والمتحد والمحجم والمحاكم فالتقائب والمحجم والمحجم والمحجم والمحجم والمحجم والمحجم والمحجم والم		and the second	and the second	the second s		

.

A

Page	7 of	36
1 "SK/	IF.YI	50

	CHAIN OF CUSTODY/LABORAT	RATORY ANALYSIS REQUEST	ŭ	* J180453)
9143 Philips Highway, St	9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE	95-7222 x06 • FAX (904) 739-2011 PAGE	OF L CAS	CAS Contract
Y Creek Grandwoode	Project Number - 16215106.00 T131	ANALYSIS REQUESTED	ANALYSIS REQUESTED (Include Method Number and Container Preservative)	ier Preservative)
قلارم الحر	Senaineersite	RESERVATIVE		
Company/Address SCS Enginears		\k \ \	J1804531	5 ¹ Preservative Key
	She SSO	1 × 1 × 2 2	SCS Engineers Sandy Creek Groundwater Julitien Institution Line In	'~i~d-
Sedford TX	1209	Ð		I. NaOH J. Zn. Acetate J. MeOH
317-358-6106	FAX #	25/25/25/		7. NaHSO4 8. Other
	sampler's Ported Name	\$\0\$\5\$\8\20\2\8\20\20\2		ALTERNATE DESCRIPTION
CLIENT SAMPLE ID	<u> </u>			
	6/21/18/11:40	XXXXXXX		
- Mw		XXXXXX		
MU-2	12,20			
NW-3	12:45	XXXXXX		
dod age 8		XXXXXX		
11.C-2				
SPECIAL I NSTRUCTIONS/COMMENTS			REPORT REQUIREMENTS	INVOICE INFORMATION
60100 metals- Bern	Burner (alc)		L. Hesuits Univ	
	huo within		II. Hesuits + QC Summaries (LCS, DUP, MS/MSD as required)	PO #
			III. Results + QC and Calibration Summaries	BILL TO:
		REQUESTED REPORT DATE	IV. Data Validation Report with Raw Data	
See QAPP			V. Specialized Forms / Custorn Report	
NTION/COOLER TEMP	000	Z	Edata Yes No	
RELINQUISHED BY	RECEIVED BY RELINQUISHED BY	RECEIVED BY	RELINQUISHED BY	RECEIVED BY
Dayla P. B-		Signature	Signature	Signature
kd Nam	Valucker	Printed Name	Printed Name	Printed Name
N.	z	Firm	Firm	Firm
Date/Time 6/24/18 15:15 Date/Fine/22/	Lig CG15 Date/Time	Date/Time	Date/Time	Date/Time
Distribution: White - Return to Originator; Yellow - Retained by Client	Silent			Copyright 2012 by ALS Group

Page 8 of 36 VI.C-270

Miscellaneous Forms

ALS Environmental—Jacksonville Laboratory 9143 Philips Highway, Suite 200, Jacksonville, FL 32256 Phone (904) 739-2277 Fax (904) 739-2011 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER VI.C-271 Page 9 of 36

REPORT QUALIFIERS AND DEFINITIONS

INORGANIC DATA

- * The result is an outlier. See case narrative.
- # The control limit criteria are not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimated amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- Z Too many colonies were present (TNTC). The numeric value represents the filtration volume.
- i The MRL/MDL has been elevated due to matrix interference.
- X See case narrative.

METALS DATA

- * The result is an outlier. See case narrative.
- # The control limit criteria are not applicable. See case narrative.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The result was determined by Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

ORGANIC DATA

- * The result is an outlier. See case narrative.
- # The control limit criteria are not applicable. See case narrative.
- A The tentatively identified compound is a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria were exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides)
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

PETROLEUM HYDROCARBON SPECIFIC

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.

- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Jacksonville Lab ID # for State Certifications¹

Agency	Number	Expiration Date
Department of Defense	66206	6/30/2020
Florida Department of Health	E82502	6/30/2019
Georgia Department of Natural Resources	958	6/30/2019
Kentucky Division of Waste Management	123042	6/30/2019
Louisiana Department of Environmental Quality	02086	6/30/2019
Maine Department of Health and Human Services	2017003	2/3/2019
North Carolina Department of Environment and Natural Resources	527	12/31/2018
Pennsylvania Department of Environmental Protection	68-04835	8/31/2018
South Carolina Department of Health and Environmental Control	96021001	6/30/2018
Texas Commission on Environmental Quality	T104704197-18-10	5/31/2019
Virginia Environmental Accreditation Program	460191	12/14/2018

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the laboratory case narrative provided. For a specific list of accredited analytes, refer to http://www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads/North-America-Downloads

ACRONYMS

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
ТРН	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Analyst Summary report

Client:SCS EngineersProject:Sandy Creek Groundwater/16215106.00 T131

Service Request: J1804531

Sample Name:BW-1Date Collected: 06/21/18Lab Code:J1804531-001Date Received: 06/22/18Sample Matrix:Water

Analysis Method 6010D 9040C 9056 SM 2540 C		Extracted/Digested By EGARDNER	Analyzed By EGARDNER HHERNANDEZ HHERNANDEZ ALANE
Sample Name: Lab Code: Sample Matrix:	MW-1 J1804531-002 Water		Date Collected: 06/21/18 Date Received: 06/22/18
Analysis Method 6010D 9040C 9056 SM 2540 C		Extracted/Digested By EGARDNER	Analyzed By EGARDNER HHERNANDEZ HHERNANDEZ ALANE
Sample Name: Lab Code: Sample Matrix:	MW-2 J1804531-003 Water		Date Collected: 06/21/18 Date Received: 06/22/18
Analysis Method 6010D 9040C 9056 SM 2540 C		Extracted/Digested By EGARDNER	Analyzed By EGARDNER HHERNANDEZ HHERNANDEZ ALANE

Sample Name:MW-3Lab Code:J1804531-004Sample Matrix:Water

Analysis Method 6010D

Printed 8/20/2018 9:12:22 AM

Extracted/Digested By EGARDNER **Analyzed By** EGARDNER

Date Collected: 06/21/18

Date Received: 06/22/18

Superset Reference:18-0000470471 rev 00

Analyst Summary report

Client:SCS EngineersProject:Sandy Creek Groundwater/16215106.00 T131

Service Request: J1804531

Sample Name:MW-3Date Collected: 06/21/18Lab Code:J1804531-004Date Received: 06/22/18Sample Matrix:WaterVater

Analysis Method 9040C 9056 SM 2540 C		Extracted/Digested By	Analyzed By HHERNANDEZ HHERNANDEZ ALANE
Sample Name: Lab Code: Sample Matrix:	DUP J1804531-005 Water		te Collected: 06/21/18 te Received: 06/22/18
Analysis Method 6010D 9040C 9056 SM 2540 C		Extracted/Digested By EGARDNER	Analyzed By EGARDNER HHERNANDEZ HHERNANDEZ ALANE

Sample Results

ALS Environmental—Jacksonville Laboratory 9143 Philips Highway, Suite 200, Jacksonville, FL 32256 Phone (904) 739-2277 Fax (904) 739-2011 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER VI.C-277 Page 15 of 36

Metals

ALS Environmental—Jacksonville Laboratory 9143 Philips Highway, Suite 200, Jacksonville, FL 32256 Phone (904)739-2277 Fax (904)739-2011 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER VI.C-278 Page 16 of 36

Analytical Report

Client:	SCS Engineers	Service Request: J1804531
Project:	Sandy Creek Groundwater/16215106.00 T131	Date Collected: 06/21/18 11:40
Sample Matrix:	Water	Date Received: 06/22/18 09:15
G		De election NTA
Sample Name:	BW-1	Basis: NA
Lab Code:	J1804531-001	

Analyte Name	Analysis Method	Result	Units	PQL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Boron, Total Calcium, Total	6010D 6010D	3.31 610	mg/L mg/L	0.050 0.20	0.025 0.08	1	06/22/18 23:06 06/25/18 18:09	06/22/18 06/22/18	
Calciulii, Totai	0010D	010	mg/L	0.20	0.08	2	00/23/18 18.09	00/22/10	

Analytical Report

Client:	SCS Engineers	Service Request: J1804531
Project:	Sandy Creek Groundwater/16215106.00 T131	Date Collected: 06/21/18 12:05
Sample Matrix:	Water	Date Received: 06/22/18 09:15
Somnlo Nomo	MW-1	Basis: NA
Sample Name:	IVI VV - 1	Dasis: INA
Lab Code:	J1804531-002	

Analyte Name	Analysis Method	Result	Units	PQL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Boron, Total	6010D	1.25	mg/L	0.050	0.025	1	06/22/18 23:17	06/22/18	
Calcium, Total	6010D	587	mg/L	0.20	0.08	2	06/25/18 18:14	06/22/18	

Analytical Report

Client:	SCS Engineers	Service Request:	J1804531
Project:	Sandy Creek Groundwater/16215106.00 T131	Date Collected:	06/21/18 12:20
Sample Matrix:	Water	Date Received:	06/22/18 09:15
Sample Name:	MW-2	Basis:	ΝA
-		Dasis.	INA
Lab Code:	J1804531-003		

Analyte Name	Analysis Method	Result	Units	PQL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Boron, Total	6010D	1.90	mg/L	0.050	0.025	1	06/22/18 23:28	06/22/18	
Calcium, Total	6010D	706	mg/L	0.20	0.08	2	06/25/18 18:19	06/22/18	

Analytical Report

Client:	SCS Engineers	Service Request: J1804531	L
Project:	Sandy Creek Groundwater/16215106.00 T131	Date Collected: 06/21/18	12:45
Sample Matrix:	Water	Date Received: 06/22/18	09:15
Sample Name:	MW-3	Basis: NA	
x		Dasis. INA	
Lab Code:	J1804531-004		

Analyte Name	Analysis Method	Result	Units	PQL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Boron, Total	6010D	1.13	mg/L	0.050	0.025	1	06/22/18 23:39	06/22/18	
Calcium, Total	6010D	526	mg/L	0.20	0.08	2	06/25/18 18:24	06/22/18	

Analytical Report

Client:	SCS Engineers	Service Request: J1804531
Project:	Sandy Creek Groundwater/16215106.00 T131	Date Collected: 06/21/18 00:00
Sample Matrix:	Water	Date Received: 06/22/18 09:15
Sample Name:	DUP	Basis: NA
Lab Code:	J1804531-005	

Boron, Total 6010D 3.30 mg/L 0.050 0.025 1 06/23/18	L MDL Dil. Date Analyzed Extracted	Q
e e		

General Chemistry

ALS Environmental—Jacksonville Laboratory 9143 Philips Highway, Suite 200, Jacksonville, FL 32256 Phone (904)739-2277 Fax (904)739-2011 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER VI.C-284 Page 22 of 36

Analytical Report

Client:	SCS Engineers	Service Request: J1804531
Project:	Sandy Creek Groundwater/16215106.00 T131	Date Collected: 06/21/18 11:40
Sample Matrix:	Water	Date Received: 06/22/18 09:15
	DW1 4	D I I I
Sample Name:	BW-1	Basis: NA
Lab Code:	J1804531-001	

	Analysis							
Analyte Name	Method	Result	Units	PQL	MDL	Dil.	Date Analyzed	Q
Chloride	9056	1200	mg/L	20	3	20	06/22/18 13:38	
Fluoride	9056	0.3 U	mg/L	2.0	0.3	20	06/22/18 13:38	
pН	9040C	7.22	pH Units	-	-	1	06/22/18 15:10	Н
Solids, Total Dissolved	SM 2540 C	6640	mg/L	100	100	10	06/25/18 17:18	
Sulfate	9056	3030	mg/L	20	2	20	06/22/18 13:38	

Analytical Report

Client:	SCS Engineers	Service Request: J1804531
Project:	Sandy Creek Groundwater/16215106.00 T131	Date Collected: 06/21/18 12:05
Sample Matrix:	Water	Date Received: 06/22/18 09:15
Sample Name:	MW-1	Basis: NA
Lab Code:	J1804531-002	

	Analysis							
Analyte Name	Method	Result	Units	PQL	MDL	Dil.	Date Analyzed	Q
Chloride	9056	247	mg/L	10	2	10	06/22/18 14:44	
Fluoride	9056	0.3 J	mg/L	1.0	0.2	10	06/22/18 14:44	
pH	9040C	7.38	pH Units	-	-	1	06/22/18 15:12	Н
Solids, Total Dissolved	SM 2540 C	4270	mg/L	40	40	4	06/25/18 17:18	
Sulfate	9056	2530	mg/L	10	0.9	10	06/22/18 14:44	

Analytical Report

Client:	SCS Engineers	Service Request: J1804531
Project:	Sandy Creek Groundwater/16215106.00 T131	Date Collected: 06/21/18 12:20
Sample Matrix:	Water	Date Received: 06/22/18 09:15
Sample Name:	MW-2	Basis: NA
Lab Code:	J1804531-003	

	Analysis							
Analyte Name	Method	Result	Units	PQL	MDL	Dil.	Date Analyzed	Q
Chloride	9056	2840	mg/L	50	6	50	06/22/18 15:06	
Fluoride	9056	0.6 U	mg/L	5.0	0.6	50	06/22/18 15:06	
pH	9040C	7.09	pH Units	-	-	1	06/22/18 15:14	Η
Solids, Total Dissolved	SM 2540 C	10200	mg/L	200	200	20	06/25/18 17:18	
Sulfate	9056	3400	mg/L	50	5	50	06/22/18 15:06	

Analytical Report

Client:	SCS Engineers	Service Request: J1804531
Project:	Sandy Creek Groundwater/16215106.00 T131	Date Collected: 06/21/18 12:45
Sample Matrix:	Water	Date Received: 06/22/18 09:15
Sample Name:	MW-3	Basis: NA
Dampie Frame.	111 11	
Lab Code:	J1804531-004	

	Analysis							
Analyte Name	Method	Result	Units	PQL	MDL	Dil.	Date Analyzed	Q
Chloride	9056	396	mg/L	20	3	20	06/22/18 15:28	
Fluoride	9056	0.3 U	mg/L	2.0	0.3	20	06/22/18 15:28	
pН	9040C	6.76	pH Units	-	-	1	06/22/18 15:15	Н
Solids, Total Dissolved	SM 2540 C	6090	mg/L	100	100	10	06/25/18 17:18	
Sulfate	9056	3160	mg/L	20	2	20	06/22/18 15:28	

Analytical Report

Client:	SCS Engineers	Service Request: J1804531
Project:	Sandy Creek Groundwater/16215106.00 T131	Date Collected: 06/21/18 00:00
Sample Matrix:	Water	Date Received: 06/22/18 09:15
<i>a</i>		
Sample Name:	DUP	Basis: NA
Lab Code:	J1804531-005	

	Analysis							
Analyte Name	Method	Result	Units	PQL	MDL	Dil.	Date Analyzed	Q
Chloride	9056	1210	mg/L	20	3	20	06/22/18 17:39	
Fluoride	9056	0.3 U	mg/L	2.0	0.3	20	06/22/18 17:39	
pН	9040C	7.30	pH Units	-	-	1	06/22/18 15:20	Η
Solids, Total Dissolved	SM 2540 C	6690	mg/L	100	100	10	06/25/18 17:18	
Sulfate	9056	3040	mg/L	20	2	20	06/22/18 17:39	

QC Summary Forms

ALS Environmental - Jacksonville Laboratory 9143 Philips Highway, Suite 200, Jacksonville, FL 32256 Phone (904) 739-2277 Fax (904) 739-2011 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER VI.C-290 Page 28 of 36

Metals

ALS Environmental—Jacksonville Laboratory 9143 Philips Highway, Suite 200, Jacksonville, FL 32256 Phone (904)739-2277 Fax (904)739-2011 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER VI.C-291 Page 29 of 36

Analytical ReportClient:SCS EngineersService Request:J1804531Project:Sandy Creek Groundwater/16215106.00 T131Date Collected:NASample Matrix:WaterDate Received:NASample Name:Method BlankBasis:NALab Code:J1804531-MBCollected:NA

Inorganic Parameters

Analyte Name	Analysis Method	Result	Units	PQL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Boron, Total	6010D	0.025 U	mg/L	0.050	0.025	1	06/22/18 20:41	06/22/18	
Calcium, Total	6010D	0.04 U	mg/L	0.10	0.04	1	06/22/18 20:40	06/22/18	

QA/QC Report

Client: Project: Sample Matrix:	SCS Engineers Sandy Creek Ground Water	water/16215106	.00 T131	Service Request: Date Analyzed: Date Extracted:	J1804531 06/22/18 06/22/18
		Lab C	Control Sample Summary		
		I	norganic Parameters		
Analysis Method:	6010D			Units:	mg/L
Prep Method:	EPA 3005A			Basis:	NA
				Analysis Lot:	595951
			Lab Control Sample J1804531-LCS		
Analyte Name		Result	Spike Amount	% Rec	% Rec Limits
Boron, Total		2.53	2.50	101	80-120
Calcium, Total		5.15	5.00	103	80-120

General Chemistry

ALS Environmental—Jacksonville Laboratory 9143 Philips Highway, Suite 200, Jacksonville, FL 32256 Phone (904)739-2277 Fax (904)739-2011 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER VI.C-294 Page 32 of 36

Analytical ReportClient:SCS EngineersService Request:J1804531Project:Sandy Creek Groundwater/16215106.00 T131Date Collected:NASample Matrix:WaterDate Received:NASample Name:Method BlankBasis:NALab Code:J1804531-MBHethod BlankBasis:

General Chemistry Parameters

	Analysis							
Analyte Name	Method	Result	Units	PQL	MDL	Dil.	Date Analyzed	Q
Chloride	9056	0.2 U	mg/L	1.0	0.2	1	06/22/18 12:11	
Fluoride	9056	0.02 U	mg/L	0.10	0.02	1	06/22/18 12:11	
Solids, Total Dissolved	SM 2540 C	10 U	mg/L	10	10	1	06/25/18 17:18	
Sulfate	9056	0.09 U	mg/L	1.0	0.09	1	06/22/18 12:11	

QA/QC Report

Client:	SCS Engineers
Project:	Sandy Creek Groundwater/16215106.00 T131
Sample Matrix:	Water

Service Request:J1804531 Date Collected:06/21/18 Date Received:06/22/18 Date Analyzed:6/22/18

Units:mg/L

Basis:NA

Matrix Spike Summary General Chemistry Parameters

Sample Name:	BW-1		
Lab Code:	J1804531-001		

Matrix Spike J1804531-001MS

Analyte Name	Method	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Chloride	9056	1200	2170	1000	97	90-110
Fluoride	9056	0.3 U	105	100	105	90-110
Sulfate	9056	3030	3890	1000	86 *	90-110

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	SCS Engineers	Service Request:	J1804531
Project	Sandy Creek Groundwater/16215106.00 T131	Date Collected:	06/21/18
Sample Matrix:	Water	Date Received:	06/22/18
		Date Analyzed:	06/22/18 - 06/25/18
	Replicate Sample Summary		
	General Chemistry Parameters		
Sample Name:	BW-1	Units:	mg/L
Lab Code:	J1804531-001	Basis:	NA

					Duplicate Sample J1804531-			
Analyte Name	Analysis Method	PQL	MDL	Sample Result	001DUP Result	Average	RPD	RPD Limit
Chloride	9056	20	3	1200	1200	1200	<1	20
Fluoride	9056	2.0	0.3	0.3 U	0.3 U	NC	NC	20
Solids, Total Dissolved	SM 2540 C	100	100	6640	6700	6670	<1	10
Sulfate	9056	20	2	3030	3000	3020	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:SCS EngineersProject:Sandy Creek Groundwater/16215106.00 T131Sample Matrix:Water

Lab Control Sample Summary General Chemistry Parameters

Service Request: J1804531 Date Analyzed: 06/22/18 - 06/25/18

> Units:mg/L Basis:NA

Lab Control Sample J1804531-LCS

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Chloride	9056	50.7	50.0	101	90-110
Fluoride	9056	5.24	5.00	105	90-110
Solids, Total Dissolved	SM 2540 C	275	300	92	85-115
Sulfate	9056	51.4	50.0	103	90-110

10450 Stancliff Rd. Suite 210 Houston, TX 77099 T: +1 281 530 5656 F: +1 281 530 5887

January 04, 2019

Jim Lawrence SCS Engineers 1901 Central Drive Suite 550 Bedford, TX 76021

Work Order: HS18120889

Laboratory Results for: Sandy Creek Groundwater 16215106

Dear Jim,

ALS Environmental received 5 sample(s) on Dec 14, 2018 for the analysis presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested. Results are expressed as "as received" unless otherwise noted.

QC sample results for this data met EPA or laboratory specifications except as noted in the Case Narrative or as noted with qualifiers in the QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained by ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

If you have any questions regarding this report, please feel free to call me.

Sincerely,

Generated By: DAYNA.FISHER Dane J. Wacasey

Client:SCS EngineersProject:Sandy Creek Groundwater 16215106Work Order:HS18120889

SAMPLE SUMMARY

Lab Samp ID	Client Sample ID	Matrix	TagNo	Collection Date	Date Received	Hold
HS18120889-01	BW-1	Groundwater		13-Dec-2018 11:45	14-Dec-2018 10:00	
HS18120889-02	MW-1	Groundwater		13-Dec-2018 11:55	14-Dec-2018 10:00	
HS18120889-03	MW-2	Groundwater		13-Dec-2018 12:05	14-Dec-2018 10:00	
HS18120889-04	MW-3	Groundwater		13-Dec-2018 12:20	14-Dec-2018 10:00	
HS18120889-05	DUP	Groundwater		13-Dec-2018 00:00	14-Dec-2018 10:00	

CASE NARRATIVE

Client:SCS EngineersProject:Sandy Creek Groundwater 16215106Work Order:HS18120889

Work Order Comments

• Sample received outside method holding time for pH. pH is an immediate test. Sample results are flagged with an "H" qualifier.

The temperature at the time of pH is reported. Please note that all pH results are already normalized to a temperature of 25 °C.

Metals by Method SW6020

Batch ID: 135989

Sample ID: HS18120868-06MS

• MS is for an unrelated sample

WetChemistry by Method SW9056

Batch ID: R330328

Sample ID: CCB

• All reported samples bracketed by this CCB are 10 times greater than the Sulfate content in the associated CCBs.

Sample ID: HS18121459-04MS

• MS and MSD are for an unrelated sample (Chloride,Sulfate)

Batch ID: R330228

Sample ID: MW-3 (HS18120889-04MSD)

• The MS and/or MSD recovery was outside of the control limits; however, the result in the parent sample is greater than 4x the spike amount. (Sulfate)

WetChemistry by Method SW9040

Batch ID: R329934

• The test results meet requirements of the current NELAP standards, state requirements or programs where applicable.

WetChemistry by Method M2540C

Batch ID: R329753

• The test results meet requirements of the current NELAP standards, state requirements or programs where applicable.

Client:	SCS Engineers	ANALYTICAL REPORT
Project:	Sandy Creek Groundwater 16215106	WorkOrder:HS18120889
Sample ID:	BW-1	Lab ID:HS18120889-01
Collection Date:	13-Dec-2018 11:45	Matrix:Groundwater

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method:	SW6020		Prep:SW3010A	24-Dec-2018	Analyst: JHD
Boron	3,250		220	400	ug/L	20	03-Jan-2019 13:46
Calcium	637,000		680	10000	ug/L	20	03-Jan-2019 13:46
TOTAL DISSOLVED SOLIDS BY SN	12540C	Method:	M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	6,400		5.00	10.0	mg/L	1	20-Dec-2018 17:20
PH BY SW9040C		Method:	SW9040				Analyst: MZD
рН	7.10	Н	0.100	0.100	pH Units	1	26-Dec-2018 11:50
Temp Deg C @pH	21.0	Н	0	0	DEG C	1	26-Dec-2018 11:50
ANIONS BY SW9056A		Method:	SW9056				Analyst: KMU
Chloride	1,120		20.0	50.0	mg/L	100	28-Dec-2018 23:57
Fluoride	0.586		0.250	0.500	mg/L	5	31-Dec-2018 15:00
Sulfate	2,780		20.0	50.0	mg/L	100	28-Dec-2018 23:57

Client:	SCS Engineers	ANALYTICAL REPORT
Project:	Sandy Creek Groundwater 16215106	WorkOrder:HS18120889
Sample ID:	MW-1	Lab ID:HS18120889-02
Collection Date:	13-Dec-2018 11:55	Matrix:Groundwater

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method:	SW6020		Prep:SW3010A	/ 24-Dec-2018	Analyst: JHD
Boron	1,350		220	400	ug/L	20	03-Jan-2019 13:49
Calcium	515,000		680	10000	ug/L	20	03-Jan-2019 13:49
TOTAL DISSOLVED SOLIDS BY SN	12540C	Method:	M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	4,100		5.00	10.0	mg/L	1	20-Dec-2018 17:20
PH BY SW9040C		Method:	SW9040				Analyst: MZD
рН	7.52	Н	0.100	0.100	pH Units	1	26-Dec-2018 11:50
Temp Deg C @pH	21.6	Н	0	0	DEG C	1	26-Dec-2018 11:50
ANIONS BY SW9056A		Method:	SW9056				Analyst: KMU
Chloride	241		2.00	5.00	mg/L	10	29-Dec-2018 01:53
Fluoride	0.585		0.250	0.500	mg/L	5	31-Dec-2018 15:22
Sulfate	2,570		20.0	50.0	mg/L	100	31-Dec-2018 12:59

Client:	SCS Engineers	ANALYTICAL REPORT
Project:	Sandy Creek Groundwater 16215106	WorkOrder:HS18120889
Sample ID:	MW-2	Lab ID:HS18120889-03
Collection Date:	13-Dec-2018 12:05	Matrix:Groundwater

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method:	SW6020		Prep:SW3010A	/ 24-Dec-2018	Analyst: JHD
Boron	2,580		550	1000	ug/L	50	03-Jan-2019 13:51
Calcium	690,000		1700	25000	ug/L	50	03-Jan-2019 13:51
TOTAL DISSOLVED SOLIDS BY SM	2540C	Method:	M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	10,500		5.00	10.0	mg/L	1	20-Dec-2018 17:20
PH BY SW9040C		Method:	SW9040				Analyst: MZD
рН	6.71	Н	0.100	0.100	pH Units	1	26-Dec-2018 11:50
Temp Deg C @pH	21.8	Н	0	0	DEG C	1	26-Dec-2018 11:50
ANIONS BY SW9056A		Method:	SW9056				Analyst: KMU
Chloride	2,740		20.0	50.0	mg/L	100	29-Dec-2018 00:26
Fluoride	0.618		0.250	0.500	mg/L	5	31-Dec-2018 15:43
Sulfate	3,220		20.0	50.0	mg/L	100	29-Dec-2018 00:26

Note: See Qualifiers Page for a list of qualifiers and their explanation.

Client:	SCS Engineers	ANALYTICAL REPORT
Project:	Sandy Creek Groundwater 16215106	WorkOrder:HS18120889
Sample ID:	MW-3	Lab ID:HS18120889-04
Collection Date:	13-Dec-2018 12:20	Matrix:Groundwater

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method:	SW6020		Prep:SW3010A	/ 24-Dec-2018	Analyst: JHD
Boron	1,080		110	200	ug/L	10	03-Jan-2019 16:10
Calcium	327,000		1700	25000	ug/L	50	03-Jan-2019 13:53
TOTAL DISSOLVED SOLIDS BY SM	2540C	Method:	M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	3,520		5.00	10.0	mg/L	1	20-Dec-2018 17:20
PH BY SW9040C		Method:	SW9040				Analyst: MZD
рН	6.61	Н	0.100	0.100	pH Units	1	26-Dec-2018 11:50
Temp Deg C @pH	21.7	Н	0	0	DEG C	1	26-Dec-2018 11:50
ANIONS BY SW9056A		Method:	SW9056				Analyst: KMU
Chloride	206		2.00	5.00	mg/L	10	29-Dec-2018 00:41
Fluoride	0.662		0.250	0.500	mg/L	5	31-Dec-2018 19:41
Sulfate	1,790		20.0	50.0	mg/L	100	31-Dec-2018 13:20

Note: See Qualifiers Page for a list of qualifiers and their explanation.

Client:	SCS Engineers	ANALYTICAL REPORT
Project:	Sandy Creek Groundwater 16215106	WorkOrder:HS18120889
Sample ID:	DUP	Lab ID:HS18120889-05
Collection Date:	13-Dec-2018 00:00	Matrix:Groundwater

ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method:	SW6020		Prep:SW3010A	24-Dec-2018	Analyst: JHD
Boron	3,730		550	1000	ug/L	50	03-Jan-2019 14:55
Calcium	614,000		1700	25000	ug/L	50	03-Jan-2019 14:55
TOTAL DISSOLVED SOLIDS BY SM	2540C	Method:	M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	6,300		5.00	10.0	mg/L	1	20-Dec-2018 17:20
PH BY SW9040C		Method:	SW9040				Analyst: MZD
рН	6.93	Н	0.100	0.100	pH Units	1	26-Dec-2018 11:50
Temp Deg C @pH	21.5	Н	0	0	DEG C	1	26-Dec-2018 11:50
ANIONS BY SW9056A		Method:	SW9056				Analyst: KMU
Chloride	1,160		20.0	50.0	mg/L	100	29-Dec-2018 02:22
Fluoride	0.589		0.250	0.500	mg/L	5	31-Dec-2018 20:02
Sulfate	2,930		20.0	50.0	mg/L	100	29-Dec-2018 02:22

WEIGHT LOG

Client:SCS EngineersProject:Sandy Creek Groundwater 16215106WorkOrder:HS18120889

Batch ID: 135989	Method:	ICP-MS	METALS BY	SW6020A	Prep: 3010A
SampID	Container	Sample Wt/Vol	Final Volume	Prep Factor	
HS18120889-01	1	10	10 (mL)	1	
HS18120889-02	1	10	10 (mL)	1	
HS18120889-03	1	10	10 (mL)	1	
HS18120889-04	1	10	10 (mL)	1	
HS18120889-05	1	10	10 (mL)	1	

Page 9 of 22 VI.C-307						
RIGHT	SOLUTIONS	RIGHT PARTNER	ł			

DATES REPORT

Client:	SCS Engineers
Project:	Sandy Creek Groundwater 16215106
WorkOrder:	HS18120889

Sample ID	Client Sam	ıp ID	Collection Date	TCLP Date	Prep Date	Analysis Date	DF
Batch ID 13598	9	Test Name :	ICP-MS METALS BY SW	/6020A	Matrix: G	Groundwater	
HS18120889-01	BW-1		13 Dec 2018 11:45		24 Dec 2018 13:00	03 Jan 2019 13:46	20
HS18120889-02	MW-1		13 Dec 2018 11:55		24 Dec 2018 13:00	03 Jan 2019 13:49	20
HS18120889-03	MW-2		13 Dec 2018 12:05		24 Dec 2018 13:00	03 Jan 2019 13:51	50
HS18120889-04	MW-3		13 Dec 2018 12:20		24 Dec 2018 13:00	03 Jan 2019 16:10	10
HS18120889-04	MW-3		13 Dec 2018 12:20		24 Dec 2018 13:00	03 Jan 2019 13:53	50
HS18120889-05	DUP		13 Dec 2018 00:00		24 Dec 2018 13:00	03 Jan 2019 14:55	50
Batch ID R3297	753	Test Name :	TOTAL DISSOLVED SO	LIDS BY SM2540C	Matrix: G	Groundwater	
HS18120889-01	BW-1		13 Dec 2018 11:45			20 Dec 2018 17:20	1
HS18120889-02	MW-1		13 Dec 2018 11:55			20 Dec 2018 17:20	1
HS18120889-03	MW-2		13 Dec 2018 12:05			20 Dec 2018 17:20	1
HS18120889-04	MW-3		13 Dec 2018 12:20			20 Dec 2018 17:20	1
HS18120889-05	DUP		13 Dec 2018 00:00			20 Dec 2018 17:20	1
Batch ID R3299	934	Test Name :	PH BY SW9040C		Matrix: G	Groundwater	
HS18120889-01	BW-1		13 Dec 2018 11:45			26 Dec 2018 11:50	1
HS18120889-02	MW-1		13 Dec 2018 11:55			26 Dec 2018 11:50	1
HS18120889-03	MW-2		13 Dec 2018 12:05			26 Dec 2018 11:50	1
HS18120889-04	MW-3		13 Dec 2018 12:20			26 Dec 2018 11:50	1
HS18120889-05	DUP		13 Dec 2018 00:00			26 Dec 2018 11:50	1
Batch ID R3302	228	Test Name :	ANIONS BY SW9056A		Matrix: G	Groundwater	
HS18120889-01	BW-1		13 Dec 2018 11:45			28 Dec 2018 23:57	100
HS18120889-02	MW-1		13 Dec 2018 11:55			29 Dec 2018 01:53	10
HS18120889-03	MW-2		13 Dec 2018 12:05			29 Dec 2018 00:26	100
HS18120889-04	MW-3		13 Dec 2018 12:20			29 Dec 2018 00:41	10
HS18120889-05	DUP		13 Dec 2018 00:00			29 Dec 2018 02:22	100
Batch ID R3303	328	Test Name :	ANIONS BY SW9056A		Matrix: G	Groundwater	
HS18120889-01	BW-1		13 Dec 2018 11:45			31 Dec 2018 15:00	5
HS18120889-02	MW-1		13 Dec 2018 11:55			31 Dec 2018 15:22	5
HS18120889-02	MW-1		13 Dec 2018 11:55			31 Dec 2018 12:59	100
HS18120889-03	MW-2		13 Dec 2018 12:05			31 Dec 2018 15:43	5
HS18120889-04	MW-3		13 Dec 2018 12:20			31 Dec 2018 19:41	5
HS18120889-04	MW-3		13 Dec 2018 12:20			31 Dec 2018 13:20	100
HS18120889-05	DUP		13 Dec 2018 00:00			31 Dec 2018 20:02	5

Client:SCS EngineersProject:Sandy Creek Groundwater 16215106WorkOrder:HS18120889

Batch ID:	135989		Instrument:	ICPMS04		Metho	od: SW6020	0	
MBLK Client ID:	Sample ID:	MBLK-135989 F	Run ID: ICPM		mg/L SeqNo: 4 SPK Ref			03-Jan-2019 24-Dec-2018 RPD Ref	
Analyte		Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD Limit Qual
Boron		< 0.0110	0.0200						
MBLK	Sample ID:	MBLK-135989		Units:	mg/L	Ana	alysis Date:	02-Jan-2019	15:57
Client ID:		F	Run ID: ICPM	S04_330335	SeqNo: 4	891329		24-Dec-2018	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Calcium		< 0.0340	0.500						
LCS	Sample ID:	LCS-135989		Units:	mg/L	Ana	alysis Date:	03-Jan-2019	12:52
Client ID:		F	Run ID: ICPM	S04_330403	SeqNo: 4	892972	PrepDate:	24-Dec-2018	DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Boron		0.5688	0.0200	0.5	0	114	80 - 120		
LCS	Sample ID:	LCS-135989		Units:	mg/L	Ana	alysis Date:	02-Jan-2019	15:59
Client ID:		F	Run ID: ICPM	S04_330335	SeqNo: 4	891330	PrepDate:	24-Dec-2018	B DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Calcium		5.079	0.500	5	0	102	80 - 120		
MS	Sample ID:	HS18120868-06M	IS	Units:	mg/L	Ana	alysis Date:	03-Jan-2019	12:59
Client ID:		F	Run ID: ICPM	S04_330403	SeqNo: 4	892976	PrepDate:	24-Dec-2018	B DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Boron		1.007	0.0200	0.5	0.4898	103	80 - 120		
мѕ	Sample ID:	HS18120868-06M	IS	Units:	mg/L	Ana	alysis Date:	02-Jan-2019	16:06
Client ID:		F	Run ID: ICPM	S04_330335	SeqNo: 4	891333		24-Dec-2018	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Calcium		116.5	0.500	5	108.1	169	80 - 120		SO

Client:SCS EngineersProject:Sandy Creek Groundwater 16215106WorkOrder:HS18120889

Batch ID:	135989	Inst	trument:	ICPMS04		Metho	d: SW602	0			
MSD	Sample ID:				mg/L			03-Jan-2019			
Client ID:		Run	ID: ICPN	IS04_330403	SeqNo: 4	892977	•	24-Dec-2018	B DF		
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit (Qual
Boron		1.013	0.0200	0.5	0.4898	105	80 - 120	1.007	0.62	2 20	
MSD	Sample ID:	HS18120868-06MSD		Units:	mg/L	Ana	lysis Date:	02-Jan-2019	16:08		
Client ID:		Run I	ID: ICPN	IS04_330335	SeqNo: 4	891334	PrepDate:	24-Dec-2018	DF	:1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit (Qual
Calcium		112.6	0.500	5	108.1	89.3	80 - 120	116.5	3.4	8 20	0
PDS	Sample ID:	HS18120868-06PDS		Units:	mg/L	Ana	lysis Date:	03-Jan-2019	13:03		
Client ID:		Run	ID: ICPN	IS04_330403	SeqNo: 4	892978	PrepDate:	24-Dec-2018	DF	:1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit		%RPD	RPD Limit (Qual
Boron		1.481	0.0200	1	0.4898	99.1	75 - 125				
PDS	Sample ID:	HS18120868-06PDS		Units:	mg/L	Ana	lysis Date:	02-Jan-2019	16:11		
Client ID:		Run I	ID: ICPN	IS04_330335	SeqNo: 4	891335	PrepDate:	24-Dec-2018	DF	:1	
Analyte		Result	PQL	– SPK Val	SPK Ref Value	%REC	Control Limit		%RPD	RPD Limit (Qual
Calcium		115.9	0.500	10	108.1	78.5	75 - 125				0
SD	Sample ID:	HS18120868-06SD		Units:	mg/L	Ana	lysis Date:	02-Jan-2019	16:04		
Client ID:		Run I	ID: ICPN	IS04_330335	SeqNo: 4	891332	PrepDate:	24-Dec-2018	DF	: 5	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%D	%D Limit (Qual
Calcium		109.7	2.50					108.1	1.4	6 10	
The followin	g samples were analyze	ed in this batch: HS18120	889-01	HS1812088	39-02	HS1812088	39-03	HS18120889-	-04		$\overline{}$

HS18120889-05

Client:SCS EngineersProject:Sandy Creek Groundwater 16215106WorkOrder:HS18120889

Batch ID: R329753		Instrument	: Balance1	N	Nethod: M25400	:
MBLK Sample	ID: WBLK-122018	i	Units:	mg/L	Analysis Date:	20-Dec-2018 17:20
Client ID:		Run ID: Ba	ance1_329753	SeqNo: 48778	884 PrepDate:	DF: 1
Analyte	Resu	t PQL	. SPK Val	SPK Ref Value %F	Control REC Limit	RPD Ref RPD Value %RPD Limit Qual
Total Dissolved Solids (Resi Filterable)	due, < 5.0	0 10.0)			
LCS Sample	ID: WLCS-122018		Units:	mg/L	Analysis Date:	20-Dec-2018 17:20
Client ID:		Run ID: Ba	ance1_329753	SeqNo: 48778	885 PrepDate:	DF: 1
Analyte	Resu	t PQL	. SPK Val	SPK Ref Value %F	Control REC Limit	RPD Ref RPD Value %RPD Limit Qual
Total Dissolved Solids (Resi Filterable)	due, 102	6 10.0) 1000	0	103 85 - 115	
DUP Sample	ID: HS18120988-0	1DUP	Units:	mg/L	Analysis Date:	20-Dec-2018 17:20
Client ID:		Run ID: Ba	ance1_329753	SeqNo: 48778	883 PrepDate:	DF: 1
Analyte	Resu	t PQL	. SPK Val	SPK Ref Value %F	Control REC Limit	RPD Ref RPD Value %RPD Limit Qual
Total Dissolved Solids (Resi Filterable)	due, < 5.0	0 10.0)			2 0 5
DUP Sample	ID: HS18120768-0	1DUP	Units:	mg/L	Analysis Date:	20-Dec-2018 17:20
Client ID:		Run ID: Ba	ance1_329753	SeqNo: 48778	B63 PrepDate:	DF: 1
Analyte	Resu	t PQL	. SPK Val	SPK Ref Value %F	Control REC Limit	RPD Ref RPD Value %RPD Limit Qual
Total Dissolved Solids (Resi Filterable)	due, 113	2 10.0)			1174 3.64 5
The following samples were an		IS18120889-01 IS18120889-05	HS181208	89-02 HS18	8120889-03	HS18120889-04

Client:	SCS Engineers
Project:	Sandy Creek Groundwater 16215106
WorkOrder:	HS18120889

Batch ID:	R329934			trument:	WetChem_	HS	Metho	d: SW904	0	
DUP		Sample ID:	HS18120889-05DUP		Units:	pH Units	Ana	lysis Date:	26-Dec-2018	3 11:50
Client ID:	DUP		Run	D: WetC	hem_HS_3299	34 SeqNo:	4882100	PrepDate:		DF: 1
Analyte			Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit		RPD %RPD Limit Qual
рН			6.99	0.100					6.93	0.862 10
Temp Deg	C @pH		21.6	0					21.5	0.464 10
The following samples were analyzed in this batch: HS HS		ed in this batch: HS18120 HS18120		HS1812088	39-02	HS181208	89-03	HS18120889	-04	

Client:SCS EngineersProject:Sandy Creek Groundwater 16215106WorkOrder:HS18120889

Batch ID:	R3302	28		Instrument:	ICS2100		Metho	od: SW905	6		
MBLK		Sample ID:	WBLKW1-12281	8	Units:	mg/L	Ana	alysis Date:	28-Dec-2018	8 17:04	
Client ID:				Run ID: ICS2	100_330228	SeqNo: 4	1888425	PrepDate:		DF: 1	
Analyte			Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit	Qual
Chloride			< 0.200	0.500							
Sulfate			< 0.200	0.500							
LCS		Sample ID:	WLCSW1-12281	8	Units:	mg/L	Ana	alysis Date:	28-Dec-2018	3 17:19	
Client ID:				Run ID: ICS2	100_330228	SeqNo: 4	1888426	PrepDate:		DF: 1	
Analyte			Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit	Qual
Chloride			20.32	0.500	20	0	102	80 - 120			
Sulfate			20.21	0.500	20	0	101	80 - 120			
LCSD		Sample ID [.]	WLCSDW1-1228	18	Units [.]	mg/L	Ana	alvsis Date [.]	28-Dec-2018	3 17:33	
Client ID:		oumpio izi		Run ID: ICS2		•		PrepDate:		DF: 1	
Analyte			Result	PQL	– SPK Val	SPK Ref Value	%REC	Control Limit		RPD %RPD Limit	Qual
Chloride			19.82	0.500	20	0	99.1	80 - 120	20.32	2.49 20	
Sulfate			19.79	0.500	20	0	99.0	80 - 120	20.21	2.09 20	
мѕ		Sample ID:	HS18120889-04M	IS	Units:	mg/L	Ana	alvsis Date:	29-Dec-2018	3 00:55	
Client ID:	MW-3			Run ID: ICS2		-	1888437	-		DF: 10	
Analyte			Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit	Qual
Chloride			310	5.00	100	206.2	104	80 - 120			
Sulfate			1753	5.00	100	1638	116	80 - 120			EC
MSD		Sample ID:	HS18120889-04M	ISD	Units:	mg/L	Ana	alysis Date:	29-Dec-2018	3 01:10	
Client ID:	MW-3			Run ID: ICS2	100_330228	SeqNo: 4	1888438	PrepDate:		DF: 10	
Analyte			Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit	Qual
Chloride			295.9	5.00	100	206.2	89.7	80 - 120	310	4.67 20	
Sulfate			1663	5.00	100	1638	25.4	80 - 120	1753	5.29 20	SEC
The followin	g sample	es were analyze	ed in this batch: HS HS	18120889-01 18120889-05	HS1812088	89-02	HS181208	89-03	HS18120889	-04	

Client:SCS EngineersProject:Sandy Creek Groundwater 16215106WorkOrder:HS18120889

Batch ID:	R330328		Instrument:	ICS3K2		Metho	od: SW9050	6	
MBLK	Sample ID:	WBLKW1-123118		Units:	mg/L	Ana	alysis Date:	31-Dec-2018	18:36
Client ID:		R	un ID: ICS3	K2_330328	SeqNo: 4	890588	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit		RPD %RPD Limit Qual
Fluoride		< 0.0500	0.100						
Sulfate		< 0.200	0.500						
LCS	Sample ID:	WLCSW1-123118		Units:	mg/L	Ana	alysis Date:	31-Dec-2018	18:58
Client ID:		R	un ID: ICS3	K2_330328	SeqNo: 4	890589	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Fluoride		4.102	0.100	4	0	103	80 - 120		
Sulfate		19.27	0.500	20	0	96.3	80 - 120		
LCSD	Sample ID:	WLCSDW1-12311	8	Units:	mg/L	Ana	alysis Date:	31-Dec-2018	9 19:19
Client ID:		R	un ID: ICS3	K2_330328	SeqNo: 4	890590	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Fluoride		4.064	0.100	4	0	102	80 - 120	4.102	0.931 20
Sulfate		19.36	0.500	20	0	96.8	80 - 120	19.27	0.482 20
MS	Sample ID:	HS18121459-04M	S	Units:	mg/L	Ana	alysis Date:	01-Jan-2019	10:04
Client ID:		R	un ID: ICS3	K2_330328	SeqNo: 4	890631	PrepDate:		DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Fluoride		2.52	0.100	2	0.464	103	80 - 120		
Sulfate		223	0.500	10	216.3	66.2	80 - 120		SEO
MS	Sample ID:	HS18121454-06M	S	Units:	mg/L	Ana	alysis Date:	01-Jan-2019	03:35
Client ID:		R	un ID: ICS3	K2_330328	SeqNo: 4	890613	PrepDate:		DF: 500
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Fluoride		983.5	50.0	1000	0	98.4	80 - 120		
Sulfate		9634	250	5000	4636	100.0	80 - 120		

Client:SCS EngineersProject:Sandy Creek Groundwater 16215106WorkOrder:HS18120889

Batch ID:	R330328	Ins	strument:	ICS3K2		Metho	d: SW9056	5		
MSD	Sample ID:	HS18121459-04MSD		Units:	mg/L	Ana	Ilysis Date:	01-Jan-2019	10:25	
Client ID:		Run	ID: ICS3K	2_330328	SeqNo: 4	890632	PrepDate:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPI %RPD Lim	
Fluoride		2.546	0.100	2	0.464	104	80 - 120	2.52	1.03 2	0
Sulfate		224.5	0.500	10	216.3	82.0	80 - 120	223	0.704 2	0 EO
MSD	Sample ID:	HS18121454-06MSD		Units:	mg/L	Ana	Ilysis Date:	01-Jan-2019	03:57	
Client ID:		Run	ID: ICS3K	2_330328	SeqNo: 4	890614	PrepDate:		DF: 50)
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPI %RPD Lim	
Fluoride		990.5	50.0	1000	0	99.0	80 - 120	983.5	0.704 2	0
Sulfate		9670	250	5000	4636	101	80 - 120	9634	0.37 2	0
The followin	g samples were analyze	ed in this batch: HS1812 HS1812		HS1812088	39-02	HS181208	89-03	HS18120889	-04	

Page 17 of 22 VI.C-315 RIGHT SOLUTIONS | RIGHT PARTNER

Client: Project: WorkOrder:	SCS Engineers Sandy Creek Groundwater 16215106 HS18120889	QUALIFIERS, ACRONYMS, UNITS
Qualifier	Description	
*	Value exceeds Regulatory Limit	
а	Not accredited	
В	Analyte detected in the associated Method Blank above the Reporting Limit	
E	Value above quantitation range	
Н	Analyzed outside of Holding Time	
J	Analyte detected below quantitation limit	
Μ	Manually integrated, see raw data for justification	
n	Not offered for accreditation	
ND	Not Detected at the Reporting Limit	
0	Sample amount is > 4 times amount spiked	
Р	Dual Column results percent difference > 40%	
R	RPD above laboratory control limit	
S	Spike Recovery outside laboratory control limits	
U	Analyzed but not detected above the MDL/SDL	
Acronym	Description	
DCS	Detectability Check Study	
DUP	Method Duplicate	
LCS	Laboratory Control Sample	
LCSD	Laboratory Control Sample Duplicate	
MBLK	Method Blank	
MDL	Method Detection Limit	
MQL	Method Quantitation Limit	
MS	Matrix Spike	
MSD	Matrix Spike Duplicate	
PDS	Post Digestion Spike	
PQL	Practical Quantitaion Limit	
SD	Serial Dilution	
SDL	Sample Detection Limit	
TRRP	Texas Risk Reduction Program	
Unit Reported	Description	
ua/l	Micrograms per Liter	

µg/L

Micrograms per Liter

CERTIFICATIONS, ACCREDITATIONS & LICENSES

Agency	Number	Expire Date
Arkansas	88-0356	27-Mar-2019
Texas	T10470231-18-21	30-Apr-2019
North Dakota	R193 2018-2019	30-Apr-2019
Illinois	004438	29-Jun-2019
Louisiana	03087	30-Jun-2019
Kentucky	123043 - 2018	30-Apr-2019
Kansas	E-10352 2018-2019	31-Jul-2019
Oklahoma	2018-156	31-Aug-2019

					Sample Ree	ceipt Checklist
Client Name: SCS El	NGINEERS - Bedford TX		Date/7	Time Received:	14-Dec-2018	<u>8 10:00</u>
Work Order: HS1812	20889		Receiv	ved by:	JRM	
Checklist completed by:	Paresh M. Giga eSignature	15-Dec-2018 Date	Reviewed by:	Corey Gra	andits	19-Dec-2018 Date
Matrices: <u>G</u>	roundwater	·	Carrier name:	<u>FedEx</u>		
Custody seals intact on Chain of custody preser Chain of custody signed Chain of custody agrees Samples in proper conta Sample containers intac TX1005 solids received Sufficient sample volum All samples received wi	shipping container/cooler? sample bottles? nt? d when relinquished and receives with sample labels? ainer/bottle? ct? in hermetically sealed vials? are for indicated test?	ved?	Yes V Yes V	No	Not Present Not Present Not Present	
Temperature(s)/Thermo			1c/2.5c U/c			IR11
Cooler(s)/Kit(s):			25696			
Date/Time sample(s) se	-	-	12/14/18 20:00			
Water - VOA vials have Water - pH acceptable u			Yes Ves	No No	No VOA vials sub	mitted
pH adjusted?			Yes	No 🔽	N/A	
pH adjusted by:		Γ				
Login Notes:		L				
Client Contacted:	I	Date Contacted:		Person Co	ntacted:	
Contacted By:	F	Regarding:				
Comments:						
Corrective Action:						

	ALS)	Cincinnati, OH +1 513 733 5336 Everett, WA +1 425 356 2600	+1 970 Holland	llins, CO 490 1511 I, MI 399 6070			eof DC ID: _]	7 9305	58	n	S	Sandy	SC	5 18 1 CS Er < Grou	naine	ers	621510	06	w1
	Customer Information		<u> </u>		Proje	A ct Informat		t Manager:											
Purchase Order	16215106.00T132		Project	Name						-									
Work Order			Project N			dy Creek Gr		16215106	_	pH_W_									
Company Name	SCS Engineers		Bill To Cor			5106.00T1	32			9056_a					4)				
Send Report To	Jim Lawrence		Invoic			Engineers tal Kuntz - A	<i>آ</i> ت			TDS_V					-				
Address	1901 Central Drive Suite 550			dress		Central Dri			D E F	CP_T\	N (602	0 Bord	on, Ca	lciumj					
City/State/Zip	Bedford, TX 76021		City/Stat	te/Zip	Bodf	ord TX 760	74		G										
Phone	(817) 571-2288			hone) 571-2288	<u> </u>		н										
Fax				Fax	(017)	J7 1-2200			1										
e-Mail Address	JLawrence@scsengine	ers.com	e-Mail Ad		kkuni	z@scsengir	leers com		J										
No.	Sample Description		Date	Tir		Matrix	Pres.	# Bottles	A	B	С	D	E	F	-				
1 BW-1		17	2/13/18	11:	45	Groundwa	2,8	2	X	X	X	X	-		G	Н	1	J	Hold
2 MW-1			1	11:<	55	Groundwa	2.8	2	X	X	X	x							
3 MVV-2				12!	05	Groundwa		2	X		×								
4 MW-3					20			2	X	X X		X							
5 DUP			\checkmark	10.		Groundwa		2			X	X							
6						Grounding	2,0	٤	Х	X	Х	X							
7																			
8																			
9																			
10																			
Sampler(s) Please Pr	TEEN Dog	L ff		nt Metho			red Turnaro D 10 Wk Day		Wk Day	L_] Othe	r Days		24 Hot	·	sults C	ue Date		
DOUG 5 Relinquished by:	TE EN	Ž/13/18	3:15	Received					Notes:	San	ду Сге		1						
Logged by (Laboratory): Preservative Key:	2 Dat	2/14/18 ret Time	e: 10:1000 e:	Checked	by (Lab		9.4%		coo 2 <i>56</i>	ler ID 96		r Temp. LC 2.1 211		Level II Level III	Sid QC Sid QC/I	Raw Date	bx Below)) TRRP C TRRP L	
	1-HCl 2 -HNO ₃ 3 -H	$_2$ SO ₄ 4-NaOH	5-Na ₂ S ₂ O		aHSO₄	7-Other	8-4°C	9-5035			cs	$\frac{n!!}{0.4}$	山口		SW846/		ل ــــا		

Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental.
 Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse.
 The Chain of Custody is a legal document. All information must be completed accurately.

Copyright 2011 by ALS Environmental.

Page 21 of 22 VI.C-319 **RIGHT SOLUTIONS | RIGHT PARTNER**

25696 DEC 1 4 2018

APPENDIX C

HISTORICAL GROUNDWATER ANALYTICAL DATA

												2161 R	ATTLESNAK	E ROAD												
	Water Level	Conductiviy	Turbidity	Boron	Calcium	Chloride	pH at 25°C	Sulfate	Total Dissolved Solids	Antimony	Arsenic	Barium	ESEL, TX 766	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium-226	Radium-228	Combined Radium	Fluoride
Units	ft msl	mS/cm	NTU	mg/L	mg/L	mg/L	Std. Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	pCi/L	pCi/L	pCi/L	mg/L
MW-1 12/14/2015 2/25/2016 5/11/2016 8/16/2016 11/17/2016 2/23/2017 6/7/2017 8/24/2017 12/20/2017 6/21/2018 12/13/2018	453.53 453.38 454.14 453.67 454.43 454.72 454.42 454.69 454.22 453.85 454.86	4.51 4.98 4.83 4.47 4.45 5.08 4.77 4.58 4.287 4.67 4.369	25.2 >800 >800 17.7 452 500 223 66.2 681 30	1.2 1.4 2.6 1.3 1.2 1.3 1.2 1.2 1.3 1.25 1.35	454 520 1030 535 542 531 530 518 548 548 548 548 548 545	253 236 402 239 216 223 203 241 248 247 241	7.6 7.5 7.2 6.8 7 7 7.5 7.1 7.4 7.38 7.52	2090 2190 2580 2300 2130 2350 2010 2620 2340 2530 2570	4090 4060 5260 3880 3720 3980 3680 4550 4250 4250 4270 4100	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 n/a n/a	<0.0050 <0.0050 0.12 <0.0050 <0.0050 <0.0050 <0.0050 <0.0060 n/a n/a	0.044 0.033 1 0.022 0.018 <0.20 0.019 0.02 0.017 n/a n/a	<0.0010 <0.0010 0.029 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 n/a n/a	<0.0010 <0.0020 <0.0010 <0.0010 <0.0050 <0.0010 <0.0010 <0.0050 n/a n/a	0.0073 0.0074 0.69 <0.0050 <0.0050 <0.0050 <0.0050 <0.0070 n/a n/a	<0.0025 <0.0025 0.087 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 n/a n/a	<0.0050 0.0084 0.21 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.010 n/a n/a	0.43 0.39 0.78 0.41 0.37 0.44 0.36 0.395 0.38 n/a n/a	<0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 n/a n/a	<0.010 <0.020 <0.010 <0.020 <0.020 <0.020 <0.020 <0.030 n/a n/a	0.16 0.2 0.039 0.13 0.16 0.066 0.15 0.17 0.18 n/a n/a	<0.00050 <0.00050 0.00089 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 n/a n/a	$\begin{array}{c} \textbf{1.04 \pm 0.838} \\ \textbf{0.922 \pm 0.720} \\ \textbf{3.94 \pm 1.31} \\ \textbf{0.593 \pm 0.620} \\ \textbf{0.338 \pm 0.339} \\ \textbf{-0.207 \pm 0.945} \\ \textbf{0.000 \pm 0.449} \\ \textbf{0.577 \pm 0.429} \\ \textbf{1.26 \pm 0.680} \\ \textbf{n/a} \\ \textbf{n/a} \\ \textbf{n/a} \end{array}$	3.13 ± 0.908	2.13 2.382 12.33 3.883 2.828 2.923 1.3 2.267 3.72 n/a n/a n/a	<0.30 <0.30 <0.30 0.35 <0.30 <0.30 <0.30 0.4 1.1 0.3 J 0.585
MW-2																										
MW-2 12/14/2015 2/25/2016 5/11/2016 8/16/2016 11/17/2016 2/23/2017 6/7/2017 8/24/2017 12/20/2017 6/21/2018 12/13/2018 MW-3 12/14/2015 2/25/2016 5/11/2016 8/16/2016 11/17/2016 2/23/2017 6/7/2017 8/24/2017 12/20/2017 6/21/2018 12/13/2018	424.11 429.50 430.72 430.78 430.80 430.85 431.12 431.20 429.47 430.02 430.72 421.77 421.66 421.94 420.42 421.03 422.58 422.23 419.66 421.08 418.68 418.68 422.36	10.6 11.3 10.8 11.9 10.7 13.7 11 11.4 6.198 12.66 11.89 1.17 6.04 3.82 6.01 5.43 6.79 3.68 6.55 6.459 6.633 4.47	2.8 52.2 23.7 5.5 0.4 6.2 30.5 8.1 37.7 4.42 15.1 11.9 93.3 197 101 87 82 145 82.6 22.4 51.1 10.6	1.9 2.4 2.2 2.1 1.9 1.9 1.9 2.2 1.9 2.58 0.35 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.3 1.13 1.08	569 697 613 680 701 646 640 664 716 706 690 67.6 479 465 505 494 389 486 519 563 526 327	1890 2080 2340 2440 2140 2320 2420 2520 2590 2840 2740 12.3 347 349 381 322 202 327 401 380 396 206	6.7 7.3 6.7 6.7 6.7 6.9 7.5 6.8 7.2 7.09 6.71 7.2 7 6.5 7.3 6.6 7 7.1 6.5 6.8 6.76 6.61	2810 2890 3010 3080 2770 3110 2970 3710 3100 3400 3220 135 2430 2330 2950 2420 1450 2260 2420 1450 2260 2890 2830 3160 1790	8520 8070 9930 7870 9680 9630 14200 9600 10200 10200 10500 500 586 5400 5440 5680 5440 5680 5420 2900 4740 6160 5790 6090 3520	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0050 0.014 0.0059 <0.0050 <0.010 <0.012 n/a n/a n/a <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	0.031 0.027 0.021 0.024 <0.20 0.016 0.017 0.022 n/a n/a n/a 0.021 0.021 0.052 0.024 0.018 0.028 <0.20 0.015 0.014 0.034 n/a n/a	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0010 <0.0020 <0.010 n/a n/a <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0050 n/a n/a n/a	<0.0050 <0.0050 <0.0050 <0.0050 <0.010 <0.0050 <0.014 n/a n/a <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.0061 <0.011 0.0079 0.0084 0.0064 <0.010 0.0051 0.0065 0.0072 n/a n/a <0.01025	<0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.010 <0.020 n/a n/a n/a <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010000000 <0.000	0.69 0.74 0.87 0.84 0.82 0.8 0.75 0.729 0.74 n/a n/a <0.050 0.85 0.65 0.98 0.94 0.7 0.62 1.03 0.92 n/a n/a	<0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020	<0.010 <0.010 <0.010 0.024 <0.010 <0.020 <0.020 <0.030 n/a n/a <0.010 <0.010 <0.010 <0.010 <0.010 <0.020 <0.020 <0.020 <0.020 <0.020 <0.030 n/a n/a n/a	<0.010 <0.010 <0.010 <0.020 <0.020 <0.010 0.026 <0.040 n/a n/a n/a <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.020 <0.020 <0.020 n/a n/a n/a	<0.00050 <0.00050 <0.0010 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 n/a n/a n/a	1.41 \pm 0.938 0.857 \pm 0.590 0.859 \pm 0.561 0.237 \pm 0.329 0.923 \pm 0.594 1.52 \pm 1.50 0.344 \pm 0.415 1.12 \pm 0.610 0.945 \pm 0.578 n/a n/a 0.997 \pm 0.813 1.26 \pm 0.762 1.54 \pm 0.762 1.54 \pm 0.797 0.891 \pm 0.626 0.872 \pm .0579 -0.239 \pm 1.09 0.941 \pm 0.658 1.26 \pm 0.600 0.626 \pm 0.567 n/a n/a	2.57 \pm 0.665 3.13 \pm 0.822 3.28 \pm 0.775 3.16 \pm 0.826 4.27 \pm 1.07 3.82 \pm 0.931 3.78 \pm 0.960 4.07 \pm 0.940 n/a n/a 0.736 \pm 0.505 3.02 \pm 0.791 1.62 \pm 0.547	4.17 3.427 3.989 3.517 4.083 5.79 4.164 4.9 5.015 n/a n/a n/a 1.733 4.28 3.16 5.991 6.102 3.831 3.701 5.67 3.396 n/a n/a n/a	0.98 <0.30 <0.30 0.64 0.35 0.46 1.3 0.32 <0.50 <0.6 0.618 0.618 0.62 0.9 <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 0.45 0.57 <0.30 0.61 <0.3 0.662
BW-1																										
12/14/2015 2/25/2016 5/11/2016 8/16/2016 11/17/2016 2/23/2017 6/7/2017 8/24/2017 12/20/2017 6/21/2018 12/13/2018		5.35 5.8 7.5 7.52 7.36 7.17 7.58 7.81 7.063 7.755 7.159	155 307 866 56 8.1 245 852 162 180 39.3 81.8	1.8 3.5 4 3.7 2.8 3.1 3.8 3.4 3.5 3.31 3.25	465 586 566 548 532 539 531 658 610 637	727 1050 1120 1130 991 1080 1020 1160 1030 1200 1120	9.5 7.4 7 7.2 6.8 7.2 7.7 7.1 7.2 7.22 7.1	2130 2690 2610 2720 2590 2760 2220 2870 2620 3030 2780	4900 6420 6360 6280 6400 6280 7320 7320 7260 6140 6640 6400	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 n/a n/a	<0.0050 0.015 0.0084 0.0064 0.0066 <0.010 <0.0050 <0.010 <0.0060 n/a n/a	0.17 0.055 0.04 0.023 <0.20 0.026 0.037 0.044 n/a n/a	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 n/a n/a	<0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0010 <0.0020 <0.0050 n/a n/a	0.015 0.0053 0.011 0.0073 <0.0050 <0.0050 <0.0050 <0.0070 n/a n/a	0.0026 0.0035 0.0035 0.0029 <0.0025 <0.010 <0.0025 <0.0050 0.0034 n/a n/a	<0.0050 0.0069 0.0091 <0.0050 <0.0050 <0.0050 <0.010 <0.010 n/a n/a	0.7 0.71 0.79 0.78 0.74 0.73 0.79 0.738 0.73 n/a n/a	<0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 n/a n/a	<0.010 <0.010 <0.010 0.022 <0.010 <0.020 <0.020 <0.030 n/a n/a	<0.010 <0.010 <0.010 <0.010 <0.020 <0.020 <0.020 <0.020 n/a n/a	0.00073 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 n/a n/a	0.900 ± 0.728 0.887 ± 0.697 2.40 ± 0.944 0.610 ± 0.483 0.605 ± 0.548 0.816 ± .0983 1.36 ± 0.685 1.58 ± 0.602 1.07 ± 0.681 n/a n/a	1.82 ± 0.541 2.80 ± 0.710 3.42 ± 0.777	2.03 2.707 5.2 4.03 3.545 4.886 4.49 4.38 4.2 n/a n/a n/a	<0.30 0.67 0.32 0.94 0.85 <0.30 0.37 <0.50 <0.3 0.586
MCL				n/a	n/a	n/a	n/a	n/a	n/a	0.006	0.01	2	0.004	0.005	0.1	n/a	0.015	n/a	0.002	n/a	0.05	0.002	n/a	n/a	5	4

MCL - EPA Primary Drinking Water Maximum Contaminant Level

0.015 Exceedance of EPA Primary MCL

40 CFR 257 Appendix III Constituent

40 CFR 257 Appendix IV Constituent

40 CFR 257 Appendix III & IV Constituent

"<" - Indicates analyte was not detected above the laboratory reporting limit "n/a" - Indicates constituent has no EPA Primary MCL

APPENDIX C - GROUNDWATER ANALYTICAL DATA

2018 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION

SANDY CREEK ENERGY STATION

VI.C-322

APPENDIX D

2018 RESULTS AND STATISTICAL LIMITS

Appendix D – 2018 Results and Statistical Limits - MW-1											
MW-ID CFR 257 Appendix		Constituent	June 2018 Lab Result	December 2018 Lab Result	MCL	Statistical Limit	Statistical Method				
		Boron (mg/L)	1.25	1.35	n/a	2.6	Non-Parametric Prediction Limit				
		Calcium (mg/L)	587	515	n/a	1030	Non-Parametric Prediction Limit				
		Chloride (mg/L)	247	241	n/a	402	Non-Parametric Prediction Limit				
	ш	pH at 25°C	7.38	7.52	n/a	6.136 - 8.289	Parametric Prediction Limit				
		Sulfate (mg/L)	2530	2570	n/a	3402	Shewhart-Cusum Control Chart				
		TDS (mg/L)	4270	4100	n/a	6765	Shewhart-Cusum Control Chart				
		Fluoride (mg/L)	0.3 J	0.585	4	0.4	Non-Parametric Prediction Limit				
		Antimony (mg/L)	n/a	n/a	0.006	0.001	Non-Parametric Prediction Limit				
		Arsenic (mg/L)	n/a	n/a	0.01	0.12	Non-Parametric Prediction Limit				
		Barium (mg/L)	n/a	n/a	2	1	Non-Parametric Prediction Limit				
		Beryllium (mg/L)	n/a	n/a	0.004	0.029	Non-Parametric Prediction Limit				
MW-1		Cadmium (mg/L)	n/a	n/a	0.005	0.001	Non-Parametric Prediction Limit				
WW-1		Chromium (mg/L)	n/a	n/a	0.1	0.69	Non-Parametric Prediction Limit				
		Cobalt (mg/L)	n/a	n/a	n/a	0.087	Non-Parametric Prediction Limit				
		Lead (mg/L)	n/a	n/a	0.015	0.21	Non-Parametric Prediction Limit				
	IV	Lithium (mg/L)	n/a	n/a	n/a	0.78	Non-Parametric Prediction Limit				
		Mercury (mg/L)	n/a	n/a	0.002	0.0002	Non-Parametric Prediction Limit				
		Molybdenum (mg/L)	n/a	n/a n/a	n/a	0.02	Non-Parametric Prediction Limit				
		Selenium (mg/L)	n/a		0.05	0.2535	Shewhart-Cusum Control Chart				
		Thallium (mg/L)	n/a	n/a	0.002	0.00089	Non-Parametric Prediction Limit				
		Radium - 226 (pCi/L)	n/a	n/a	n/a	n/a	n/a				
		Radium - 228 (pCi/L)	n/a	n/a	n/a	n/a	n/a				
		Combined Radium (pCi/L)	n/a	n/a	5	12.33	Non-Parametric Prediction Limit				
		Fluoride (mg/L)	0.3 J	0.585	4	0.4	Non-Parametric Prediction Limit				

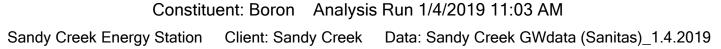
Bolded value indicates that consituent exceeded intrawell statistical limit

Appendix D – 2018 Results and Statistical Limits - MW-2											
MW-ID CFR 257 Appendix		Constituent	June 2018 Lab Result	December 2018 Lab Result	MCL	Statistical Limit	Statistical Method				
		Boron (mg/L)	1.9	2.58	n/a	2.4	Non-Parametric Prediction Limit				
		Calcium (mg/L)	706	690	n/a	874.4	Shewhart-Cusum Control Chart				
		Chloride (mg/L)	2840	2740	n/a	3336	Shewhart-Cusum Control Chart				
	ш	pH at 25°C	7.09	6.71	n/a	6.7 - 7.5	Non-Parametric Prediction Limit				
		Sulfate (mg/L)	3400	3220	n/a	4635	Shewhart-Cusum Control Chart				
		TDS (mg/L)	10200	10500	n/a	23969	Shewhart-Cusum Control Chart				
		Fluoride* (mg/L)	<0.6	0.618	4	2.831	Shewhart-Cusum Control Chart				
		Antimony (mg/L)	n/a	n/a	0.006	0.001	Non-Parametric Prediction Limit				
		Arsenic (mg/L)	n/a	n/a	0.01	0.014	Non-Parametric Prediction Limit				
		Barium (mg/L)	n/a	n/a	2	0.5299	Shewhart-Cusum Control Chart				
		Beryllium (mg/L)	n/a	n/a	0.004	0.001	Non-Parametric Prediction Limit				
MW-2		Cadmium (mg/L)*	n/a	n/a	0.005	0.002	Non-Parametric Prediction Limit				
10100-2		Chromium (mg/L)*	n/a	n/a	0.1	0.005	Non-Parametric Prediction Limit				
		Cobalt (mg/L)	n/a	n/a	n/a	0.02189	Shewhart-Cusum Control Chart				
		Lead (mg/L)	n/a	n/a	0.015	0.01	Non-Parametric Prediction Limit				
	IV	Lithium (mg/L)	n/a	n/a	n/a	1.09	Shewhart-Cusum Control Chart				
		Mercury (mg/L)	n/a	n/a	0.002	0.0002	Non-Parametric Prediction Limit				
		Molybdenum (mg/L)	n/a	n/a	n/a	0.024	Non-Parametric Prediction Limit				
		Selenium (mg/L)	n/a	n/a	0.05	0.026	Non-Parametric Prediction Limit				
		Thallium (mg/L)	n/a	n/a	0.002	0.0005	Non-Parametric Prediction Limit				
		Radium - 226 (pCi/L)	n/a	n/a	n/a	n/a	n/a				
		Radium - 228 (pCi/L)	n/a	n/a	n/a	n/a	n/a				
		Combined Radium (pCi/L)	n/a	n/a	5	8.09	Shewhart-Cusum Control Chart				
		Fluoride* (mg/L)	<0.6	0.618	4	2.831	Shewhart-Cusum Control Chart				

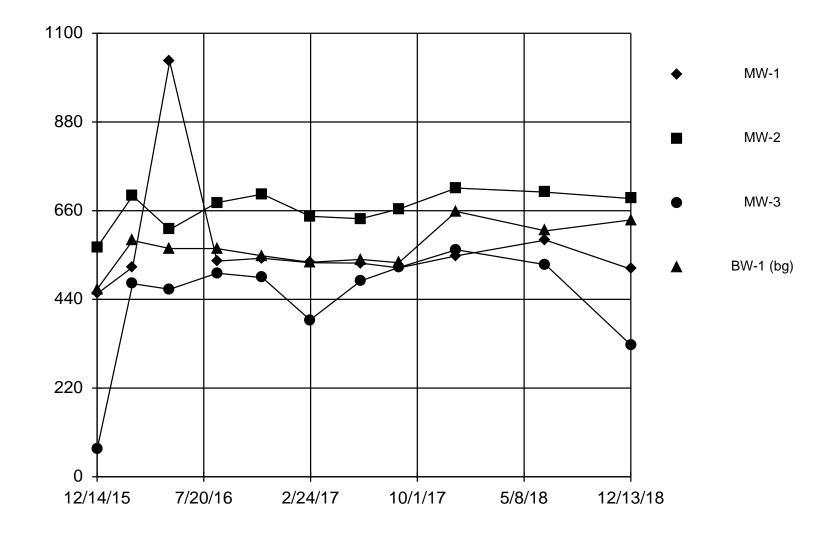
Bolded value indicates that consituent exceeded intrawell statistical limit

Appendix D – 2018 Results and Statistical Limits - MW-3										
MW-ID CFR 257 Appendix		Constituent	June 2018 Lab Result	December 2018 Lab Result	MCL	Statistical Limit	Statistical Method			
		Boron (mg/L)	1.13	1.08	n/a	1.2	Non-Parametric Prediction Limit			
		Calcium (mg/L)	526	327	n/a	688.1	Shewhart-Cusum Control Chart			
		Chloride (mg/L)	396	206	n/a	606.9	Shewhart-Cusum Control Chart			
	ш	pH at 25°C	6.76	6.61	n/a	5.71 - 8.09	Parametric Prediction Limit			
		Sulfate (mg/L)	3160	1790	n/a	4447	Shewhart-Cusum Control Chart			
		TDS (mg/L)	6090	6300	n/a	9375	Shewhart-Cusum Control Chart			
		Fluoride* (mg/L)	<0.3	0.662	4	2.201	Shewhart-Cusum Control Chart			
		Antimony (mg/L)	n/a	n/a	0.006	0.001	Non-Parametric Prediction Limit			
		Arsenic (mg/L)	n/a	n/a	0.01	0.0061	Non-Parametric Prediction Limit			
		Barium (mg/L)	n/a	n/a	2	0.3241	Shewhart-Cusum Control Chart			
		Beryllium (mg/L)	n/a	n/a	0.004	0.001	Non-Parametric Prediction Limit			
MW-3		Cadmium (mg/L)	n/a	n/a	0.005	0.002	Non-Parametric Prediction Limit			
10100-3		Chromium (mg/L)	n/a	n/a	0.1	0.005	Non-Parametric Prediction Limit			
		Cobalt (mg/L)	n/a	n/a	n/a	0.02018	Shewhart-Cusum Control Chart			
		Lead (mg/L)	n/a	n/a	0.015	0.01	Non-Parametric Prediction Limit			
	IV	Lithium (mg/L)	n/a	n/a	n/a	2.336	Shewhart-Cusum Control Chart			
		Mercury (mg/L)	n/a	n/a	0.002	0.0002	Non-Parametric Prediction Limit			
		Molybdenum (mg/L)	n/a	n/a	n/a	0.02	Non-Parametric Prediction Limit			
		Selenium (mg/L)	n/a	n/a	0.05	0.02	Non-Parametric Prediction Limit			
		Thallium (mg/L)	n/a	n/a	0.002	0.0005	Non-Parametric Prediction Limit			
		Radium - 226 (pCi/L)	n/a	n/a	n/a	n/a	n/a			
		Radium - 228 (pCi/L)	n/a	n/a	n/a	n/a	n/a			
		Combined Radium (pCi/L)	n/a	n/a	5	11.97	Shewhart-Cusum Control Chart			
		Fluoride* (mg/L)	<0.3	0.662	4	2.201	Shewhart-Cusum Control Chart			

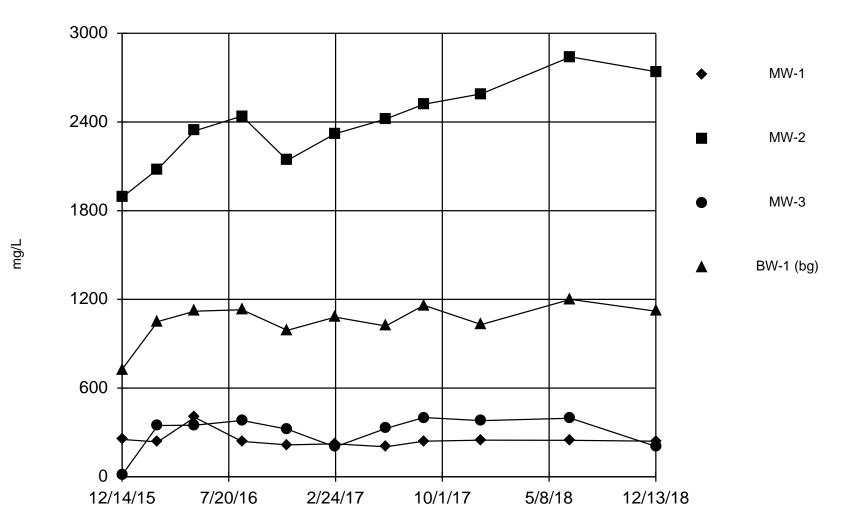

Bolded value indicates that consituent exceeded intrawell statistical limit


Appendix D –2018 Results and Statistical Limits - BW-1							
MW-ID	CFR 257 Appendix	Constituent	June 2018 Lab Result	December 2018 Lab Result	MCL	Statistical Limit	Statistical Method
BW-1	m	Boron (mg/L)	3.31	3.25	n/a	6.787	Shewhart-Cusum Control Chart
		Calcium (mg/L)	610	637	n/a	723.7	Shewhart-Cusum Control Chart
		Chloride (mg/L)	1200	1120	n/a	1540	Shewhart-Cusum Control Chart
		pH at 25°C	7.22	7.1	n/a	6.8 - 9.5	Non-Parametric Prediction Limit
		Sulfate (mg/L)	3030	2780	n/a	3884	Shewhart-Cusum Control Chart
		TDS (mg/L)	6640	6400	n/a	10119	Shewhart-Cusum Control Chart
		Fluoride* (mg/L)	<0.3	0.586	4	2.356	Shewhart-Cusum Control Chart
	IV	Antimony (mg/L)	n/a	n/a	0.006	0.001	Non-Parametric Prediction Limit
		Arsenic (mg/L)	n/a	n/a	0.01	0.02645	Shewhart-Cusum Control Chart
		Barium (mg/L)	n/a	n/a	2	0.4562	Shewhart-Cusum Control Chart
		Beryllium (mg/L)	n/a	n/a	0.004	0.001	Non-Parametric Prediction Limit
		Cadmium (mg/L)	n/a	n/a	0.005	0.002	Non-Parametric Prediction Limit
		Chromium (mg/L)	n/a	n/a	0.1	0.02912	Shewhart-Cusum Control Chart
		Cobalt (mg/L)	n/a	n/a	n/a	0.04052	Shewhart-Cusum Control Chart
		Lead (mg/L)	n/a	n/a	0.015	0.0091	Non-Parametric Prediction Limit
		Lithium (mg/L)	n/a	n/a	n/a	0.9244	Shewhart-Cusum Control Chart
		Mercury (mg/L)	n/a	n/a	0.002	0.0002	Non-Parametric Prediction Limit
		Molybdenum (mg/L)	n/a	n/a	n/a	0.022	Non-Parametric Prediction Limit
		Selenium (mg/L)	n/a	n/a	0.05	0.02	Non-Parametric Prediction Limit
		Thallium (mg/L)	n/a	n/a	0.002	0.00073	Non-Parametric Prediction Limit
		Radium - 226 (pCi/L)	n/a	n/a	n/a	n/a	n/a
		Radium - 228 (pCi/L)	n/a	n/a	n/a	n/a	n/a
		Combined Radium (pCi/L)	n/a	n/a	5	9.354	Shewhart-Cusum Control Chart
		Fluoride* (mg/L)	<0.3	0.586	4	2.356	Shewhart-Cusum Control Chart

Bolded value indicates that consituent exceeded intrawell statistical limit

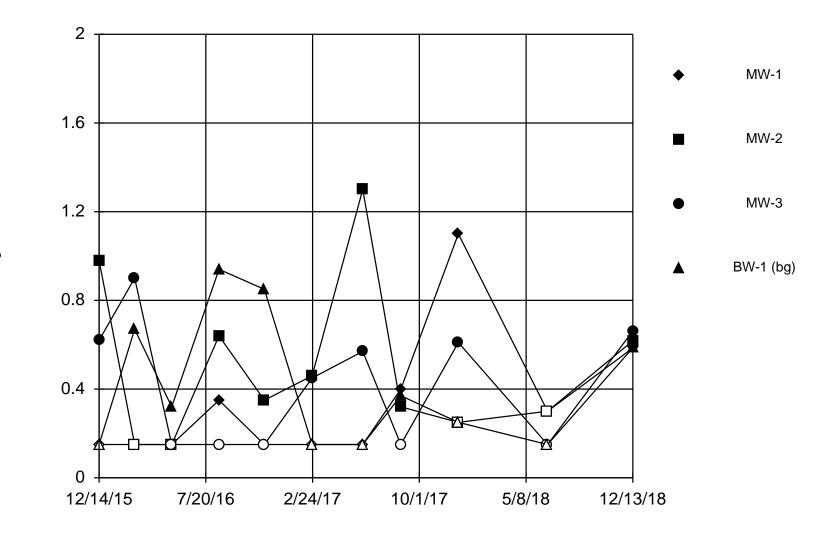

APPENDIX E

2018 STATISTICAL ANALYSIS GRAPHS

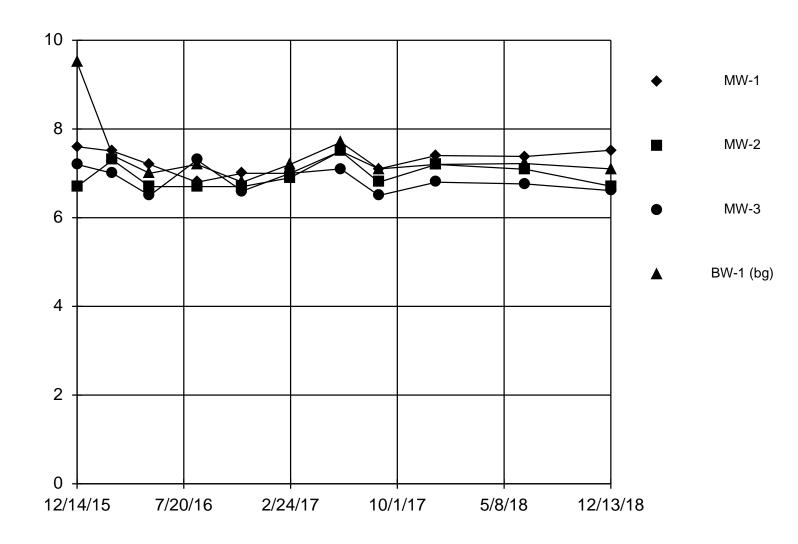

mg/L

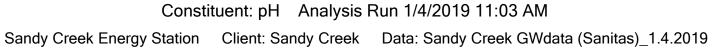
Constituent: Calcium Analysis Run 1/4/2019 11:03 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

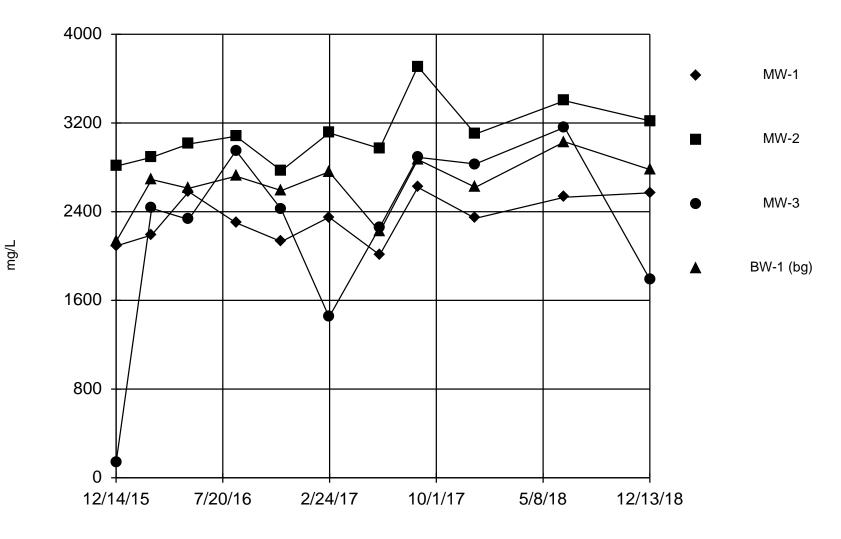
mg/L



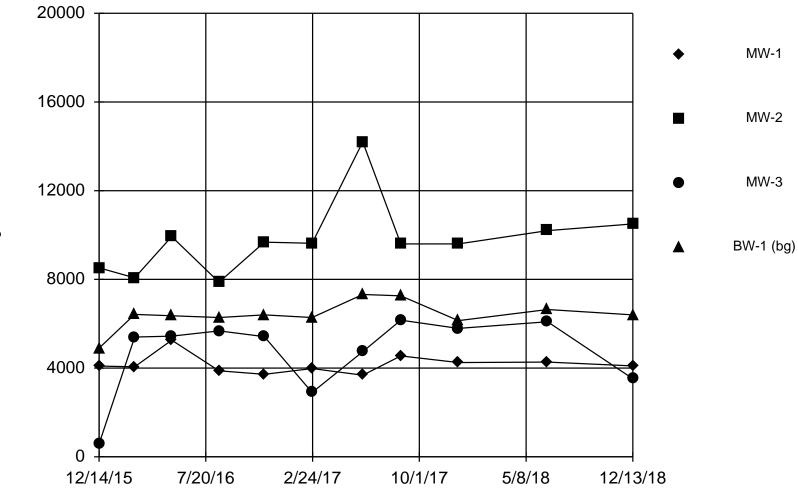
Constituent: Chloride Analysis Run 1/4/2019 11:03 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

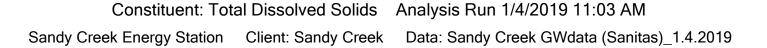

Sanitas[™] v.9.5.32 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.




Constituent: Fluoride Analysis Run 1/4/2019 11:03 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

mg/L



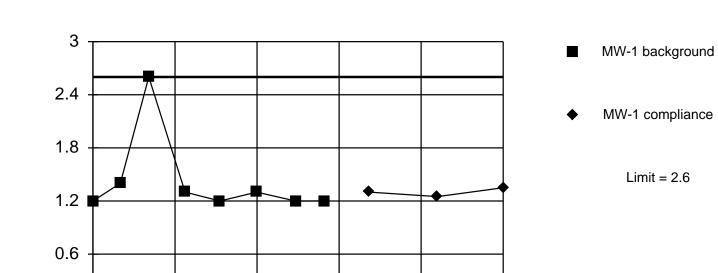


Std Units

Constituent: Sulfate Analysis Run 1/4/2019 11:03 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

0

12/14/15


7/20/16

2/24/17

Within Limit

Prediction Limit

Intrawell Non-parametric

mg/L

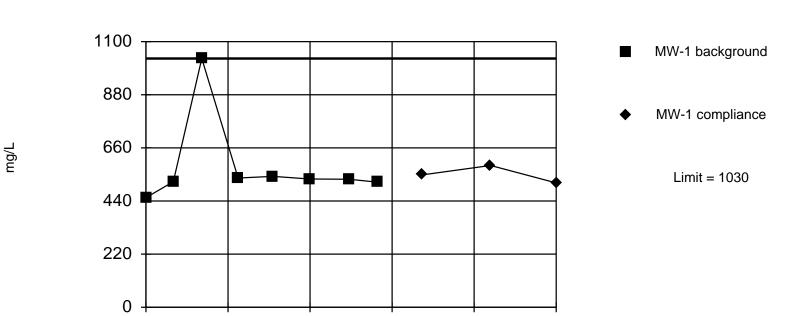
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 8 background values. Report alpha = 0.1111. Most recent point compared to limit. Insufficient data to test for seasonality: data were not deseasonalized.

5/8/18

12/13/18

10/1/17

Constituent: Boron Analysis Run 1/4/2019 11:10 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019


12/14/15

7/20/16

Within Limit

Prediction Limit

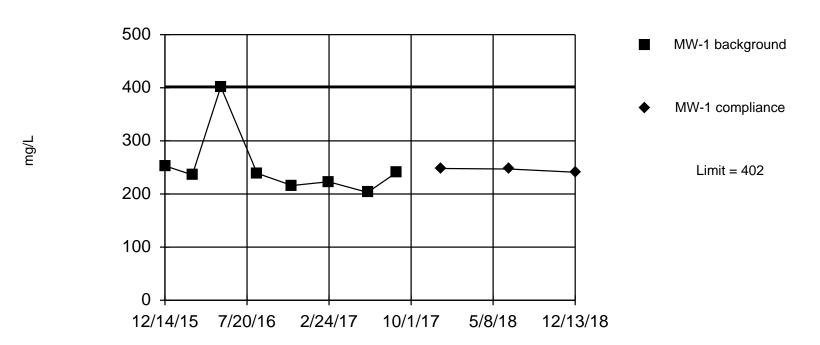
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 8 background values. Report alpha = 0.1111. Most recent point compared to limit. Insufficient data to test for seasonality: data were not deseasonalized.

5/8/18

12/13/18

10/1/17

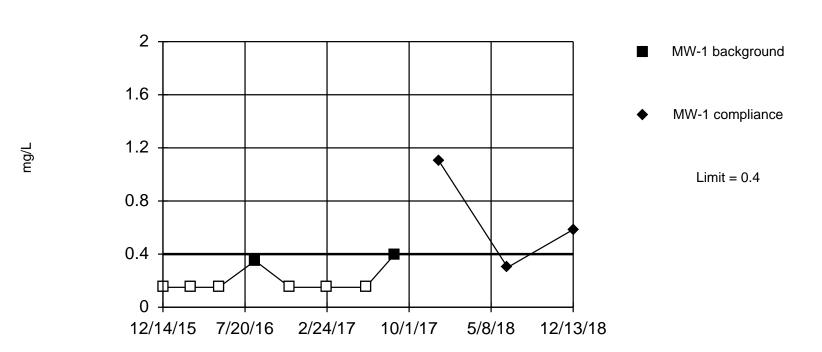

2/24/17

Constituent: Calcium Analysis Run 1/4/2019 11:10 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

Within Limit

Prediction Limit

Intrawell Non-parametric

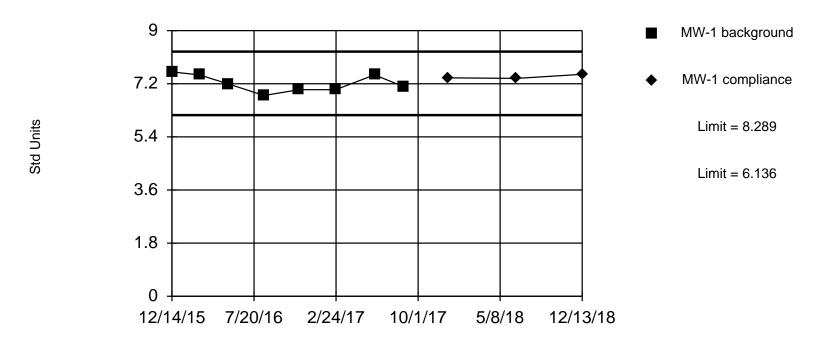

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 8 background values. Report alpha = 0.1111. Most recent point compared to limit. Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Chloride Analysis Run 1/4/2019 11:11 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019 Sanitas[™] v.9.5.32 Software licensed to SCS Engineers. EPA Hollow symbols indicate censored values.

Exceeds Limit

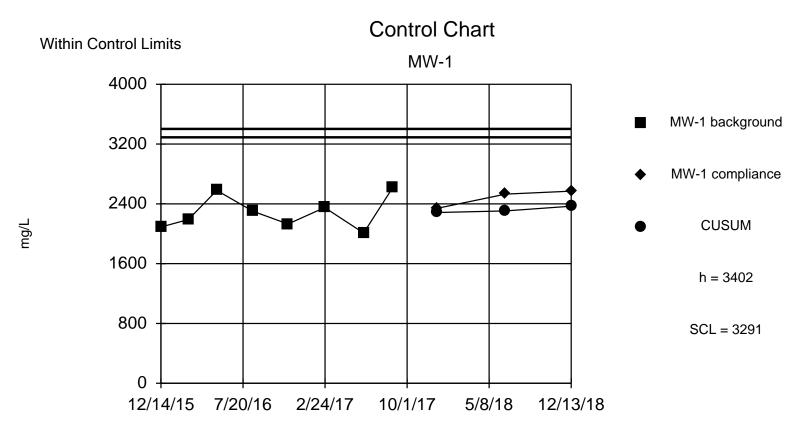
Prediction Limit

Intrawell Non-parametric

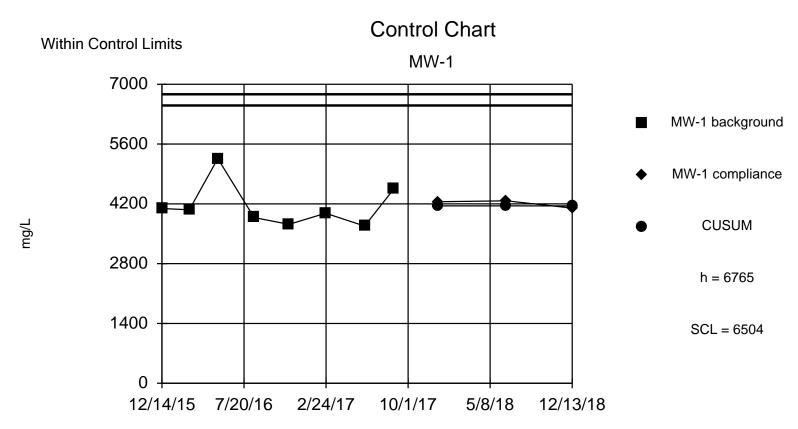


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 75% NDs. Report alpha = 0.1111. Most recent point compared to limit. Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Fluoride Analysis Run 1/4/2019 11:14 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019


Within Limits

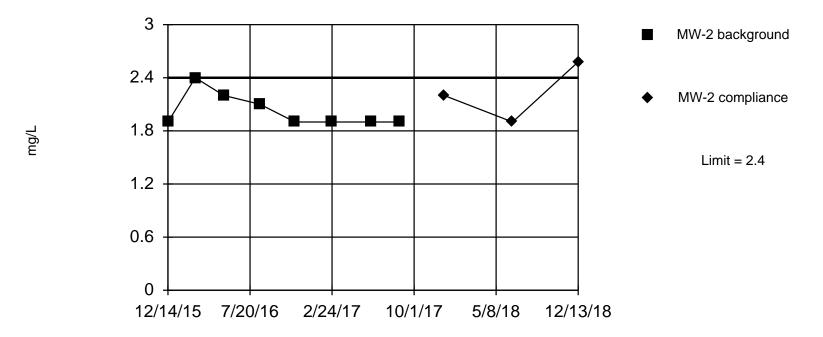
Prediction Limit


Background Data Summary: Mean=7.213, Std. Dev.=0.29, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9179, critical = 0.818. Report alpha = 0.01. Most recent point compared to limit.

Constituent: pH Analysis Run 1/4/2019 11:12 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

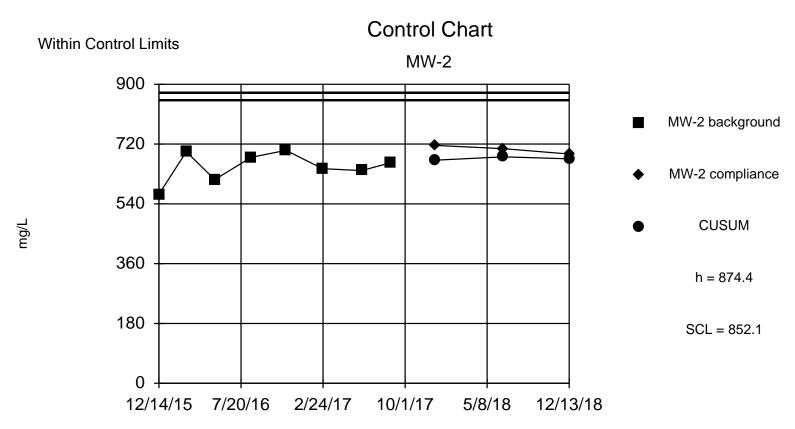
Background Data Summary: Mean=2284, Std. Dev.=223.7, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9231, critical = 0.818. Report alpha = 0.006982. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

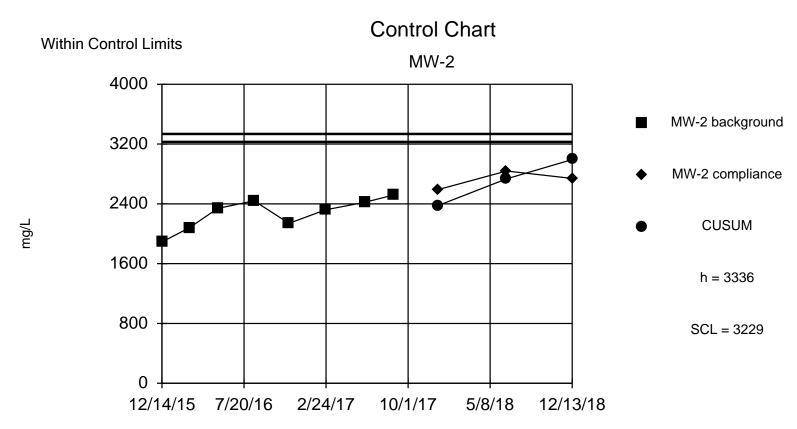
Constituent: Sulfate Analysis Run 1/4/2019 11:13 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019


Background Data Summary: Mean=4153, Std. Dev.=522.5, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8305, critical = 0.818. Report alpha = 0.006982. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

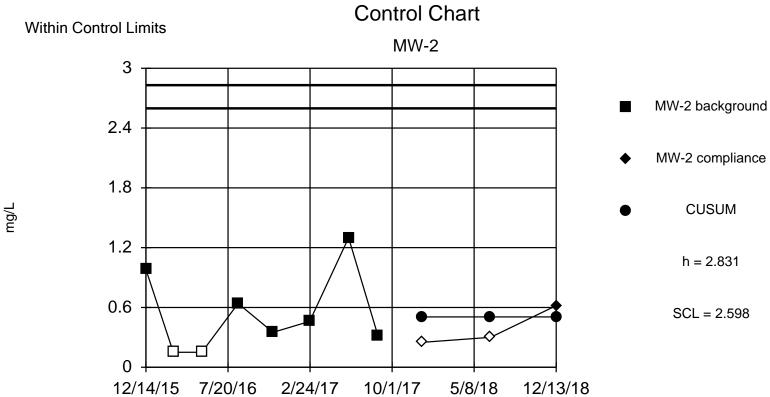
Constituent: Total Dissolved Solids Analysis Run 1/4/2019 11:13 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

Exceeds Limit


Prediction Limit


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 8 background values. Report alpha = 0.1111. Most recent point compared to limit. Insufficient data to test for seasonality: data were not deseasonalized.

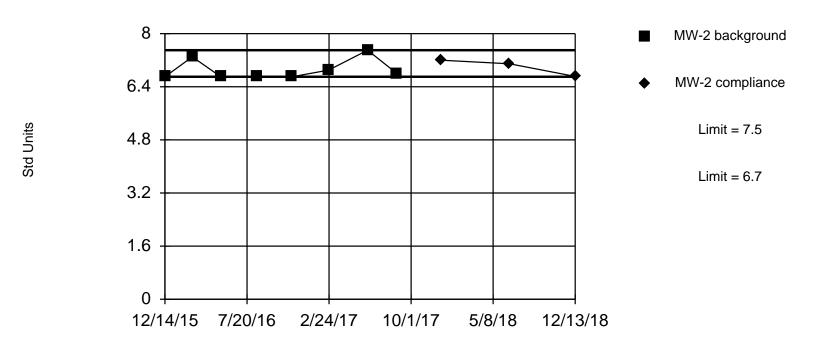
Constituent: Boron Analysis Run 1/4/2019 11:17 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019


Background Data Summary: Mean=651.3, Std. Dev.=44.62, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9396, critical = 0.818. Report alpha = 0.006982. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Calcium Analysis Run 1/4/2019 11:18 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

Background Data Summary: Mean=2269, Std. Dev.=213.4, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9324, critical = 0.818. Report alpha = 0.006982. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

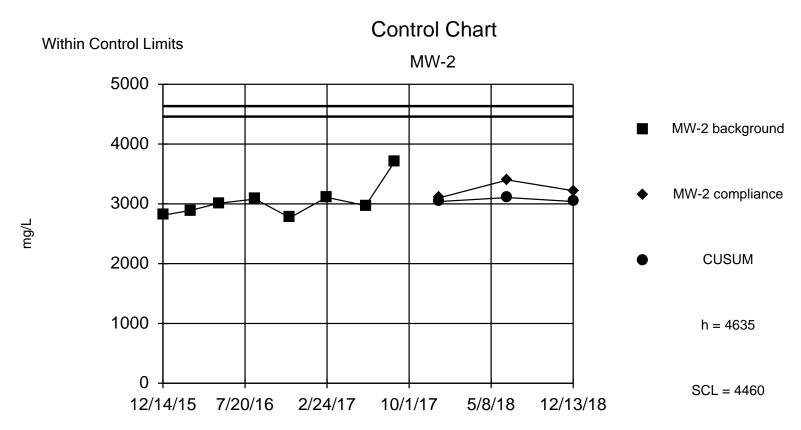
Constituent: Chloride Analysis Run 1/4/2019 11:19 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019 Sanitas[™] v.9.5.32 Software licensed to SCS Engineers. EPA Hollow symbols indicate censored values.



Background Data Summary (after Cohen's Adjustment): Mean=0.5048, Std. Dev.=0.4652, n=8, 25% NDs. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8855, critical = 0.818. Report alpha = 0.006982. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Fluoride Analysis Run 1/4/2019 11:21 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

Within Limits


Prediction Limit

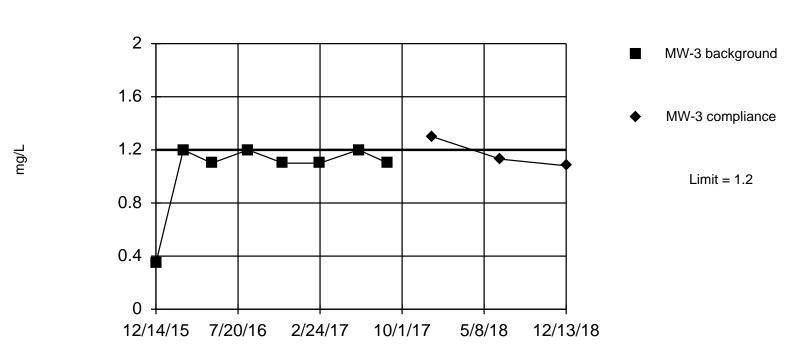
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limits are highest and lowest of 8 background values. Report alpha = 0.2222. Most recent point compared to limit. Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: pH Analysis Run 1/4/2019 11:20 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

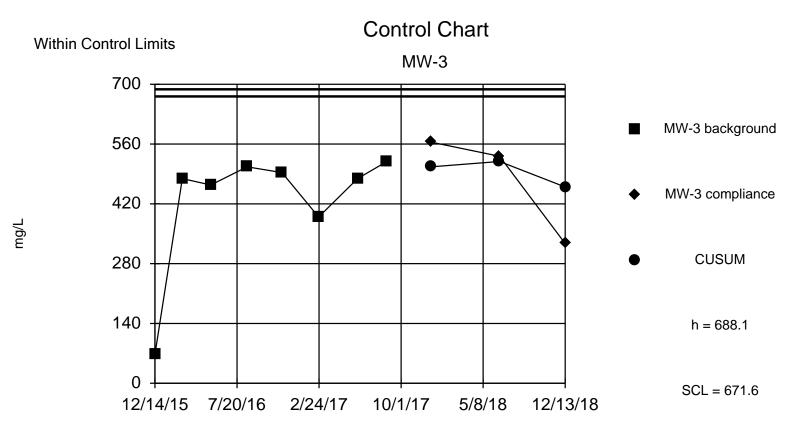
Background Data Summary (based on square root transformation): Mean=55.12, Std. Dev.=2.592, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8189, critical = 0.818. Report alpha = 0.006982. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Sulfate Analysis Run 1/4/2019 11:20 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

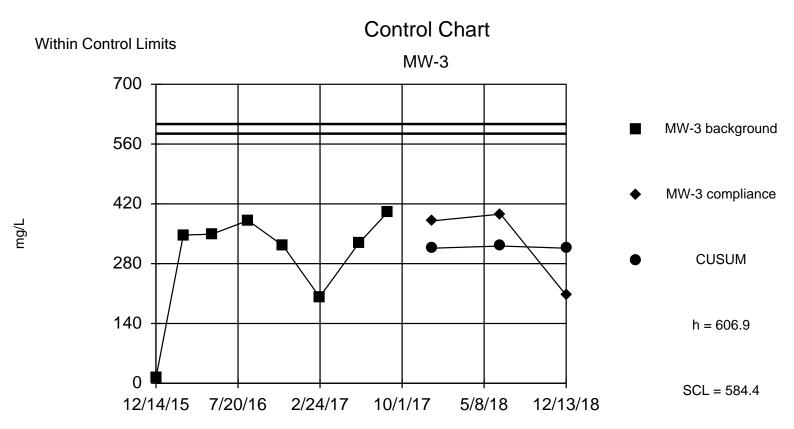

Background Data Summary (based on natural log transformation): Mean=9.163, Std. Dev.=0.1844, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.833, critical = 0.818. Report alpha = 0.006982. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Total Dissolved Solids Analysis Run 1/4/2019 11:21 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

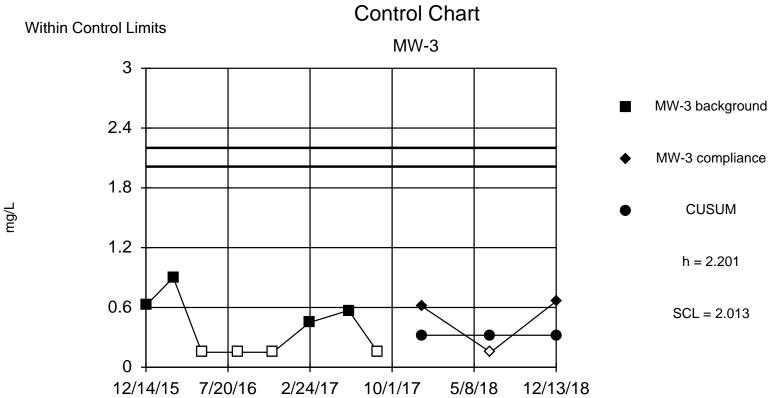
Within Limit


Prediction Limit

Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 8 background values. Report alpha = 0.1111. Most recent point compared to limit. Insufficient data to test for seasonality: data were not deseasonalized.

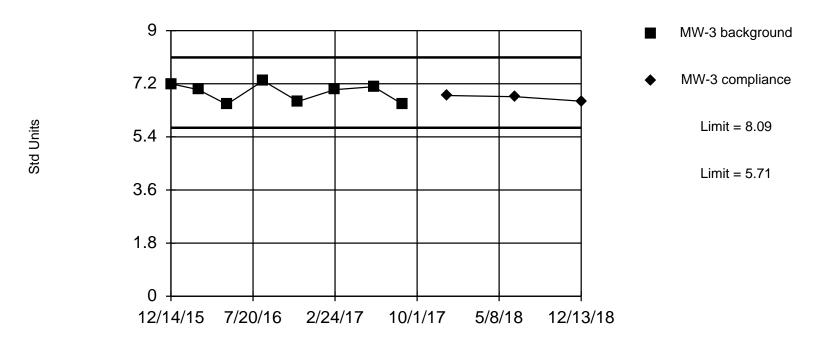
Constituent: Boron Analysis Run 1/4/2019 11:24 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019


Background Data Summary (based on cube transformation): Mean=9.7e7, Std. Dev.=4.6e7, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.828, critical = 0.818. Report alpha = 0.006982. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Calcium Analysis Run 1/4/2019 11:25 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

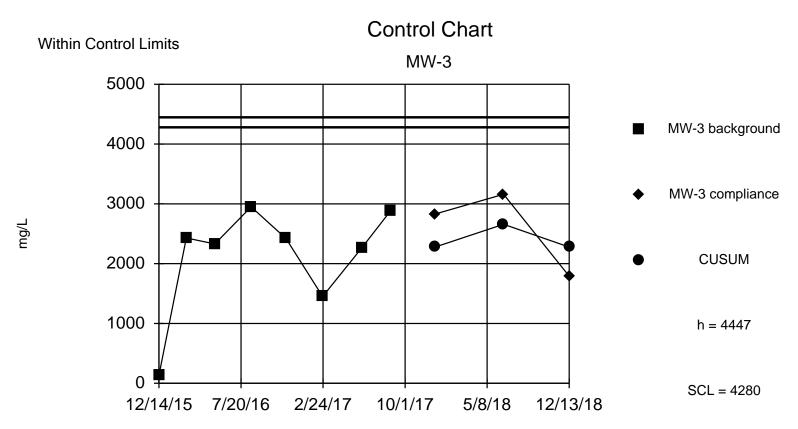
Background Data Summary (based on square transformation): Mean=99968, Std. Dev.=53670, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8926, critical = 0.818. Report alpha = 0.006982. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Chloride Analysis Run 1/4/2019 11:27 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019 Sanitas[™] v.9.5.32 Software licensed to SCS Engineers. EPA Hollow symbols indicate censored values.

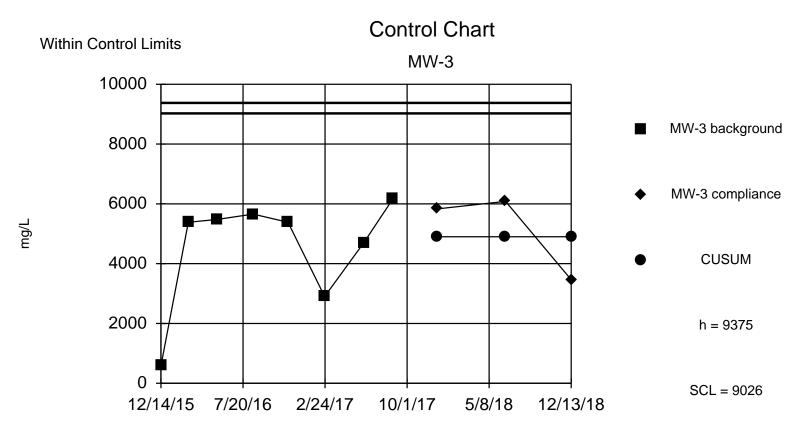


Background Data Summary (after Cohen's Adjustment): Mean=0.3213, Std. Dev.=0.376, n=8, 50% NDs. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8281, critical = 0.818. Report alpha = 0.006982. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

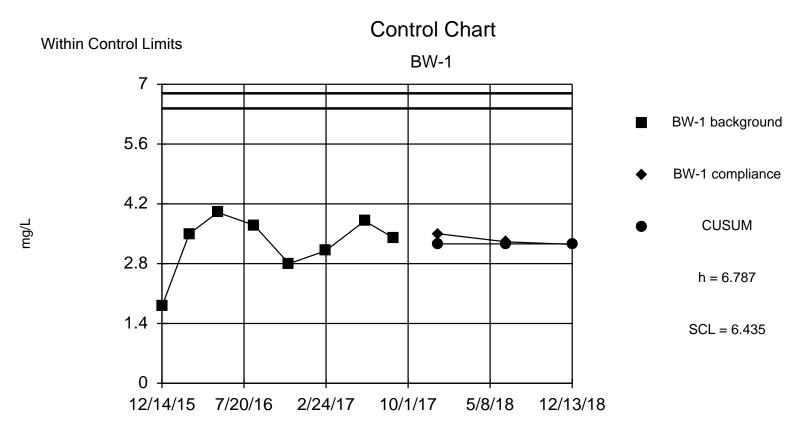
Constituent: Fluoride Analysis Run 1/4/2019 11:37 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019


Within Limits

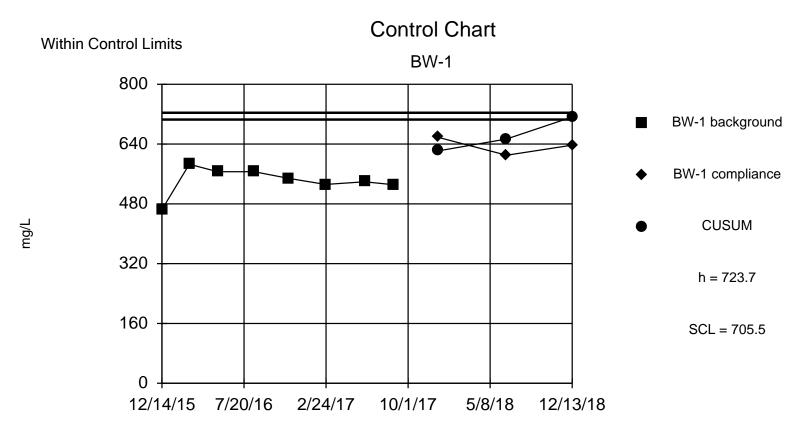
Prediction Limit


Background Data Summary: Mean=6.9, Std. Dev.=0.3207, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8729, critical = 0.818. Report alpha = 0.01. Most recent point compared to limit.

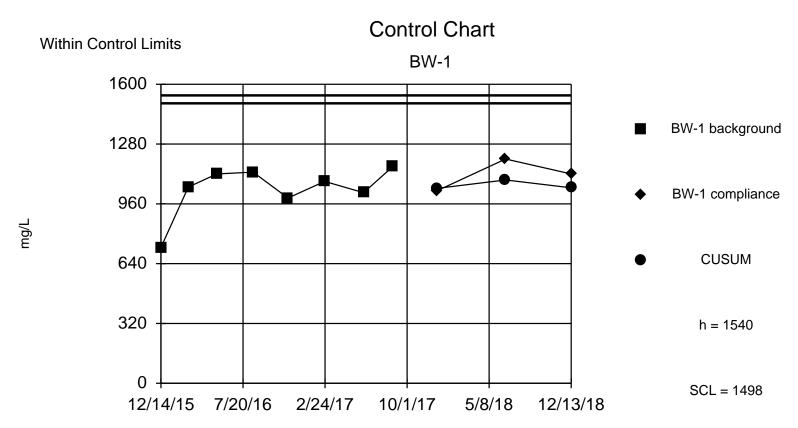
Constituent: pH Analysis Run 1/4/2019 11:27 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019


Background Data Summary (based on square transformation): Mean=5184141, Std. Dev.=2918787, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9173, critical = 0.818. Report alpha = 0.006982. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

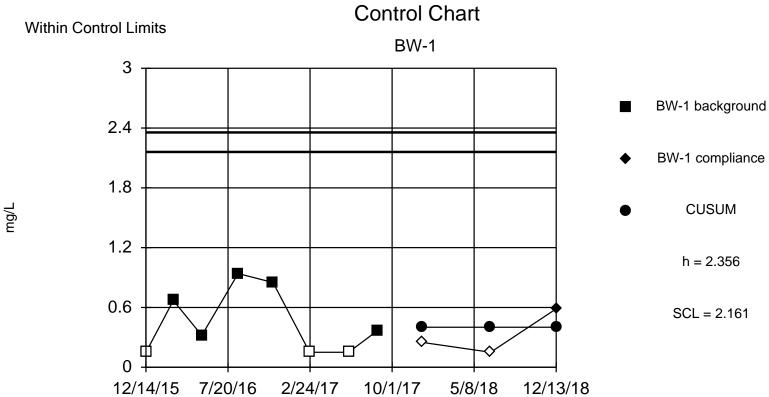
Constituent: Sulfate Analysis Run 1/4/2019 11:32 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019


Background Data Summary (based on square transformation): Mean=2.4e7, Std. Dev.=1.3e7, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8631, critical = 0.818. Report alpha = 0.006982. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Total Dissolved Solids Analysis Run 1/4/2019 11:35 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019


Background Data Summary: Mean=3.263, Std. Dev.=0.705, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8884, critical = 0.818. Report alpha = 0.006982. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Boron Analysis Run 1/4/2019 11:39 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

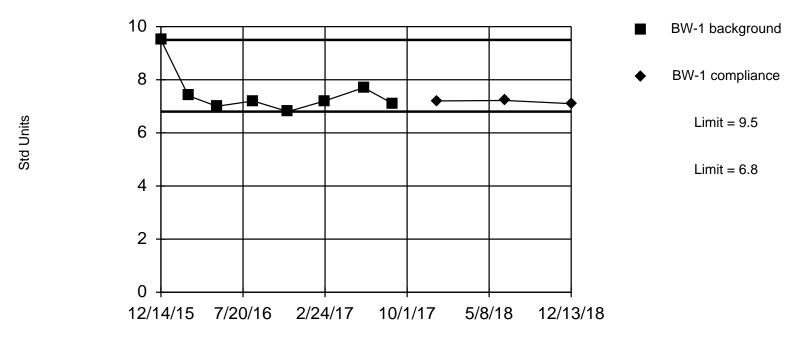

Background Data Summary: Mean=541.6, Std. Dev.=36.41, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.887, critical = 0.818. Report alpha = 0.006982. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Calcium Analysis Run 1/4/2019 11:41 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

Background Data Summary (based on square transformation): Mean=1087101, Std. Dev.=257064, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8544, critical = 0.818. Report alpha = 0.006982. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

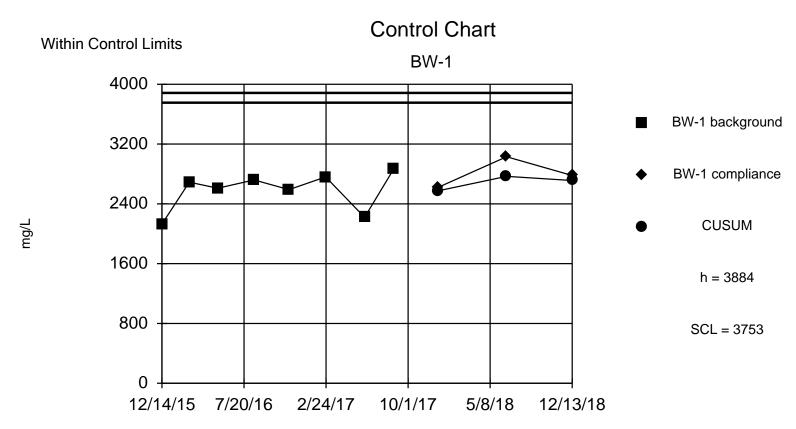
Constituent: Chloride Analysis Run 1/4/2019 11:42 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019 Sanitas[™] v.9.5.32 Software licensed to SCS Engineers. EPA Hollow symbols indicate censored values.

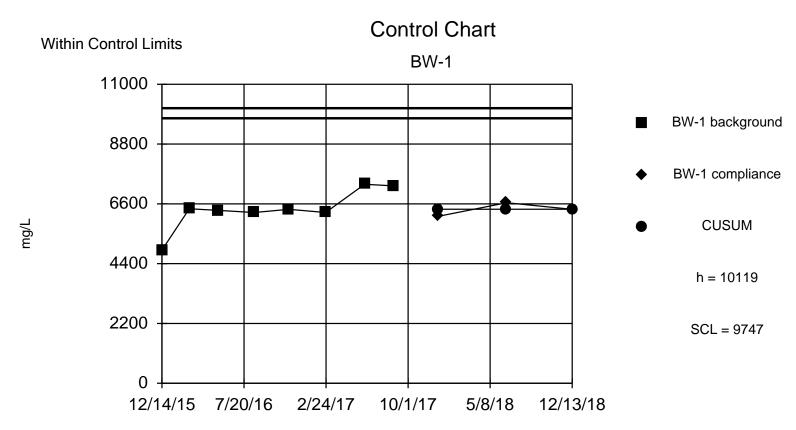



Background Data Summary (after Cohen's Adjustment): Mean=0.4018, Std. Dev.=0.3908, n=8, 37.5% NDs. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8478, critical = 0.818. Report alpha = 0.006982. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Fluoride Analysis Run 1/4/2019 11:45 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

Within Limits


Prediction Limit


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limits are highest and lowest of 8 background values. Report alpha = 0.2222. Most recent point compared to limit. Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: pH Analysis Run 1/4/2019 11:43 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

Background Data Summary: Mean=2574, Std. Dev.=262.1, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8672, critical = 0.818. Report alpha = 0.006982. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Sulfate Analysis Run 1/4/2019 11:44 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

Background Data Summary: Mean=6403, Std. Dev.=743.2, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8391, critical = 0.818. Report alpha = 0.006982. Dates ending 8/24/2017 used for control stats. Standardized h=5, SCL=4.5.

Constituent: Total Dissolved Solids Analysis Run 1/4/2019 11:45 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

APPENDIX F DECEMBER 2018 ALTERNATE SOURCE DEMONSTRATIONS: FLUORIDE IN MW-1 BORON IN MW-2

SCS ENGINEERS

January 31, 2019 SCS Project 16215106.00

Mr. Darryl Sparks Compliance Manager NAES Corporation 2161 Rattlesnake Road Riesel, Texas 76682

Subject: Alternate Source Demonstration for Fluoride in MW-1 and Boron in MW-2 2018 Annual Groundwater Monitoring and Corrective Action Report Sandy Creek Energy Station McLennan County, Texas

Dear Mr. Sparks:

On behalf of the Sandy Creek Energy Station (SCES), SCS Engineers (SCS) is submitting this Alternate Source Demonstration (ASD) in accordance with the site Groundwater Sampling and Analysis Plan (GWSAP) prepared by SCS, dated March 2, 2016, and Coal Combustion Residual Rule (CCR) 40 CFR §257.94(e)(2) for fluoride and boron detections in groundwater monitoring wells MW-1 and MW-2, respectively. During the December 2018 groundwater monitoring event, fluoride was detected in MW-1 at 0.585 mg/L, and boron was detected in MW-2 at 2.58 mg/L. These ASDs are being submitted to demonstrate that the fluoride and boron detections likely result from natural variation in groundwater quality at the site, and are not indicative of impacts from the SCES landfill. In accordance with 40 CFR §257.94(e)(2), these ASDs are being submitted within 90 days of detecting an unconfirmed statistically significant increase (SSI) above background values.

Project Background

SCES is a pulverized coal-fired electric generation facility which operates a landfill for disposal of dry scrubber ash and bottom ash generated during the coal combustion process at the facility. Incidental wastes generated during the operation of the facility may also be disposed in the landfill, as described in the initial registration notification to TCEQ and the most recent version of the Operations Plan for the facility. The landfill is currently comprised of two CCR disposal cells, Cells 1 and 2, which commenced receiving waste in early 2013 and October 2014, respectively. The approximate area of Cells 1 and 2 are 10.0 and 14.3 acres, respectively.

In accordance with 40 CFR §257 Appendix III and IV, the list of constituents for monitoring at SCES includes 18 inorganic compounds, total dissolved solids, radium-226, and radium-228. Currently, all monitoring wells are sampled and analyzed for 40 CFR §257 Appendix III constituents, in accordance with 40 CFR §257.94(a).

December 2018 Fluoride and Boron Detections

Fluoride (0.585 mg/L) and boron (2.58 mg/L) were detected in MW-1 and MW-2, respectively, during the December 2018 semiannual groundwater monitoring event.

Mr. Darryl Sparks January 31, 2019 Page 2

Naturally Occurring Fluoride and Boron in Texas Soils

The Texas Commission on Environmental Quality (TCEQ) Texas-Specific Soil Background Concentration (TSBC) for boron is 30 mg/kg (equivalent mg/L) in soil (see attached TCEQ TSBC guidance). The TCEQ TSBC for fluoride is 190 mg/kg. We note that these naturally-occurring median boron and fluoride concentrations expected in Texas soils are more than an order of magnitude greater than the concentrations that are the subject of this ASD, detected in groundwater on December 13, 2018.

Statistical Analysis

Initial statistical analysis of fluoride in MW-1 and boron in MW-2 included the use of non-parametric prediction limits, using background data collected from only each respective monitoring well. This test is appropriate because the background data pools for fluoride in MW-1 boron in MW-2 are each nonnormally distributed. Therefore, the intrawell statistical limit for each constituent-well pair is represented as the highest of the eight background values from fluoride in MW-1 and boron in MW-2 (see "Intrawell Limit" in Table 1).

Since the December 2018 laboratory results for fluoride in MW-1 and boron in MW-2 exceeded their respective intrawell limits, additional statistical evaluation was performed in accordance with 40 CFR §257.94(e)(2). This additional analysis consisted of calculating interwell parametric prediction limits (see "Interwell Limit" in Table 1 and attachments). This test is commonly used to provide a comparison between a detection in a downgradient monitoring well and a statistical limit derived from background data from one or more upgradient monitoring wells. If the detection falls below the interwell statistical limit, it can be inferred that the detection likely resulted from natural variations in groundwater quality at the site.

MW- ID	ID Constituent Lab Result Intraw		Intrawell Limit	Interwell Limit
MW-1	Fluoride	0.585	0.4	1.187
MW-2	Boron	2.58	2.4	4.679

Table 1 – December 2018 Unconfirmed SSIs (mg/L)

Conclusion

As a result of this analysis comparing upgradient to downgradient data, the interwell statistical limits were raised above the December 2018 laboratory results for fluoride in MW-1 and boron in MW-2, respectively. The constituents appear to be coming from a non-landfill, upgradient source, so no further action is recommended. The detections are most likely a naturally-derived component of the site geology, which can result in a natural variation in groundwater quality.

Mr. Darryl Sparks January 31, 2019 Page 3

Closing

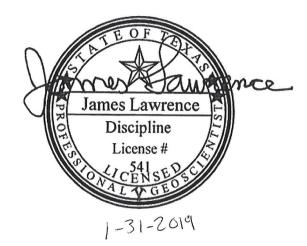
Attached are the interwell statistical graphs and data, as well as the ANOVA calculations demonstrating a lack of significant spatial variation of the constituents between upgradient and downgradient wells.

SCS recommends that the facility remain in detection monitoring, in accordance with 40 CFR §257.94, as these ASDs satisfy the 90-day demonstration period requirement outlined in 40 CFR §257.94(e)(2). Please contact Jim Lawrence at (817) 358-6106 if you have comments or require additional information.

Sincerely,

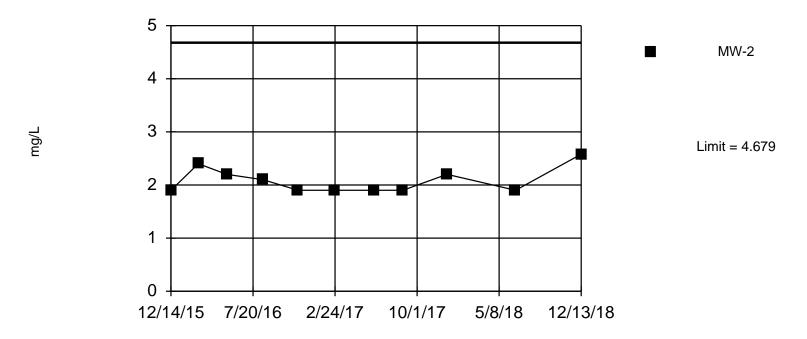
Dayle P Str Brett Della

Doug Steen Staff Professional SCS ENGINEERS TBPE Registration No. F-3407


Attachments:

Brett DeVries, Ph.D., P.E. **Project Engineer** SCS ENGINEERS

James Lawrence


James Lawrence, P.G. **Project Director** SCS ENGINEERS

Interwell Statistical Graphs and Data ANOVA Calculations and Data TCEQ Texas-Specific Soil Background Concentrations Guidance

Within Limit

Prediction Limit

Background Data Summary: Mean=3.263, Std. Dev.=0.705, n=8. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8884, critical = 0.818. Report alpha = 0.05. Most recent point compared to limit.

Constituent: Boron Analysis Run 1/4/2019 3:23 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

Prediction Limit

Constituent: Boron (mg/L) Analysis Run 1/4/2019 3:23 PM

Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

	MW-2	BW-1 (bg)
12/14/2015	1.9	1.8
2/25/2016	2.4	3.5
5/11/2016	2.2	4
8/16/2016	2.1	3.7
11/17/2016	1.9	2.8
2/23/2017	1.9	3.1
6/7/2017	1.9	3.8
8/24/2017	1.9	3.4
12/20/2017	2.2	
6/21/2018	1.9	
12/13/2018	2.58	

Non-Parametric ANOVA

Constituent: Boron Analysis Run 1/4/2019 3:22 PM

Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

For observations made between 12/14/2015 and 12/13/2018, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 7.667

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 2 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 7.425 Adjusted Kruskal-Wallis statistic (H') = 7.667

The contrast test was performed to determine if any compliance group concentration was significantly higher than the background concentration. The contrast test indicates statistical significance in none of the compliance wells.

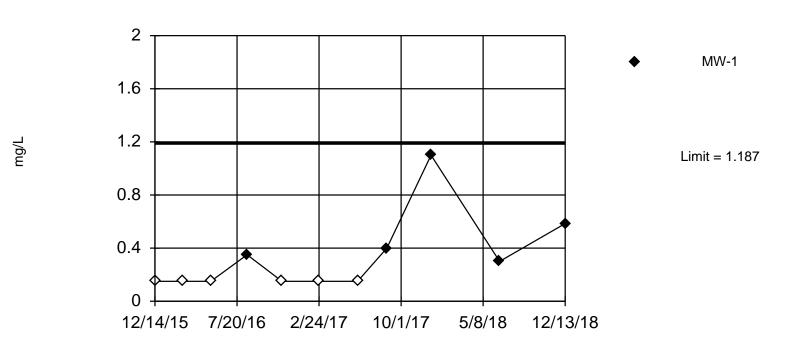
Contrast table:			
Well	Difference	Contrast	Significant?
MW-2	-7.125	4.299	No

The critical (contrast) value was computed with 1 degree of freedom and a 5% error level for each well comparison. (Note: In this case, with Anova indicating differences that are not reflected in the contrast test, it should be concluded that it is the median of the Background data which is significantly higher.)

Non-parametric test used in lieu of parametric anova because Levene's Equality of Variance test failed at the 0.05 alpha level.

Non-Parametric ANOVA

Constituent: Boron (mg/L) Analysis Run 1/4/2019 3:22 PM


Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

	BW-1 (bg)	MW-2
12/14/2015	1.8	1.9
2/25/2016	3.5	2.4
5/11/2016	4	2.2
8/16/2016	3.7	2.1
11/17/2016	2.8	1.9
2/23/2017	3.1	1.9
6/7/2017	3.8	1.9
8/24/2017	3.4	1.9
12/20/2017		2.2
6/21/2018		1.9
12/13/2018		2.58

Sanitas[™] v.9.5.32 Software licensed to SCS Engineers. EPA Hollow symbols indicate censored values.

Within Limit

Prediction Limit

Background Data Summary (after Cohen's Adjustment): Mean=0.4018, Std. Dev.=0.3908, n=8, 37.5% NDs. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8478, critical = 0.818. Report alpha = 0.05. Most recent point compared to limit.

Constituent: Fluoride Analysis Run 1/4/2019 3:20 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

Prediction Limit

Constituent: Fluoride (mg/L) Analysis Run 1/4/2019 3:20 PM

Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

	MW-1	BW-1 (bg)
12/14/2015	<0.3	<0.3
2/25/2016	<0.3	0.67
5/11/2016	<0.3	0.32
8/16/2016	0.35	0.94
11/17/2016	<0.3	0.85
2/23/2017	<0.3	<0.3
6/7/2017	<0.3	<0.3
8/24/2017	0.4	0.37
12/20/2017	1.1	
6/21/2018	0.3	
12/13/2018	0.585	

Parametric ANOVA

Constituent: Fluoride Analysis Run 1/4/2019 3:21 PM

Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

For observations made between 12/14/2015 and 12/13/2018 the parametric analysis of variance test (after natural log transformation) indicates NO VARIATION at the 5% significance level. Because the calculated F statistic is less than or equal to the tabulated F statistic, the hypothesis of a single homogeneous population is accepted.

Calculated F statistic = 0.8061

Tabulated F statistic = 4.45 with 1 and 17 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F	
Between Groups	0.436	1	0.436	0.8061	
Error Within Groups	9.195	17	0.5409		
Total	9.631	18			

The Bonferroni t-Test indicates that NO compliance well mean is significantly higher than the background (see Contrasts Table below). The critical t (contrast) value is 1.74 with 17 degrees of freedom, 1 compliance wells and a 5% error level for each well comparison.

Contrast table:			
Well	Difference	Di	Significant
MW-1	-0.3068	0.5945	No

Where the difference of a Well is greater than the critical (Di) value the hypothesis of a single population should be rejected.

The Shapiro Wilk normality test on the residuals passed after natural log transformation. Alpha = 0.05, calculated = 0.9036, critical = 0.901. Levene's Equality of Variance test passed. Calculated = 0.1807, tabulated = 4.45.

Parametric ANOVA

Constituent: Fluoride (mg/L) Analysis Run 1/4/2019 3:21 PM

Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.4.2019

		MW-1	BW-1 (bg)
1	2/14/2015	<0.3	<0.3
2	/25/2016	<0.3	0.67
5	/11/2016	<0.3	0.32
8	/16/2016	0.35	0.94
1	1/17/2016	<0.3	0.85
2	/23/2017	<0.3	<0.3
6	/7/2017	<0.3	<0.3
8	/24/2017	0.4	0.37
1	2/20/2017	1.1	
6	/21/2018	0.3	
1	2/13/2018	0.585	

Texas-Specific Soil Background Concentrations milligrams per kilogram (mg/kg) ¹				
Metal	Median Background Concentration (mg/kg)			
Aluminum	30,000			
Antimony	1			
Arsenic	5.9			
Barium	300			
Beryllium	1.5			
Boron	30			
Total Chromium	30			
Cobalt	7			
Copper	15			
Fluoride	190			
Iron	15,000			
Lead	15			
Manganese	300			
Mercury	0.04			
Nickel	10			
Selenium	0.3			
Strontium	100			
Tin	0.9			
Titanium	2,000			
Thorium	9.3			
Vanadium	50			
Zinc	30			

¹ Source: "Background Geochemistry of Some Rocks, Soils, Plants, and Vegetables in the Conterminous United States", by Jon J. Connor, Hansford T. Shacklette, et al., Geological Survey Professional Paper 574-F, US Geological Survey.

2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

SCS ENGINEERS

January 31, 2020 SCS Project No. 16218157.00

Mr. Darryl Sparks Compliance Manager NAES Corporation 2161 Rattlesnake Road Riesel, Texas 76682

Subject: Sandy Creek Energy Station McLennan County, Texas 2019 Annual Groundwater Monitoring and Corrective Actions Report Submittal

Dear Mr. Sparks:

SCS Engineers (SCS) is pleased to submit the December 2019 Annual Groundwater Monitoring and Corrective Actions Report to the Sandy Creek Energy Station (SCES), in accordance with Title 40, Code of Federal Regulation (CFR) Part §257.105(h)(6), and the site Groundwater Sampling and Analysis Plan (GWSAP), prepared by SCS, dated March 2, 2016.

Please contact James Lawrence at (817) 358-6106 if you have comments or require additional information.

Sincerely,

Jun Mills Brett Della

Tyson Milbrand Staff Professional SCS ENGINEERS TBPE Registration No. F-3407 Brett DeVries, Ph.D., P.E. Project Professional SCS ENGINEERS

James Lawrence, P.G. Project Director SCS ENGINEERS

Attachment: 2019 Annual Groundwater Monitoring and Corrective Actions Report

1901 Central Dr., Ste. 550, Bedford, TX 76021 | 817-571-2288 | eFax 817-571-2188 🥁

2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

Sandy Creek Energy Station McLennan County, Texas

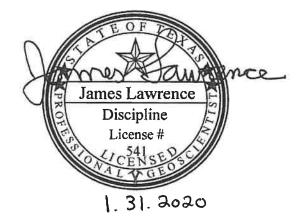
Prepared For:

Sandy Creek Energy Station 2161 Rattlesnake Road Riesel, Texas 76682

SCS Project 16218157.00 | January 31, 2020

1901 Central Drive, Suite 550 Bedford, TX 76021 817-571-2288

Table of Contents


Sect	ion	Paç	ge
1.0	Intro	duction and Background	1
2.0	Grou	Indwater Monitoring Summary	2
	2.1	Groundwater Monitoring System	2
	2.2	Summary of 2019 Sampling Events	2
3.0	Resu	ults and Statistical Analysis	3
4.0 G	iroun	dwater Flow Rate And Direction Calculations	5
5.0 R	lecon	nmendations	6

Figures

Figure 1.	Monitoring Well Location Map	7
-----------	------------------------------	---

Appendices

- Appendix A: 2019 Groundwater Monitoring Field Forms
- Appendix B: 2019 Laboratory Report with Chain of Custody
- Appendix C: Historical Analytical Data
- Appendix D: Time Series Graphs
- Appendix E: Alternate Source Demonstrations

SCES - 2019 Annual Groundwater Monitoring and Corrective Action Report

www.scsengineers.com

Page i

1.0 INTRODUCTION AND BACKGROUND

SCS Engineers (SCS) is submitting this 2019 Annual Groundwater Monitoring and Corrective Action Report for the Sandy Creek Energy Station (SCES). This report is submitted in accordance with Coal Combustion Residual Rule (CCR) 40 CFR §257.105(h)(6) and the site Groundwater Sampling and Analysis Plan (GWSAP) prepared by SCS, dated March 2, 2016. This report includes results for two semiannual detection monitoring events, conducted in June 2019 and December 2019.

SCES is a pulverized coal-fired electric generation facility which operates a landfill for disposal of dry scrubber ash and bottom ash generated during the coal combustion process at the facility. Incidental wastes generated during the operation of the facility may also be disposed in the landfill, as described in the initial registration notification to TCEQ and the most recent version of the Operations Plan for the facility. The landfill is currently comprised of two CCR disposal cells, Cells 1 and 2, which commenced receiving waste in early 2013 and October 2014, respectively. The approximate area of Cells 1 and 2 are 10.0 and 14.3 acres, respectively.

Sampling of groundwater monitoring wells is conducted in accordance with 40 CFR §257.93 and the GWSAP. Initial monitoring of four wells (MW-1, MW-2, MW-3, and BW-1; as depicted on **Figure 1**) was performed for eight consecutive quarters in accordance with 40 CFR §257.94(b) (i.e., eight independent samples were collected for each well). The initial monitoring described above commenced in December 2015 and was completed in August 2017. The constituents monitored during the required background monitoring period and the first semiannual detection monitoring event included 18 inorganic compounds, total dissolved solids, radium-226, and radium-228, while the constituents monitored in subsequent events and during the December 2019 semiannual detection monitoring event included Appendix III constituents only, in accordance with 40 CFR §257.

2.0 GROUNDWATER MONITORING SUMMARY

2.1 GROUNDWATER MONITORING SYSTEM

The current groundwater monitoring system at the SCES landfill consists of four wells (see **Table 1** below). One upgradient (BW-1) and three downgradient (MW-1, MW-2, & MW-3). All four wells are currently in detection monitoring. **Figure 1** shows monitoring well locations at SCES.

Well Name (U/D) ¹	Completion Date	Status	Top of Casing Elevation (ft msl)²	Well Depth (ft bgs) ²	Screen Interval (ft bgs) ²	Water Level Elevation (ft msl on 12/10/2019)
MW-1 (D)	9/21/2015	Detection	465.87	34.23	23.90 - 33.90	453.99
MW-2 (D)	9/23/2015	Detection	442.15	19.63	9.30 - 19.30	430.19
MW-3 (D)	9/1/2010	Detection	430.06	16.23	5.98 - 15.98	419.87
BW-1 (U)	9/22/2015	Detection	485.57	38.63	28.30 - 38.30	467.39

Table 1. Sandy Creek Energy Station Groundwater Monitoring System

¹ (U) = upgradient, (D) = downgradient; ² Top of Casing Elevation, Well Depth, and Screen Interval information obtained from Table 1 – Monitoring Well and Piezometer Construction Details and Groundwater Elevations prepared by Geosyntec Consultants, dated March 11, 2016; **ft msl** = feet above mean sea level; **ft bgs** = feet below ground surface

2.2 SUMMARY OF 2019 SAMPLING EVENTS

All sampling events followed the groundwater sampling and laboratory analysis procedures outlined in the GWSAP. A duplicate sample was collected from one well during each event for Quality Assurance & Quality Control (QA/QC) purposes. All monitoring wells were sampled and analyzed for 40 CFR §257 Appendix III constituents, in accordance with 40 CFR §257.94(a).

June 2019 – Semiannual Detection Monitoring Event

All four wells (MW-1, MW-2, MW-3, and BW-1) were purged and sampled on June 24, 2019 using the conventional purge and sampling method with disposable PVC bailers. The results of the sampling were provided to the SCES in a report dated September 6, 2019. Field forms and laboratory results are provided in **Appendices A** & **B**, respectively, and summarized in **Table 2**.

December 2019 – Semiannual Detection Monitoring Event

All four wells (MW-1, MW-2, MW-3, and BW-1) were purged and sampled on December 10, 2019 using the conventional purge and sampling method with disposable PVC bailers. Field forms and laboratory results are provided in **Appendices A** & **B**, respectively, and summarized in **Table 2**.

SCES - December 2019 Semiannual Groundwater Monitoring Report www.scsengineers.com

3.0 RESULTS AND STATISTICAL ANALYSIS

A summary of June 2019 and December 2019 laboratory results and statistical limits in each wellconstituent pair is provided in **Table 2**. Time series graphs of Appendix III constituent concentrations are provided in **Appendix D**. Statistical limits were determined in accordance with 40 CFR §257.93(fg) and the GWSAP using the software program Sanitas®. Statistical limits were determined in the 2017 Annual Groundwater Monitoring and Corrective Action report, and were presented using Shewhart-CUSUM control charts, non-parametric prediction limits, or parametric prediction limits as deemed appropriate by background data distributions. EPA primary drinking water Maximum Contaminant Levels (MCLs) are also presented in **Table 2** for comparison to current data.

MW-ID	Constituent	Lab Results June 2019	Lab Results Dec 2019	MCL	Statistical Limit*
	Boron (mg/L)	1.1	1.10	n/a	2.6
ĺ	Calcium (mg/L)	492	534	n/a	1030
	Chloride (mg/L)	169	192	n/a	402
MW-1	pH at 25°C	7.2	7.43	n/a	6.136 - 8.289
Ì	Sulfate (mg/L)	2430	2420	n/a	3402
ĺ	TDS (mg/L)	4030	3720	n/a	6765
Ì	Fluoride (mg/L)	0.73	0.236	4	0.4
	Boron (mg/L)	1.7	1.48	n/a	2.4
	Calcium (mg/L)	656	660	n/a	874.4
	Chloride (mg/L)	2420	2180	n/a	3336
MW-2	pH at 25°C	7.0	6.93	n/a	6.7 - 7.5
Ì	Sulfate (mg/L)	3480	2620	n/a	4635
	TDS (mg/L)	9560	8120	n/a	23969
	Fluoride (mg/L)	<0.18	0.229	4	2.831
	Boron (mg/L)	0.99	1.26	n/a	1.2
MW-3	Calcium (mg/L)	452	572	n/a	688.1
Ì	Chloride (mg/L)	306	345	n/a	606.9
	pH at 25°C	6.6	6.67	n/a	5.71 - 8.09
	Sulfate (mg/L)	3130	3140	n/a	4447
	TDS (mg/L)	5740	5830	n/a	9375
	Fluoride (mg/L)	<0.18	0.137	4	2.201

Table 2. Sandy Creek Energy Station 2019 Sampling Results and Statistical Limits

SCES - December 2019 Semiannual Groundwater Monitoring Report www.scsengineers.com

Page 3

MW-ID	Constituent	Lab Results June 2019	Lab Results Dec 2019	MCL	Statistical Limit*
	Boron (mg/L)	3.1	2.98	n/a	6.787
-	Calcium (mg/L)	564	591	n/a	723.7
	Chloride (mg/L)	1160	1150	n/a	1540
BW-1	pH at 25°C	7.1	7.11	n/a	6.8 - 9.5
	Sulfate (mg/L)	2930	2830	n/a	3884
	TDS (mg/L)	6380	6300	n/a	10119
	Fluoride (mg/L)	0.90	0.390	4	2.356

Table 2. Sandy Creek Energy Station 2019 Sampling Results and Statistical Limits

* Calculated in 2017 Annual Report

No constituents were detected in any wells or Quality Assurance/Quality Control (QA/QC) samples at concentrations exceeding federally-promulgated maximum concentration limits (MCLs) in 2019. Unconfirmed statistically significant increases (SSI) were determined for fluoride in MW-1 (June 2019) and boron in MW-3 (December 2019). In accordance with 40 CFR §257.94(e), alternate source demonstrations (ASDs) are provided in **Appendix E**.

4.0 GROUNDWATER FLOW RATE AND DIRECTION CALCULATIONS

In accordance with 40 CFR Part §257.93(c), the groundwater flow rate and direction in the uppermost aquifer in the area of the existing groundwater monitoring wells were calculated.

Flow Rate Calculation Using December 2019 Data

Va = \underline{KI} (Driscoll, 1986, Groundwater and Wells) 7.5N

Where:

Va = Actual Velocity of Groundwater Flow (ft/day) K = Hydraulic Conductivity (gpd/ft²)

- I = Hydraulic Gradient (ft/ft)
- N = Effective Porosity (%)

Then:

 $K = 2.0 \times 10^{-4} \text{ cm/sec}$ (geometric mean hydraulic conductivity obtained from slug tests performed by Geosyntec in 2010)

Find K equivalent in units of gpd/ft²:

 $(1 \text{ cm/sec} = 21,200 \text{ gallons/day/ft}^2)$

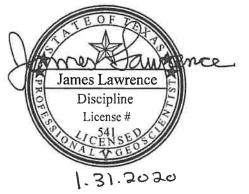
2.0 x 10⁻⁴ cm/sec x 21,200 gallons/day/ft² = 4.24 gpd/ft²

Find I: <u>BW-1 elevation – MW-3 elevation</u>: <u>467.39 ft – 419.87 ft</u> = 0.0202 ft/ft distance between wells: 2,350 ft

= 0.0202 ft/ft (ave. gradient across the site, from December 2019 water levels)

N = 6% (representative effective porosity for clay from Morris and Johnson, 1967)

Therefore:


Va = $\frac{4.24 \text{ gpd/ft}^2 \text{ x} (0.0202 \text{ ft/ft})}{7.5 (0.06)} = 0.191 \text{ ft/day}$

(0.191 ft/day)(365 days/year) = 69 ft/year

Conclusion

The December 2019 site groundwater flow rate is **69 ft/year**. The gradient was measured using BW-1 and MW-3. The December 2019 groundwater flow direction is to the west-southwest. The groundwater flow rate and direction are consistent with conditions previously observed at the site. See the attached groundwater gradient map for details, provided in accordance with 40 CFR Part §257.93(c).

SCES - December 2019 Semiannual Groundwater Monitoring Report

5.0 RECOMMENDATIONS

As outlined in the attached ASDs for fluoride in MW-1 and boron in MW-3, no confirmed SSIs were identified for any Appendix III constituents during 2019 detection monitoring at the SCES. SCS recommends that the facility remain in semiannual detection monitoring, in accordance with 40 CFR §257.94.

Due to the lack of confirmed SSIs for Appendix III constituents during 2019 detection monitoring, the facility will continue monitoring for all constituents listed in 40 CFR §257 Appendix III during semiannual groundwater monitoring events, in accordance with 40 CFR §257.94(a). The Appendix IV constituent list will be analyzed if any confirmed statistical exceedances of the Appendix III list are indicated in future events. The next planned groundwater monitoring event is a semiannual detection monitoring event scheduled for June 2020.

SCES - December 2019 Semiannual Groundwater Monitoring Report www.scsengineers.com

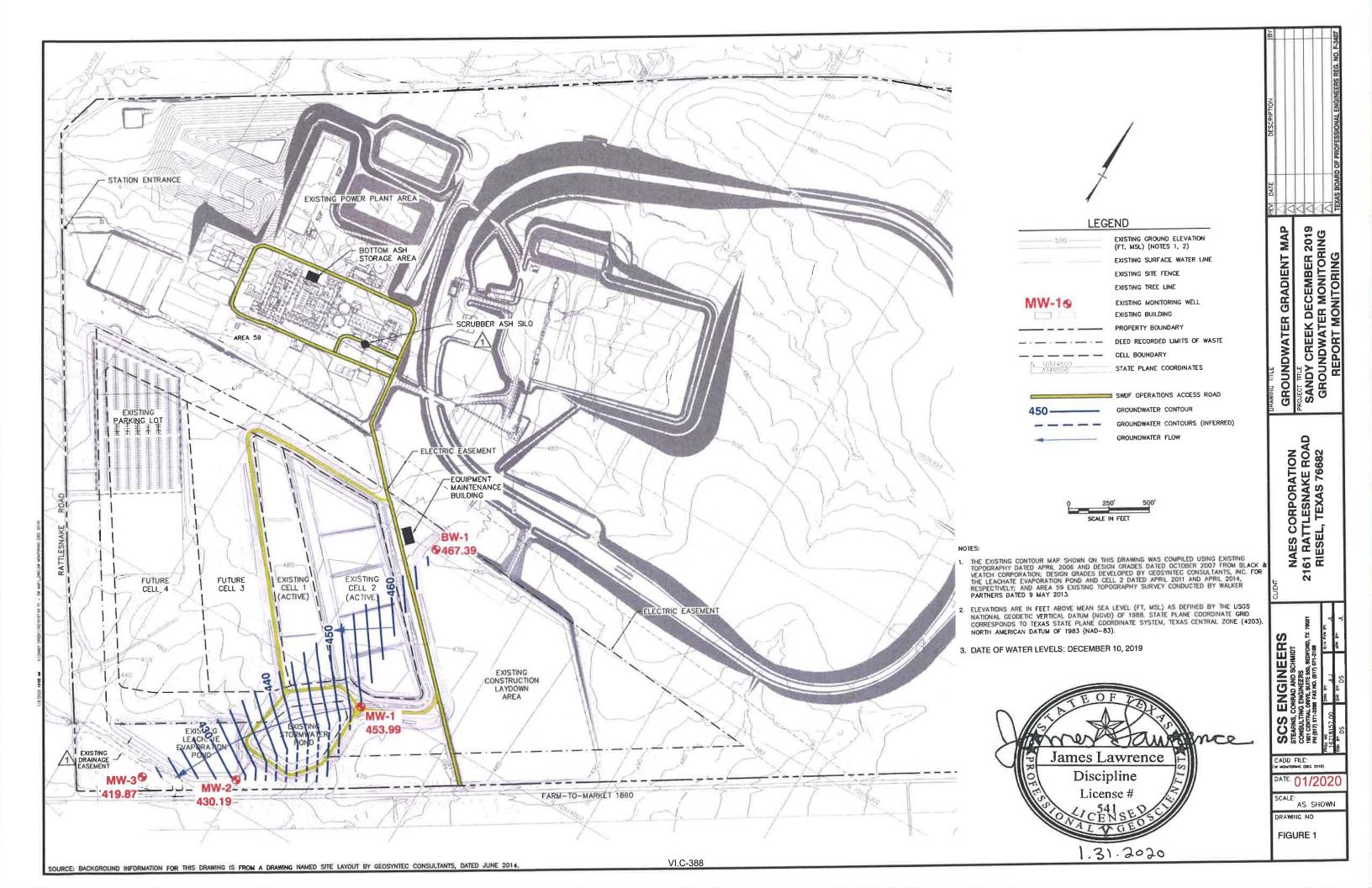

Page 6

Figure 1. Monitoring Well Location Map

SCES - December 2019 Semiannual Groundwater Monitoring Report

Page 7

Appendix A

2019 Groundwater Monitoring Field Forms

SCES - December 2019 Semiannual Groundwater Monitoring Report

www.scsengineers.com

MI. Projects \ 16218157.00 \ Correspondence \ R01312020 Sandy Creek Dec 2019 Annual Groundwater Monitoring and Corrective Action Report dock

Facility name:	Sandy Creek Energy Station
Permittee:	Sandy Creek Energy Associates, L.P.
County:	McLennan

1.	Facility Type:	Power Station
2.	Monitor well no.:	MW-1
З.	Date of sampling:	6/24/2019

Name of sampler:	Doug Steen
Affiliation of sampler:	SCS Engineers
If split sampled, with whom?	N/A
Integrity of well:	Good
Installation date: 9/21/2015	

Most recent previous sampling:	12/13/2018
Date of water level measuremen	its: 6/24/2019
Datum reference point:To	p of Casing
Datum elevation*:4	65.87
Depth to water(below datum)*:	10.49
4. Water level elevation*:	455.38

- Resample

or 📕 C

16. **III** mS/cm

20. 🔳 NTU

5. Purging/Sampling method: _____Bailer ____(Enter bailer or pump) 11. Sample event: Detection - Background - Corrective Action Were low-flow methods used? 🔲 yes I no (check one) - Other - Detection If yes, what volume was purged? N/A gal. - Assessment 6. Well volumes purged: 2.0 12. Sample schedule: Semi-Annual 7. Was the well dry before purging? yes m no (check one) 8. Was the well dry after purging? I yes 🗆 no (check one) - Quarterly - Fourth Year - Semi-Annual - Other 9. How long before sampling? 2 10. Unit of measure? _____hours ____ (Enter value as days, hours, or mins.) - Annual 13. Sample type: Regular - Regular - Split - Duplicate - Other

Field Measurements:

14. pH	7.22
15. Spec. cond.	4.142
17. Temp.	22.90
19. Turbidity	21.58

Laboratory:

21. Name

Address:

Pace Analytical Services, Inc. 400 W. Bethany Drive, Suite 190, Allen, TX 75013 Phone: (972) 727-1123

(check one)

Facility name:	Sandy Creek Energy Station
Permittee:	Sandy Creek Energy Associates, L.P.
County:	McLennan

1. Facility Type:	Power Station
2. Monitor well no.:	MW-2
3. Date of sampling:	6/24/2019

Most recent previous sampling: 12/13/2018 Date of water level measurements: 6/24/2019 Datum reference point: Top of Casing

Name of sampler:	Doug Steen	
Affiliation of sampler:	SCS Engineers	-
If split sampled, with whom?	N/A	-
Integrity of well:	Good	e
Installation date: 9/23/2015		-

Integrity of well:	Good		Datum elevation*:	4	42.15
Installation date: 9	/23/2015		Depth to water(below	datum)*:	9.87
			4. Water level elevation	on*:	432.28
5. Purging/Samp	ling method:Bailer	(Enter bailer or pump)	11. Sample event: De	etection	
Were low-flow	methods used? 🔲 yes 🔳	no (check one)	- Backgrou	und - Co	rrective Action
If yes, what	volume was purged? N/A	gal.	- Detection	n - Otl	her
6. Well volumes j	ourged:		- Assessm	ent	
7. Was the well d	ry before purging? 🔲 yes 🔳	no (check one)	12. Sample schedule:	Semi-Ar	inual
8. Was the well d	ry after purging? 🔳 yes 🛛	no (check one)	- Quarterly	- Fo	urth Year
9. How long befo	re sampling? 2		- Semi-Ani	nual - Otl	her
10. Unit of measur	e? hours (Enter valu	e as days, hours, or mins.)	- Annual		
			13. Sample type: <u>Re</u>	gular	
			- Regular	- Sp	lit
			- Duplicate	e - Otl	her
Field Measureme	nts:		- Resample	e	
	14. pH	6.87			
	15. Spec. cond	10.77	16. 🔳 mS/cm		
	17. Temp.	21.05	18. 🗋 F or 🔳	C (che	ck one)
	19. Turbidity	9.87	20. 🔳 NTU		

Laboratory:

21. Name

Pace Analytical Services, Inc. 400 W. Bethany Drive, Suite 190, Allen, TX 75013 Address:

Phone: (972) 727-1123

Facility name:	Sandy Creek Energy Station
Permittee:	Sandy Creek Energy Associates, L.P.
County:	McLennan

1. Facility Type:	Power Station		
2. Monitor well no.:	MW-3		
3. Date of sampling:	6/24/2019		

Name of sampler:	Doug Steen	_
Affiliation of sampler:	SCS Engineers	
If split sampled, with whom?	N/A	_
Integrity of well:	Good	_
Installation date: 9/1/2010		

Most recent previous sampling	g: <u>12/13/2018</u>
Date of water level measurem	ents: 6/24/2019
Datum reference point:	Top of Casing
Datum elevation*:	430.06
Depth to water(below datum)'	7.06
4. Water level elevation*:	423.00

5	Purging/Sampling method:Bailer(Enter bailer or	oump) 11. Sample event: Detection
0.	Were low-flow methods used? yes mono (check one	
	If yes, what volume was purged? <u>N/A</u> gal.	- Detection - Other
6.		- Assessment
7.	Was the well dry before purging? yes no (check one) 12. Sample schedule: Semi-Annual
8.	and the second sec	
	How long before sampling? 2	- Semi-Annual - Other
). Unit of measure? hours (Enter value as days, hou	s, or mins.) - Annual
		13. Sample type: Regular
		- Regular - Split
		- Duplicate - Other
Fie	ield Measurements:	- Resample
	14. pH6.70	
	15. Spec. cond 5.659	16. 🔳 mS/cm
	17. Temp. 20.89	18. 🔲 F or 🔳 C (check one)
	19. Turbidity 10.3	20. M NTU
La	aboratory:	
	21. Name Pace Analytical Services, Inc.	Phone: (972) 727-1123

* Report depth to water and elevations to nearest 0.01 foot relative to mean sea level (msl).

Address:

400 W. Bethany Drive, Suite 190, Allen, TX 75013

Facility name:	Sandy Creek Energy Station		 Facility Type: 	Power Station
Permittee:	Sandy Creek Energy Associate	es, L.P.	2. Monitor well no .:	BW-1
County:	McLennan		3. Date of sampling:	6/24/2019
Name of sample Affiliation of sar If split sampled,	npler: SCS Engineers with whom? N/A	Steen	Date of water level n Datum reference poi	e sampling: <u>12/13/2018</u> neasurements: <u>6/24/2019</u> nt: <u>Top of Casing</u>
Integrity of well:			Datum elevation*:	
Installation date	e: <u>9/22/2015</u>			v datum)*: 18.20 ion*: 467.37
Were low-fli If yes, w 6. Well volume 7. Was the we 8. Was the we 9. How long b		no (check one)	 11. Sample event: <u>D</u> Backgro Detectio Assessi 12. Sample schedule Quarter Semi-Annual 13. Sample type: R 	ound - Corrective Action on - Other ment e: <u>Semi-Annual</u> ly - Fourth Year nnual - Other
			- Regular	
			- Duplica	te - Other
Field Measure	ments:		- Resamp	ble
	14. pH	7.21		
	15. Spec. cond.	7.319	16. 🔳 mS/cm	
	17. Temp.	22.10		C (check one)
	19. Turbidity	157	20. 🔳 NTU	
Laboratory:			_	(070) 707 4400
21. Na			Р	hone: (972) 727-1123
Ad	dress: 400 W. Bethany Drive	e, Suite 190, Allen, TX 75013		

Facility name:	Sandy Creek Energy Station		 Facility Type: 	Power Station
Permittee:	Sandy Creek Energy Associates, L.P.		2. Monitor well no .:	DUP
County:	McLennan		3. Date of sampling:	6/24/2019
Name of sample	er: Doug Steen];	Most recent previous	s sampling N/A
Affiliation of sar	npler: SCS Engineers		Date of water level n	neasurements: N/A
If split sampled,	with whom? N/A		Datum reference poi	int: Top of Casing
Integrity of well:	N/A		Datum elevation*:	N/A
Installation date			Depth to water(below	v datum)*: N/A
			4. Water level elevat	lion*: N/A
5. Purging/Sar	npling method: <u>N/A</u> (Enter baile	er or pump)	11. Sample event: <u>D</u>	Detection
Were low-fl	ow methods used? 🔲 yes 🔲 no (check	cone)	- Backgro	ound - Corrective Action
lf yes, w	hat volume was purged? <u>N/A</u> gal.		- Detectio	on - Other
6. Well volume	es purged: <u>N/A</u>		- Assessr	ment
7. Was the we	Il dry before purging? ⊡yes □ no (check	one)	12. Sample schedule	e: Semi-Annual
8. Was the we	ll dry after purging? 📑 yes 🔲 no (check	(one)	- Quarter	ly - Fourth Year
9. How long be	efore sampling? <u>N/A</u>		- Semi-Ar	nnual - Other
10. Unit of mea	sure?N/A (Enter value as days,	hours, or mins.)	- Annual	
			13. Sample type: D	Juplicate
			- Regular	- Split
			- Duplicat	te - Other
Field Measure	ments:		- Resamp	ble
	14. pHN/A			
	15. Spec. cond N/A		16. 🗖 mS/cm	
	17. Temp. N/A		18. 🗖 F 🛛 or 🗖	C (check one)
	19. Turbidity N/A		20. 🗆 NTU	
Laboratory:				
21. Na	me Pace Analytical Services, Inc.		P	hone: (972) 727-1123
Add	dress: 400 W. Bethany Drive, Suite 190.	Allen, TX 75013		

Facility name:	Sandy Creek Energy Station
Permittee:	Sandy Creek Energy Associates, L.P.
County:	McLennan

1. Facility Type:	Power Station
2. Monitor well no .:	MW-1
3. Date of sampling	12/10/2019

Name of sampler:	Tyson M	filbrand	Most recent previo	us samplin	6/24/2019
Affiliation of sampler:	SCS Engineers		Date of water leve	l measuren	nents: 12/10/2019
If split sampled, with who	m? N/A		Datum reference p	oint:	Top of Casing
Integrity of well:	Good		Datum elevation*:		465.87
Installation date: 9/21/20	15		Depth to water(bel	ow datum)	*:11.88
			4. Water level elev	ation*:	453.99
5. Purging/Sampling me	thod: Bailer	(Enter bailer or pump)	11. Sample event:	Detection	
Were low-flow metho		no (check one)	- Back	ground	- Corrective Action
If yes, what volum	e was purged? N/A	Agal.	- Detec	ction	- Other
6. Well volumes purged			- Asse	ssment	
	ore purging? yes	no (check one)	12. Sample sched	ule: <u>Ann</u>	ual
8. Was the well dry after		no (check one)	- Quar	terly	- Fourth Year
9. How long before sam			- Semi	-Annual	- Other
10. Unit of measure?		ue as days, hours, or mins.)	- Annu	al	
	······································		13. Sample type:	Regular	
			- Regu	lar	- Split
			- Dupli	cate	- Other
Field Measurements:			- Resa	mple	
	4. pH	8.46			
	5. Spec. cond.	4.278	16. 🔳 mS/cm		
	7. Temp.	19.27	18. 🗆 F 🛛 or	C	(check one)
	9. Turbidity	64	20. M NTU		
Laboratory:					
21. Name	ALS Houston			Phone:	(281) 530-5656
Address:		10, Houston, TX 77099			
/1001030.					

Facility name:	Sandy Creek Energy Station
Permittee:	Sandy Creek Energy Associates, L.P.
County:	McLennan

1. Facility Type:	Power Station
2. Monitor well no.:	MW-2
3. Date of sampling:	12/10/2019

Name of sampler:	Tyson M	ilbrand	Most recent	previo	us sampl	ing: <u>6</u>	/24/2019
Affiliation of sampler:	SCS Engineers		Date of wate	er level	measure	ments:	12/10/2019
If split sampled, with whon	n? N/A		Datum refere	ence p	oint:	Тор с	of Casing
Integrity of well:	Good		Datum eleva	ition*:		442	15
Installation date: 9/23/201			Depth to wat	ter(bel	ow datum)*:	11.96
\ -			4. Water leve	el elev	ation*:	4	30.19
5. Purging/Sampling met	thod: Bailer	(Enter bailer or pump)	11. Sample e	event:	Detectio	n	
Were low-flow method	ls used? 🔲 yes 🔳	no (check one)	-	Backg	ground	- Corre	ctive Action
If yes, what volume	was purged? N/A	gal.	-	Detec	tion	- Other	
6, Well volumes purged:	2.7		-	Asses	sment		
7. Was the well dry befor	re purging? 🛄 yes 🔳	no (check one)	12. Sample :	schedı	ule: <u>An</u>	nual	
8. Was the well dry after	purging? 🔳 yes 🛛	no (check one)	-	Quart	erly	- Fourth	Year
9. How long before samp	pling? 1		-	Semi-	Annual	- Other	
10. Unit of measure?	hours (Enter valu	e as days, hours, or mins.)	-	Annua	al		
			13. Sample f	type:	Regular		
			-	Regul	ar	- Split	
			-	Duplic	cate	- Other	
Field Measurements:			-	Resar	mple		
14	4. pH -	7.84					
1:	5. Spec. cond.	8.676	16. 📰 mS/c	m			
17	7. Temp.	18.56	18. 🗆 F	or	C 📓	(check (one)
19	9. Turbidity	19.1	20. M NTU				
Laboratory:							
21. Name	ALS Houston				Phone:	(281) 5	30-5656
Address:	10450 Stancliff Rd #21	0, Houston, TX 77099					

* Report depth to water and elevations to nearest 0.01 foot relative to mean sea level (msl).

Facility name:	Sandy Creek Energy Station
Permittee:	Sandy Creek Energy Associates, L.P.
County:	McLennan

1. Facility Type:	Power Station		
2. Monitor well no.:	MW-3		
3. Date of sampling:	12/10/2019		

If split sampled, with whom? N/A Integrity of well: Good Installation date: 9/1/2010 Datum reference point: Top of Casing Datum reference point: 430.06 Depth to water(below datum)*: 10.19 4. Water level elevation*: 419.87 5. Purging/Sampling method: Bailer (Enter bailer or pump) 4. Water level elevation*: Were low-flow methods used? yes If yes, what volume was purged? NA gal Detection 6. Well volumes purged: 2.5 7. Was the well dry after purging? yes 9. How long before sampling? 1 10. Unit of measure? 1 10. Unit of measure? 1 14. pH 7.93 15. Spec. cond. 6.189 17. Temp. 17.24 19. Turbidity 34.3 20. MTU Phone: (281) 530-5656	Name of sampler:	Tyson M	Milbrand	Most recent prev	vious sampl	ing: <u>6</u>	/24/2019	
Integrity of well: Good Integrity of well: Good Installation date: 9/1/2010 5. Purging/Sampling method: Bailer (Enter bailer or pump) 4. Water level elevation*: 419.87 5. Purging/Sampling method: Bailer (Enter bailer or pump) Were low-flow methods used? yes no (check one) - Background - Corrective Action 6. Well volumes purged: 2.5 - - Assessment - Other 7. Was the well dry before purging? yes no (check one) - Quarterly - Fourth Year 9. How tong before sampling? 1 - Quarterly - Fourth Year 9. How tong before sampling? 1 - Annual - Annual 10. Unit of measure? hours (Enter value as days, hours, or mins.) - Annual Field Measurements: 14. pH 7.93 15. Spec. cond. 6.189 16. mS/cm 17. Temp. 17.24 18. F or C (check one) 19. Turbidity 34.3 20. NTU	Affiliation of sampler:	SCS Engineers		Date of water level measurements: 12/10/2019				
Integrity of well: Good Datum elevation*: 430.06 Installation date: 9/1/2010 Depth to water(below datum)*: 10.19 4. Water level elevation*: 419.87 5. Purging/Sampling method: Bailer (Enter bailer or pump) Were low-flow methods used? yes no (check one) If yes, what volume was purged? N/A gal. 6. Well volumes purged: 2.5 7. Was the well dry before purging? yes no (check one) 8. Was the well dry after purging? yes no (check one) 9. How long before sampling? 1 . Sample schedule: 10. Unit of measure? hours (Enter value as days, hours, or mins.) Field Measurements: 14. pH 7.93 15. Spec. cond. 6.189 17. Temp. 17.24 18. □ F or C (check one) 19. Turbidity 34.3 20. ■NTU	If split sampled, with whom	? N/A		Datum reference	rence point: Top of Casing		f Casing	
Installation date: 9/1/2010 Depth to water(below datum)*: 10.19 4. Water level elevation*: 419.87 4. Water level elevation*: 419.87 4. Water level elevation*: 6. Well volume was purged? N/A gal. 6. Well volume spurged: 2.5. 7. Was the well dry before purging? 19. Torbing? 19. Turbidity 34.3 20. Intuitive elevation*: 10. Unit of measure: 11. Sample schedule: Annual 13. Sample type: Regular - Semi-Annual 13. Sample type: Regular - Regular - Resumple 14. pH 7.93 15. Spec. cond. 6.189 16. Immoder moder 17. Temp. 17.24 18. If F or Intervent cleak one) 19. Turbidity 34.3 20. Intru 21. Name ALS Houston Phone: (281) 530-56566		Defut		Datum elevation	ation*: 430.06			
4. Water level elevation*: 419.87 5. Purging/Sampling method: Bailer (Enter bailer or pump) Were low-flow methods used? yes no (check one) If yes, what volume was purged? N/A gal. 6. Well volumes purged: 2.5 - Background - Corrective Action 7. Was the well dry before purging? yes no (check one) - Assessment 8. Was the well dry after purging? yes no (check one) - Quarterly - Fourth Year 9. How long before sampling? 1			Depth to water(below datum)*:10.1		10.19			
Were low-flow methods used? yes no (check one) - Background - Corrective Action If yes, what volume was purged? N/A gal. - Detection - Other 6. Well volumes purged: 2.5 - Assessment - Assessment 7. Was the well dry before purging? yes no (check one) 12. Sample schedule: Annual 8. Was the well dry after purging? yes no (check one) - Quarterly - Fourth Year 9. How long before sampling? 1 . - Assessment - Semi-Annual - Other 10. Unit of measure? hours (Enter value as days, hours, or mins.) - Annual - Annual 13. Sample type: Regular - Semi-Annual - Other - Duplicate - Other - Resample 14. pH 7.93 - Resample 17. Temp. 17.24 18. F or C (check one) 19. Turbidity 34.3 20. NTU Laboratory: 21. Name ALS Houston Phone: (281) 530-5656				4. Water level el	evation*: -		19.87	
Were low-flow methods used? yes no (check one) - Background - Corrective Action If yes, what volume was purged? N/A gal. - Detection - Other 6. Well volumes purged: 2.5 - Assessment - Assessment 7. Was the well dry before purging? yes no (check one) 12. Sample schedule: Annual 8. Was the well dry after purging? yes no (check one) - Quarterly - Fourth Year 9. How long before sampling? 1 - Annual - Other - Annual 10. Unit of measure? hours (Enter value as days, hours, or mins.) - Annual - Annual Field Measurements: 14. pH 7.93 - Regular - Split 15. Spec. cond. 6.189 16. mS/cm 17. Temp. 17.24 18. F C (check one) 19. Turbidity 34.3 20. NTU NTU Laboratory: 21. Name ALS Houston Phone: (281) 530-56565	Enter bailer or pump) 11. Sample event: Detection							
6. Well volumes purged: 2.5 - Assessment 7. Was the well dry before purging? Jyes no (check one) 12. Sample schedule: Annual 8. Was the well dry after purging? Jyes no (check one) - Quarterly - Fourth Year 9. How long before sampling? Semi-Annual - Other 10. Unit of measure? hours (Enter value as days, hours, or mins.) - Annual - Annual 13. Sample type: Regular - Split - Duplicate - Other - Resample - Resample 14. pH 7.93 15. Spec. cond. 6.189 16. Im S/cm 17. Temp. 17.24 18. Im F or 19. Turbidity 34.3 20. Imrtu				- Bao	- Background - Corrective Action			
6. Well volumes purged: 2.5 - Assessment 7. Was the well dry before purging?]yes no (check one) 12. Sample schedule: <u>Annual</u> 8. Was the well dry after purging? _yes no (check one) - Quarterly - Fourth Year 9. How long before sampling? _1	If ves, what volume was purged? N/A gal.			- Del	- Detection - Other			
7. Was the well dry before purging? □yes ■ no (check one) 12. Sample schedule: Annual 8. Was the well dry after purging? □ yes ■ no (check one) - Quarterly - Fourth Year 9. How long before sampling?1 - Semi-Annual - Other 10. Unit of measure?hours(Enter value as days, hours, or mins.) - Annual 13. Sample type: Regular - Regular - Split - Duplicate - Other - Duplicate - Other 15. Spec. cond. 6.189 17. Temp. 17.24 19. Turbidity 34.3 21. Name ALS Houston				- Ass	essment			
8. Was the well dry after purging? □ yes ■ no (check one) - Quarterly - Fourth Year 9. How long before sampling? 1 - Semi-Annual - Other 10. Unit of measure? hours (Enter value as days, hours, or mins.) - Annual - Regular - Split 10. Unit of measure? - Duplicate - Other - Resample Field Measurements: 14. pH 7.93 - Resample 15. Spec. cond. 6.189 16. ■ mS/cm 17. Temp. 17.24 18. □ F or ■ C (check one) 19. Turbidity 34.3 20. ■NTU Laboratory: 21. Name ALS Houston Phone: (281) 530-5656				12. Sample sche	edule: An	nual		
9. How long before sampling? 1 - Semi-Annual - Other 10. Unit of measure? hours (Enter value as days, hours, or mins.) - Annual - Annual 10. Unit of measure? hours (Enter value as days, hours, or mins.) - Annual - Semi-Annual - Other 10. Unit of measure? hours (Enter value as days, hours, or mins.) - Annual - Annual 11. Sample type: Regular - Split - Duplicate - Other - Resample - Resample - Resample - Resample 14. pH 7.93 - Resample - Resample 15. Spec. cond. 6.189 16. mS/cm - C (check one) 19. Turbidity 34.3 20. MTU - C (check one) 21. Name ALS Houston Phone: (281) 530-5656 - Phone: (281) 530-5656				- Qu	- Quarterly - Fourth Year			
10. Unit of measure? hours (Enter value as days, hours, or mins.) - Annual 13. Sample type: Regular - Regular - Regular - Regular - Split - Duplicate - Other - Resample - Resample - Resample 14. pH 7.93 - Resample 15. Spec. cond. 6.189 16. ■ mS/cm 17. Temp. 17.24 18. □ F or 19. Turbidity 34.3 20. ■NTU Laboratory: 21. Name ALS Houston Phone: (281) 530-56565				- Sei	- Semi-Annual - Other			
Field Measurements: 13. Sample type: Regular - Regular - Split - Duplicate - Other - Resample - Resample 14. pH 7.93 15. Spec. cond. 6.189 17. Temp. 17.24 19. Turbidity 34.3 20. ■NTU Laboratory: Phone: (281) 530-5656			ue as days, hours, or mins.)	- Anı	nual			
Field Measurements: - Duplicate - Other 14. pH 7.93 - Resample 15. Spec. cond. 6.189 16. ■ mS/cm 17. Temp. 17.24 18. □ F or ■ C (check one) 19. Turbidity 34.3 20. ■NTU Laboratory: 21. Name ALS Houston Phone: (281) 530-5656			13. Sample type: Regular					
Field Measurements: - Resample 14. pH 7.93 15. Spec. cond. 6.189 17. Temp. 17.24 19. Turbidity 34.3 21. Name ALS Houston				- Re	gular	- Split		
14. pH 7.93 15. Spec. cond. 6.189 17. Temp. 17.24 19. Turbidity 34.3 21. Name ALS Houston		- Duplicate -		- Other	- Other			
14. pH 7.93 15. Spec. cond. 6.189 17. Temp. 17.24 19. Turbidity 34.3 21. Name ALS Houston	Field Massuraments.			- Re	sample			
15. Spec. cond. 6.189 16. ■ mS/cm 17. Temp. 17.24 18. □ F or ■ C (check one) 19. Turbidity 34.3 20. ■NTU Laboratory: 21. Name ALS Houston Phone: (281) 530-5656		σΗ	7.93					
17. Temp. 17.24 18. □ F or ■ C (check one) 19. Turbidity 34.3 20. ■NTU Laboratory: 21. Name ALS Houston Phone: (281) 530-5656			6.189	16. 🔳 mS/cm				
19. Turbidity 34.3 20. ■NTU Laboratory: 21. Name ALS Houston Phone: (281) 530-5656		•	17.24	18. 🗆 F or	C	(check (one)	
Laboratory: Phone: (281) 530-5656 21. Name ALS Houston Phone: (281) 530-5656				20. M NTU				
ZI. Name Acondustan		2						
Address: 10450 Stancliff Rd #210, Houston, TX 77099	-	ALS Houston			Phone:	(281) 5	30-5656	
rugious is to addition the metal is a second s	Address: 10450 Stancliff Rd #210, Houston, TX 77099							

Groundwater Monitoring Form

Facility name:	Sandy C	reek Energy Station		1. Facility Type:	Power Station
Permittee:	Sandy C	reek Energy Associates	s, L.P.	2. Monitor well no.:	BW-1
County:	McLenna	in		3. Date of sampling:	12/10/2019
Name of sampler			Ailbrand	Most recent previous	
Affiliation of samp		SCS Engineers			neasurements: <u>12/10/2019</u>
If split sampled, v					nt: Top of Casing
Integrity of well:		Good		Datum elevation*:	
Installation date:	9/22/201	5			v datum)*:18.18
				4. Water level elevat	ion*:467.39
5. Purging/Sam	pling meth	nod: Bailer	(Enter bailer or pump)	11. Sample event: <u>C</u>	Detection
Were low-flow	w methods	s used? 🔲 yes 🔳	no (check one)	- Backgro	ound - Corrective Action
lf yes, wha	at volume	was purged? N/A	gal.	- Detectio	on - Other
6. Well volumes	s purged:	3.0		- Assessr	nent
7. Was the well	dry before	e purging? 📋 yes 🔳	no (check one)	12. Sample schedule	: Annual
8. Was the well	dry after p	ourging? 🔲 yes 🔳	no (check one)	- Quarter	ly - Fourth Year
9. How long bef	fore sampl	ling?1		- Semi-Ar	nnual - Other
10. Unit of measu	ure?	hours (Enter val	ue as days, hours, or mins.)	- Annual	
				13. Sample type: _R	legular
				- Regular	- Split
				- Duplical	te - Other
Field Measurem	ents:			- Resamp	ble
	14.	рН	7.95		
	15.	Spec. cond.	6.612	16. 🔳 mS/cm	
	17.	Temp.	17.90	18. 🗆 F 🛛 or 📕	C (check one)
	19.	Turbidity	214	20. M NTU	
Laboratory:					
21. Nam	ne	ALS Houston		P	hone: (281) 530-5656
Add	ress:	10450 Stancliff Rd #21	0, Houston, TX 77099		

* Report depth to water and elevations to nearest 0.01 foot relative to mean sea level (msl).

Groundwater Monitoring Form

Facility name:	Sandy Creek Energy Station		1. Facility Type:	Power Station
Permittee:	Sandy Creek Energy Associ	ates, L.P.	2. Monitor well no .:	DUP
County:	McLennan		3. Date of sampling:	12/10/2019
Name of sample	лг. Тvs.	on Milbrand	Most recent previous	sampling: N/A
Affiliation of sam			Date of water level m	
If split sampled,	-		Datum reference poir	t: Top of Casing
Integrity of well:			Datum elevation*:	
Installation date			Depth to water(below	2002
			4. Water level elevati	on*: N/A
5. Purging/San	npling method: <u>N/A</u>	(Enter bailer or pump)	11. Sample event: D	etection
Were low-flo	ow methods used? 🛛 yes	🔲 no (check one)	- Backgro	und - Corrective Action
If yes, wh	nat volume was purged?	N/A gal.	- Detectio	n - Other
6. Well volume	es purged: <u>N/A</u>		- Assessn	nent
7. Was the we	Il dry before purging? Uyes	🗆 no (check one)	12. Sample schedule	Semi-Annual
8. Was the we	ll dry after purging? 🔲 yes	no (check one)	- Quarterl	y - Fourth Year
9. How long be	efore sampling? N/A		- Semi-Ar	nual - Other
10. Unit of meas	sure? N/A (Enter	value as days, hours, or mins.)	- Annual	
			13. Sample type: D	uplicate
			- Regular	- Split
			- Duplicat	e - Other
Field Measurer	ments:		- Resamp	le
	14. pH	N/A		
	15. Spec. cond.	N/A	16. 🔲 mS/cm	
	17. Temp.	N/A	18. 🗆 F or 🗖	C (check one)
	19. Turbidity	N/A	20. 🗆 NTU	
Laboratory:				
21. Na	me ALS Houston		P	hone: (281) 530-5656
Ade	dress: 10450 Stancliff Rd	#210, Houston, TX 77099		

* Report depth to water and elevations to nearest 0.01 foot relative to mean sea level (msl).

Appendix B

2019 Laboratory Reports with Chain of Custody Forms

SCES - December 2019 Semiannual Groundwater Monitoring Report

www.scsengineers.com

M:\Projects\16218157.00\Correspondence\R01312020 Sandy Craek Dec 2019 Annual Groundwater Monitoring and Corrective Action Report dock

Pace Analytical Services, Inc. 400 W. Bethany Drive, Suite 190 Allen, TX 75013 (972) 727-1123

July 03, 2019

Jim Lawrence SCS Engineers 1901 Central Dr. Suite 550 Bedford, TX 76021

RE: Pace Project 75110801 Project ID: Sandy Creek GW

Dear Jim Lawrence:

Enclosed are the analytical results for sample(s) received by the laboratory on June 25, 2019. Results reported herin conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Leslo CRUndaired

Leslie Underwood leslie.underwood@pacelabs.com (972)727-1123

Laboratory Certifications Pace Dallas: Texas T104704232-18-26 Pace Dallas: Texas Certification #: T104704232-18-26

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Pace Project 75110801

Client: <u>SCS Engineers</u> Project ID: <u>Sandy Creek GW</u>

Client Sample ID	Lab ID	Matrix	Collection Date/Time	Received Date/Time
BW-1	75110801001	Water	06/24/2019 13:45	06/25/2019 08:1
MW-1	75110801002	Water	06/24/2019 14:15	06/25/2019 08:1
MW-2	75110801003	Water	06/24/2019 14:40	06/25/2019 08:1
MW-3	75110801004	Water	06/24/2019 15:10	06/25/2019 08:1
DUP	75110801005	Water	06/24/2019 15:10	06/25/2019 08:1

Pace Project 75110801

Holding Times:

These holding times were exceeded due to sample receipt or re-extraction after the holding time expired.

Sample 75110801001 analysis 9040 pH Sample 75110801002 analysis 9040 pH Sample 75110801003 analysis 9040 pH Sample 75110801004 analysis 9040 pH Sample 75110801005 analysis 9040 pH

Blanks:

All blank results were below reporting limits.

Laboratory Control Samples:

All LCS recoveries were within QC limits.

Matrix Spikes and Duplicates:

MS or MSD recoveries outside of QC limits are qualified in the Report of Quality Control section.

Surrogate:

All surrogate recoveries were within QC limits.

Appendix A LABORATORY DATA PACKAGE COVER PAGE

This data package is for Job No. 75110801 and consists of:

This signature page, the laboratory review checklist, and the following reportable data:

Х

Х

Х

Х

R1 - Field chain-of-custody documentation;

- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. Dilution factors,
 - c. Preparation methods,
 - d. Cleanup methods, and
 - e. If required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a. LCS spiking amounts,
 - b. Calculated %R for each analyte, and
 - c. The laboratory's LCS QC limits.

R7 - Test reports/summary forms for matrix spike/matrix spike duplicates (MS/MSDs) including:

- a. Samples associated with the MS/MSD clearly identified,
- b. MS/MSD spiking amounts,
- c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
- d. Calculated %Rs and relative percent differences, and
- e. The laboratory's MS/MSD QC limits.
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and,
 - c. The laboratory's QC limits for analytical duplicated.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte and
- R10 Other problems or anomalies.

The exception Report for each "No" or "Not Reviewed (NR)" item in the Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: [] This laboratory meets an exception under 30 TAC §25.6 and was last inspected by [X] TCEQ on 05/02/2018

Any findings affecting the data in this laboratory data package are noted in the Exception Reports herin. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name (Printed)	<u>Signature</u>	Official Title (Printed)	<u>Date</u>
Leslie Underwood	J. to Cold South	Project Manager	07/03/2019

X

Х

Х

Client ID: <u>BW-1</u> Lab ID: <u>751108010</u> Collected: <u>06/24/2019</u>			ture: <u>N</u> ived <u>0</u>	I/A 6/25/2019	0.08:10		Project ID: 5 Pace Project 5 Matrix: 5		52 51	
Parameters	DF	Results	Qual	Units	MQL	SDL	Analysis Date	Prep Date	Batch	Instr.
6010 Metals, Total	Anal	ytical Method	: EPA 6	010	Prepa	ration Met	hod: EPA 3010			
Boron	1	3.1		mg/L	0.10	0.017	07/02/2019 15:35	07/01/2019 08:20	120770	75ICP1
Calcium	1	564	M1	mg/L	1.0	0.093	07/02/2019 00:53	07/01/2019 08:20	120770	75ICP1
9040 pH	Anal	ytical Method	: EPA 9	040						
pH at 25 Degrees C	1	7.1	H3,H6	Std. Units	0.10	0.10	07/01/2019 12:39		120808	75WETP
9056 IC Anions	Anal	ytical Method	: EPA 9	056A						
Chloride	100	1160		mg/L	80,0	35.8	07/01/2019 14:48		120798	75WTA4
Fluoride	1	0.90		mg/L	0.50	0.18	07/01/2019 14:30		120798	75WTA4
Sulfate	1000	2930		mg/L	700	393	07/01/2019 15:06		120798	75WTA4
2540C Total Dissolved Solids	Anal	ytical Method	: SM 25	40C						
Total Dissolved Solids	1	6380		mg/L	500	500	06/27/2019 10:41		120600	75BL17

Client ID: <u>MW-1</u> Lab ID: <u>75110801</u> Collected: <u>06/24/201</u>	11 SPACES	sture: <u>N/A</u> :eived <u>06/25/2019</u>	08:10		Project ID: 5 Pace Project 5 Matrix: 5			
Parameters	DF Results	Qual Units	MQL	SDL	Analysis Date	Prep Date	Batch	Instr,
6010 Metals, Total	Analytical Meth	od: EPA 6010	Prepa	aration Met	hod: EPA 3010			
Boron	1 1.1	mg/L	0.10	0.017	07/02/2019 15:41	07/01/2019 08:20	120770	75ICP1
Calcium	1 492	mg/L	1.0	0.093	07/02/2019 00:58	07/01/2019 08:20	120770	75ICP1
9040 pH	Analytical Meth	od: EPA 9040						
pH at 25 Degrees C	1 7.2	H3,H6 Std. Units	0.10	0.10	07/01/2019 12:41		120808	75WETP
9056 IC Anions	Analytical Meth	od: EPA 9056A						
Chloride	100 169	mg/L	80.0	35.8	07/01/2019 16:53		120798	75WTA4
Fluoride	1 0.73	mg/L	0.50	0.18	07/01/2019 15:23		120798	75WTA4
Sulfate	1000 2430	mg/L	700	393	07/01/2019 17:46		120798	75WTA4
2540C Total Dissolved Solids	Analytical Meth	od: SM 2540C						
Total Dissolved Solids	1 4030	mg/L	125	125	06/27/2019 10:41		120600	75BL17

Client ID: <u>MW-2</u> Lab ID: <u>75110801</u> Collected: <u>06/24/201</u>			ure: <u>N//</u> ived <u>06</u>	<u>4</u> /25/2019	08:10		Project ID: <u>\$</u> Pace Project <u>7</u> Matrix: <u>V</u>			
Parameters	DF F	Results	Qual	Units	MQL	SDL	Analysis Date	Prep Date	Batch	Instr.
6010 Metals, Total	Analytic	al Method:	EPA 601	0	Ргера	ration Met	hod: EPA 3010			
Boron	1 1.7			ng/L	0.10	0.017	07/02/2019 15:46	07/01/2019 08:20	120770	75ICP1
Calcium	1 656	;		ng/L	1.0	0.093	07/02/2019 01:04	07/01/2019 08:20	120770	75ICP1
9040 pH	Analytic	al Method:	EPA 904	10						
pH at 25 Degrees C	1 7.0		Н3,Н6 ⁸	itd. Units	0.10	0.10	07/01/2019 12:45		120808	75WETP
9056 IC Anions	Analytic	al Method:	EPA 905	6A						
Chloride	1000 242			ng/L	800	358	07/01/2019 18:58		120798	75WTA4
Fluoride	1 < 0	.18	n	ng/L	0.50	0.18	07/01/2019 18:40		120798	75WTA4
Sulfate	1000 348	0	n	ng/L	700	393	07/01/2019 18:58		120798	75WTA4
2540C Total Dissolved Solids	Analytic	al Method:	SM 2540	C						
Total Dissolved Solids	1 956			ng/L	500	500	06/27/2019 10:42		120600	75BL17

Client ID: <u>MW-3</u> Lab ID: <u>751108010</u> Collected: <u>06/24/2019</u>			ure: <u>N/</u> ived <u>06</u>	<u>A</u> 3/25/2019	08:10		Project ID: 5 Pace Project 7 Matrix: 1			
Parameters	DF	Results	Qual	Units	MQL	SDL	Analysis Date	Prep Date	Batch	Instr.
6010 Metals, Total	Analy	tical Method:	EPA 60	10	Prepa	ration Met	hod: EPA 3010			
Boron	1 0	.99		m g/L	0.10	0.017	07/02/2019 15:52	07/01/2019 08:20	120770	75ICP1
Calcium	14	52	I.	mg/L	1.0	0.093	07/02/2019 01:09	07/01/2019 08:20	120770	75ICP1
9040 pH	Analy	tical Method:	EPA 90	40						
pH at 25 Degrees C	1 6	i.6	H3,H6	Std. Units	0.10	0,10	07/01/2019 12:47		120808	75WETP
9056 IC Anions	Analy	tical Method:	EPA 90	56A						
Chloride	50 3	06	M6 I	ng/L	40.0	17.9	07/02/2019 19:25		120880	75WTA4
Fluoride	1 <	: 0.18	,	ng/L	0.50	0.18	07/02/2019 18:32		120880	75WTA4
Sulfate	500 3	130	I	mg/L	350	196	07/02/2019 20:55		120880	75WTA4
2540C Total Dissolved Solids	Analy	tical Method:	SM 254	0C						
Total Dissolved Solids	1 5	i740	t	mg/L	250	250	06/27/2019 10:42		120600	75BL17

Client ID: <u>DUP</u> Lab ID: <u>751108010</u> Collected: <u>06/24/2019</u>			ure: <u>N/</u> ived <u>06</u>	<u>A</u> 5/25/2019	08:10		Project ID: 5 Pace Project 7 Matrix: V			
Parameters	DF	Results	Qual	Units	MQL	SDL	Analysis Date	Prep Date	Batch	Instr.
6010 Metals, Total	Analyti	ical Method:	EPA 60	10	Prepa	ration Met	hod: EPA 3010			
Boron	1 3.			ng/L	0.10	0.017	07/02/2019 15:57	07/01/2019 08:20	120770	75ICP1
Calcium	1 55	54	r	mg/L	1.0	0.093	07/02/2019 01:15	07/01/2019 08:20	120770	75ICP1
9040 pH	Analyti	ical Method:	EPA 90	40						
pH at 25 Degrees C	1 7.	1	H3,H6	Std. Units	0.10	0.10	07/01/2019 12:49		120808	75WETP
9056 IC Anions	Analyti	ical Method:	EPA 90	56A						
Chloride	100 11			ng/L	80.0	35.8	07/02/2019 22:06		120880	75WTA4
Fluoride	1 0.	62	r	mg/L	0.50	0.18	07/02/2019 21:48		120880	75WTA4
Sulfate	500 2 9	970	I	ng/L	350	196	07/02/2019 22:24		120880	75WTA4
2540C Total Dissolved Solids	Analyti	ical Method:	SM 254	0C						7601 47
Total Dissolved Solids	1 63	340	I	mg/L	500	500	06/27/2019 10:42		120600	75BL17

Batch: <u>120770</u> Method: <u>EPA 6010</u> Prep <u>EPA 3010</u>

Fiep CFA SU

Pace Project No.: 75110801 Instrument ID: 75ICP1

Blank: 544942								
Parameters	Dilutio	Quals	Result	Units	MQL	SDL	Analysis Date	Prep Date
Boron	1	U	< 0.017	mg/L	0.10	0.017	07/02/2019 14:12	07/01/2019 08:20
Calcium	1	U	<0.093	mg/L	1.0	0.093	07/02/2019 14:12	07/01/2019 08:20
Laboratory Control S	ample: 544943	1						
	ample: 544943	Spk	LCS Booult	Unite		LCS	% Rec	LCS
Laboratory Control S Parameters	ample: 544943		Result	Units		LCS %Rec	Limits	LCS Quals
	ample: 544943	Spk		Units mg/L	i 			

Matrix Spike: 544944

Original for Sample: Project sample BW-1

Parameters	Original Result	MS Spk	MSD Spk	MS Result	MSD Result	Units	MS %Rec	MSD %Rec	% Rec Limits	RPD	Max RPD	Quals
Boron	3.1	1	1	4.1	4.0	mg/L	104	91	84-113	3	20	
Calcium	564	10	10	558	556	mg/L	-59	-72	10-200	0	20	M1

Matrix Spike Duplicate: 544945

Batch: <u>120808</u> Method: <u>EPA 9040</u>		Pace Project No.: 75110801 Instrument ID: 75WETP						
Laboratory Control Sample: 545057	Cok	LCS		LCS	% Rec	LCS		
Parameters	Spk Amt	Result	Units	%Rec	Limits	Quals		
oH at 25 Degrees C	6	6.0	Std. Units	100	99-101	H6		

Batch: <u>120798</u> Method: <u>EPA 90</u>	Batch: <u>120798</u> Method: <u>EPA 9056A</u>				Pace Project No.: <u>75110801</u> Instrument ID: <u>75WTA4</u>									
Blank: 545030														
Parameters	Dilutio	Quals	Result	Units	MQL	SDL	Analysis Date	Prep Date						
Chloride	1	U	<0.36	mg/L	0.80	0.36	07/01/2019 13:54							
Fluoride	1	U	<0.18	mg/L	0.50	0.18	07/01/2019 13:54							
Sulfate	1	U	<0.39	mg/L	0.70	0.39	07/01/2019 13:54							
Laboratory Control S	ample: 545031													
		Spk	LCS			LCS	% Rec	LCS						
Parameters		Amt	Result	Unit	s	%Rec	Limits	Quals						
Chloride	-	5	4.8	mg/l	-	95	80-120	1						
Fluoride		5	5.2	mg/l	_	105	80-120							
Sulfate		5	5.1	mg/l	-	102	80-120							
Matrix Spike: 545053			ľ	Matrix Spik	e Duplic	ate: 545054								
Original for Sam	nle: Project sa	mnle MW-1												

Parameters	Original Result	MS Spk	MSD Spk	MS Result	MSD Result	Units	MS %Rec	MSD %Rec	% Rec Limits	RPD	Max RPD	Quals
Chloride	169	500	500	674	673	mg/L	101	101	80-120	0	20	
Fluoride	0.73	5	5	5.8	5,7	mg/L	102	99	80-120	2	20	
Sulfate	2430	5000	5000	7760	7840	mg/L	107	108	80-120	1	20	

Batch: <u>120880</u> Method: <u>EPA 90</u>			Pace Project No.: 75110801 Instrument ID: 75WTA4										
Blank: 545336													
Parameters	Dilutio	Quals	Result	Units	MQL	SDL	Analysis Date	Prep Date					
Chloride	1	U	<0.36	mg/L	0.80	0.36	07/02/2019 17:56						
Fluoride	1	U	<0.18	mg/L	0.50	0.18	07/02/2019 17:56						
Sulfate	1	U	<0.39	mg/L	0.70	0.39	07/02/2019 17:56						
Laboratory Control Sa	ample: 545337	7											
•	20	Spk	LCS			LCS	% Rec	LCS					
Parameters		Amt	Result	Uni	ts	%Rec	Limits	Quals					
Chloride	e -	5	4.8	- mg/	<u> </u>	96	80-120						
Fluoride		5	5.4	mg/		107	80-120						
Sulfate		5	5.3	mg/	L	105	80-120						
Matrix Spike: 545338			Matrix Spike Duplicate: 545339										

Original for Sample: Project sample MW-3

MSD MS MSD % Rec MS MSD MS Original Max RPD Quals Result Spk Spk Result Result Units %Rec %Rec Limits RPD **Parameters** 80-120 20 M6 121 0 306 250 250 608 609 mg/L 121 Chloride 20 80-120 0 5 5 5.0 5.0 mg/L 92 92 <0.18 Fluoride 20 5970 mg/L 112 114 80-120 1 2500 2500 5930 3130 Sulfate

Batch: <u>120600</u> Method: <u>SM 254</u>		Pace Project No.: 75110801 Instrument ID: 75BL17										
Blank: 544068												
Parameters	Dilutio	Quals	Result	Units	MQL	SDL	Analysis Date	Prep Date				
Total Dissolved Solids	1	U	<25.0	mg/L	25.0	25.0	06/27/2019 10:41	n				
Laboratory Control Sa	ample: 544069)										
		Spk	LCS			LCS	% Rec	LCS				
Parameters		Amt	Result	Units		%Rec	Limits	Quals				
Total Dissolved Solids		250	266	- mg	/L. –	106	85-115					

Pace Analytical Services, Inc. 400 W. Bethany Drive, Suite 190 Allen, TX 75013 (972) 727-1123

Pace Project 75110801

Analyte	Method	Unadjusted MQL	Reporting Units
Boron	EPA 6010	0.10	mg/L
Calcium	EPA 6010	1.0	mg/L
pH at 25 Degrees C	EPA 9040	0.10	Std. Units
Chloride	EPA 9056A	0.80	mg/L
Fluoride	EPA 9056A	0.50	mg/L
Sulfate	EPA 9056A	0.70	mg/L
Total Dissolved Solids	SM 2540C	25.0	mg/L

Pace Project 75110801

DEFINITIONS

- DF Dilution Factor
- J Estimated concentration above the adjusted method detection limit and below the adjusted reporting
- U Indicates the compound was analyzed for, but not detected.
- SDL Sample Detection Limit
- MQL Method Quantitation Limit
- LCS(D) Laboratory Control Sample (Duplicate)
- MS(D) Matrix Spike (Duplicate)
- DUP Sample Duplicate
- RPD Relative Percent Difference
- TNI The Nelac Institute

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

ANALYTE QUALIFIERS

- H3 Sample was received or analysis requested beyond the recognized method holding time.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

Quality Control Data Cross Reference Table

			Pace Project	<u>75110801</u>	
					Analytical
Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical	
75110801001	BW-1	EPA 3010	120770	EPA 6010	120775
75110801002	MW-1	EPA 3010	120770	EPA 6010	120775
75110801003	MW-2	EPA 3010	120770	EPA 6010	120775
75110801004	MW-3	EPA 3010	120770	EPA 6010	120775
75110801005	DUP	EPA 3010	120770	EPA 6010	120775
75110801001	BW-1	SM 2540C	120600		
75110801002	MW-1	SM 2540C	120600		
75110801003	MW-2	SM 2540C	120600		
75110801004	MW-3	SM 2540C	120600		
75110801005	DUP	SM 2540C	120600		
75110801001	BW-1	EPA 9040	120808		
75110801002	MW-1	EPA 9040	120808		
75110801003	MW-2	EPA 9040	120808		
75110801004	MW-3	EPA 9040	120808		
75110801005	DUP	EPA 9040	120808		
75110801001	BW-1	EPA 9056A	120798		
75110801002	MW-1	EPA 9056A	120798		
75110801003	MW-2	EPA 9056A	120798		
75110801004	MW-3	EPA 9056A	120880		
75110801005	DUP	EPA 9056A	120880		

La	aboratory	Pace Analytical Services, Inc.	LRC Date:	07/03/20	019								
	ct Name:	Sandy Creek GW	Laboratory Job	7511080									
	Reviewer		ep Batch Number	See exce	eption r	eport.							
#1	A ²	Description			Yes	No	NA ³	NR ⁴	ER				
R1		Chain-of-custody (C-O-C)			2.01	81.81	12.250		1000				
		Did samples meet the laboratory's standard conditions of sample acc	ceptability upon receip	pt?		х			R1				
			10		V								
	1	Were all departures from standard conditions described in an except	ion report?		Х	-	111242		-				
R2	OI	Sample and quality control (QC) identification		0	V			21/100	1235				
		Are all field sample ID numbers cross-referenced to the laboratory ID	the second se		X				-				
		Are all laboratory ID numbers cross-referenced to the corresponding	QC data?		Х	-	-		10.23				
R3	01	Test reports				X		AV0.251	R				
		Were all samples prepared and analyzed within holding times? Other than those results < MQL, were all other raw values bracketed	by calibration stands	ards?		^							
			by calibration stands	103:	X								
		Were calculations checked by a peer or supervisor?			Х								
		Were all analyte identifications checked by a peer or supervisor?			X								
		Were sample detection limits reported for all analytes not detected?			Х								
		Were all results for soil and sediment samples reported on a dry wei	ght basis?				X						
		Were % moisture (or solids) reported for all soil and sediment sample	es?				X						
		Were bulk soils/solids samples for volatile analysis extracted with me	ethanol per SW846 M	lethod			X						
		5035?					X		-				
	-	If required for the project, are TICs reported?			2.1.1	1.17.4	-	0.055	100				
R4	0	Surrogate recovery data			-	8-13	V	15-21-16-	1000				
		Were surrogates added prior to extraction?	av OC limita?				X		-				
00		Were surrogate percent recoveries in all samples within the laborato			00024		-	10,000					
R5	01	Test reports/summary forms for blank samples			v	10.00		The second					
		Were appropriate type(s) of blanks analyzed?			X		-		+				
		Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, inc	luding preparation an	d if	Х			<u> </u>	-				
		applicable, cleanup procedures?	idening propuration an	u, "	X								
		Were blank concentrations < MQL?			Х								
R6	01	Laboratory control samples (LCS):		1	- 176	1.10		1922	1.4				
		Were all COCs included in the LCS?			Х								
		Was each LCS taken through the entire analytical procedure, includi	ng prep and cleanup	steps?	X								
		Were LCSs analyzed at the required frequency?			х		1		+-				
		Were LCS (and LCSD, if applicable) %Rs within the laboratory QC li	mits?		X		÷		+-				
		Does the detectability check sample data document the laboratory's	capability to detect th	e COCs					+-				
		at the MDL used to calculate the SDLs?			Х								
		Was the LCSD RPD within QC limits?					X						
R7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) data		1	(Deal)	-ing?		S LAND	20				
		Were the project/method specified analytes included in the MS and I	MSD?		Х								
		Were MS/MSD analyzed at the appropriate frequency?			X	_							
		Were MS (and MSD, if applicable) %Rs within the laboratory QC lim	its?		_	Х			R				
		Were MS/MSD RPDs within laboratory QC limits?			Х				-				
R 8	OI	Analytical duplicate data			1253	19493	14						
		Were appropriate analytical duplicates analyzed for each matrix?					X						
		Were analytical duplicates analyzed at the appropriate frequency?					X						
		Were RPDs or relative standard deviations within the laboratory QC	limits?		-		X		-				
R9	OI	Method quantitation limits (MQLs):	and here were			hold of		2.315	2				
		Are the MQLs for each method analyte included in the laboratory da			Х				-				
		Do the MQLs correspond to the concentration of the lowest non-zero	calibration standard	r	X								
		Are unadjusted MQLs and DCSs included in the laboratory data pac	kage?		х								
R10	0	Other problems/anomalies			9.8.2	12-51	229,23	1222	192/				
		Are all known problems/anomalies/special conditions noted in this Li	RC and ER?		X								
		Was applicable and available technology used to lower the SDL to n			x								
		interference effects on the sample results?		r the	^				-				
		Is the laboratory NELAC-accredited under the Texas Laboratory Acc analytes, matrices, and methods associated with this laboratory data		n the	x								

	TRRP LABOR	ATORY REVIEW CHECKLIST	
Laboratory	Pace Analytical Services, Inc.	LRC Date:	07/03/2019
Project Name:	Sandy Creek GW	Laboratory Job	75110801
Reviewer	Leslie Underwood	Prep Batch Number	See exception report.
letter "S" shou	d by the letter "R" must be included in the laboratory in the labor id be retained and made available upon request for the approp nalyses; I = inorganic analysises (and general chemistry, when icable;	riate retention period;	orts(s). Items identified by the

5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

L

La	boratory	Pace Analytical Services, Inc.	LRC Date:	07/03/2	019				
Proje	ct Name:	Sandy Creek GW	Laboratory Job	751108	101				_
F	Reviewer	Leslie Underwood Prep	Batch Number	See exc	eption r	eport.			
#1	A ²	Description			Yes	No	NA ³	NR ⁴	ER
S1	OI	Initial calibration (ICAL)						1.1	SQL.
		Were response factors and/or relative response factors for each analyt	e within QC limits?		X				
		Were percent RSDs or correlation coefficient criteria met?			X				
		Was the number of standards recommended in the method used for all	analytes?		X	_			
		Were all points generated between the lowest and highest standard us		curve?	x	_			-
		Are ICAL data available for all instruments used?		10	X				-
		Has the initial calibration curve been verified using an appropriate seco	nd source standar		Х				
S2	OI	Initial and continuing calibration verification (ICCV and CCV) and blank (CCB):	continuing calibra	ation					
		Was the CCV analyzed at the method-required frequency?			Х				
		Were precent differences for each analyte within the method-required (X					
		Was the ICAL curve verified for each analyte?	CAL curve verified for each analyte? bosolute value of the analyte concentration in the inorganic CCB < MDL?						
		Was the absolute value of the analyte concentration in the inorganic C	CB < MDL?		Х				_
S3	0	Mass spectral tuning			Se Vila	108	36.13	1.2	122
		Was the appropriate compound for the method used for tuning?					X		_
		Were ion abundance data within the method-required QC limits?				X			
S4	0	Internal standards (IS)		105.0		HALEN.	1	1115	
		Were IS area counts and retention times within the method-required Q	C limits?				X		_
S5	OI	Raw data (NELAC Section 5.5.10)				1.1-21	N. Carlo	See 1	24
		Were the raw data (for example, chromatograms, spectral data) review	ed by an analyst?		Х				
		Were data associated with manual integrations flagged on the raw data	1?		Х				1
S6	0	Dual column confirmation				Ray 3	Sec. 2		100
		Did dual column confirmation results meet the method-required QC?					X		
S7	0	Tentatively identified compounds (TICs)				1325		Sec.	1 23
		If TICs were requested, were the mass spectra and TIC data subject to	(s?			X			
00		Interference Check Sample (ICS) results				10.133		200	
S8		Interference Check Sample (ICS) results Were percent recoveries within method QC limits?		х		Print south of the	-	1	
80	1	Serial dilutions, post digestion spikes, and method of standard ac	ditions		704.9	all the second	245	1816	
S9		Were percent differences, recoveries, and the linearity within the QC li	mits specified in the	e	v		1	10000	1
		method?			X				
S10	OI	Method detection limit (MDL) studies				1.174	1.200	28.45	201
		Was a MDL study performed for each reported analyte?			Х				
		Is the MDL either adjusted or supported by the analysis of DCSs?			Х	_			-
S11	OI	Proficiency test reports	nou tosta es sust	otion		10,010		Sec. 8	24
		Was the laboratory's performance acceptable on the applicable profici studies?	ency tests of evalu	auon	Х				
S12	OI	Standards documentation					Y. 57	Call a	12
		Are all standards used in the analyses NIST-traceable or obtained from		х					
010	01	sources?				100000		(751) P.1	
S13	01	Compound/analyte identification procedures			X	1.1.1.1		CONCELLY.	-
044		Are the procedures for compound/analyte identification documented?			~		(ALTER	1950.00	
S14	01	Demonstration of analyst competency (DOC)			x				
		Was DOC conducted consistent with NELAC Chapter 5?			x				-
04F	0	Is documentation of the analyst's competency up-to-date and on file? Verification/validation documentation for methods (NELAC Chapt	er 5)	- 1	A	1000	11,250	155712	100
S15	OI	Are all the methods used to generate the data documented, verified, a applicable?		e	x				
S16	OI	Laboratory standard operating procedures (SOPs)			Silas	1.5%	Not 3		
		Are laboratory SOPs current and on file for each method performed?			Х				
1 2 3 4	letter "S" sho O = Organic NA = Not ap NR = Not rev			oorts(s) Item	ns identifie	d by the			

L	aboratory	Pace Analytical Services, Inc.	LRC Date:	07/03/2019						
Proj	ect Name:	Sandy Creek GW	Laboratory Job	75110801						
		Leslie Underwood	Prep Batch Number	120600,120770,120798,120808,120880						
ER #1	1		Description							
R1.1	time	5058, Method EPA 9040, pH at 25 Degrees C: H								
R1.1	holding tim	110801001, Method EPA 9040, pH at 25 Degree e.								
R1.1	holding tim	110801002, Method EPA 9040, pH at 25 Degree e.								
R1.1	holding time									
R1.1	holding tim	110801004, Method EPA 9040, pH at 25 Degree e.								
R1.1	Sample 75 holding tim	110801005, Method EPA 9040, pH at 25 Degree e.	es C: H3 - Sample was received or analysis	s requested beyond the recognized method						
R3.1	Sample 75	110801001, 9040 pH. Run on 07/01/19 12:39 is	6.9 days past hold. Sample received after	hold date.						
R3.1	Sample 75	110801002, 9040 pH. Run on 07/01/19 12:41 is	6.9 days past hold. Sample received after	hold date.						
R3.1	Sample 75	110801003, 9040 pH. Run on 07/01/19 12:45 is	6.9 days past hold. Sample received after	hold date.						
R3.1	Sample 75	110801004, 9040 pH. Run on 07/01/19 12:47 is	6.9 days past hold. Sample received after	hold date.						
R3.1	Sample 75	110801005, 9040 pH. Run on 07/01/19 12:49 is	6.9 days past hold. Sample received after	hold date.						
R7.3	MS Sample	e #544944: Calcium -59% spike recovery outside	e laboratory QC limit of 10-200%.							
R7.3	MS Sample	#545338: Chloride 121% spike recovery outsic	le laboratory QC limit of 80-120%.							
R7.3	MSD Samp	ble #544945: Calcium -72% spike recovery outsi	de laboratory QC limit of 10-200%.							
R7.3	MSD Samp	ble #545339: Chloride 121% spike recovery outs	ide laboratory QC limit of 80-120%.							

2 · · · ·	Document I Sample Condition I		Document Revised: 03-14-19 Page 1 of 1
Pace Analytical"	Document		Issuing Authority:
í.	F-DAL-C-001	-rev.9	Pace Dallas Quality Office
	Sample Conditi	on Upon Re	
	Dallas DFt	Worth	WO#:75110801
Client Name: SCS Engineens Courier: FedEX UPS USPS Client LS Tracking #:			
Custody Seal on Cooler/Box: Yes D No	Packing Material: B	ubble Wrap/Bags	Foam _ None Other _
Received on ice: Yes / No D Type of Ice: V	Net Blue	95 A	
Received on ice: Yes f No \Box Type of Ice: Thermometer Used: $\frac{12}{2}$ Cooler	Temp °C: _2.% (Re	corded) 0 ((Correction Factor) 2.8 (Actual)
•			
Chain of Custody rolinguished	Temperature sho	uld be above free	zing to 6°C
Chain of Custody relinquished		Yes Z No 🗆	
Sampler name & signature on COC		Yes Z No 🗆	
Short HT analyses (<72 hrs)		Yes D No	
Sufficient Volume received		Yes 🗅 No 🗆	
Correct Container used		Yes A No 🗆	
Container Intact		Yes O No 🗆	
Sample pH Acceptable		Yes No D	NA 🗆
pH Strips: <u>나 3 영식역</u> Residual Chlorine Present	-	Yes 🗆 No 🗆	NAG
Cl Strips: Sulfide Present		Yes 🗆 No 🗆	\checkmark
Lead Acetate Strips:			•
Are soil samples (volatiles, TPH) recei	ived in 5035A Kits	Yes 🗆 No 🗆	NA
Unpreserved 5035A soil frozen within	n 48 hrs	Yes 🗆 No 🗆	s.
Headspace in VOA (>6mm)		Yes 🗆 No 🗆	NA D
Project sampled in USDA Regulated A State Sampled:てメ	Nrea:	Yes 🗗 No 🗆	
Non-Conformance(s):		Yes D Ng D	

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A				Section C																		
		Section B Required Projec	t Information:			Invo	oice Ir	nformat	ion:										P	age :		1 Of 1
Company			ug Steen			Atte	ention:															
Address:	1901 Central Dr	Copy To:				10.00		Name:												_		
Bedford,	TX 76021					_	iress:										200	a shirt	A Start	Regu	lato	ry Agency & herest
	dsteen@scsengineers.com	Purchase Order				_	e Quo	_	_		_		_		_		_					
Phone:	NONE Fax	Project Name:	Sandy Creek	GW		Pace Project Manager: leslie.underwood@pacelabs.com, Pace Profile #: 7268										12 -	200	S.R.U	Sta	-	ocation Asser Section	
Requeste	d Due Date	Project #:				Pac	e Pro	nie #:	7268		-	in the second second		Dee	onto d	land.un1	s Filter	od (VA	n	Sec. 15	1	X
ITEM #	MATRIX Drinking W Wate Wate Wate Wate Wate Wate Wate Product Sord/Solid Oil One Character per box. (A-Z, 0-9 /, -) Sample Ids must be unique Tissue	wr S		COLLECTED	ND	& OF CONTAINERS	Unpreserved	H2SO4 HNO3	eserv	atives Na2S203		Analyses Test Y/N	pH by 9040	TDS Chloride, Fluoride, Sulfale	als (Ca and B)				9		Residual Chlorine (Y/N)	75110801
E		44	and the second se	TIME DATE	ТІМЕ		-		Ρ	žž	žč		đ	티하	ß	_	\vdash	$ \mid$			ž	
1	BW-1	v	л 0/24	13:45 -	+	14	13						x	x x	x	_						-001
A STORY				14:15 -		11	11	1				11									Г	-002
-8	MW-1	V	/T	- כוידי					+			41	X	x x	X		\vdash	-			F	
age	MW-2		л	14:40 -									x	xx								~003
N	10177-2	V				++	11		+	-1-	++	11	F					-		H	F	-004
3.0	MW-3	v	л	15:10 -									X	x x	X			1			L	
82.3	DUP				— T	1	ķ	7					x	xx	x							~00S
STREET.		ľ							$\uparrow\uparrow$			1	<u> </u>		Ť†		\top			\square	F	
6			1-1			+	+	\vdash	+		++		\vdash	-	+	-			\vdash	H	ł	
7			1			_			\vdash	_	+	_	\vdash	_	++	_		+		$\left \right $	-	
8	WO#:7511	0801																				
9	MOH · 1 DIT	000.	-		1										11							
1000	PM: VPE Due	Date: (7/02/19		+	+	+		+		++		H		++		+	-		+	t	
10										_								-			ļ	
11	CLIENT: SCS Engine	501																				
非常的主要			1.1		+	+	1	+	++		++		H		++	-	++				l	
12	an owner All College and the second	and the second second				1000								22		The second		Col March			_	The set of
1.54	ADDITIONAL COMMENTS	REI	INQUISHED BY !	AFFILIATION	DATE	記録	TIME	State -		AC	CEPTED	BYIAF	FILIA	TION	20		DATE	1	TIME	Rea		SAMPLE CONDITIONS
		D.1.	PSt	- Isra	6/25	19	3:1	0	. 1	11	MA	MA	24	PO	10	60.5	520	141	0810	2	2	BYNV
		- rege		LIPALL	12. 210 2	019	h	ant.	£/V	Ŵ	mal		4	11	~	la -			AGC	1	<i>L</i> .	- y ry
	n	care	nand		e-26.14		130	-	mai	rrun	dal	inn	200) / /	2	- A	21.1	60	090 130	2	CA	• VVV
			~~~	feat	e-ve.l	4	120	-	The	IMI	uni	1011	U.	in	刑	5 fé	wi	119	190	10.	. 1	///
				C A A	100	-	1		0			,	-7	5	7	4	10			<u> </u>		
			3	SAMP	LER:	p	0	16	2	TE	SIV	_	L	in 1	1	1	$\sim$	La		-		
				No										0								



10450 Stancliff Rd. Suite 210 Houston, TX 77099 T: +1 281 530 5656 F: +1 281 530 5887

January 14, 2020

Jim Lawrence SCS Engineers 1901 Central Drive Suite 550 Bedford, TX 76021

Work Order: HS19120609

Laboratory Results for: Sandy Creek

Dear Jim,

ALS Environmental received 5 sample(s) on Dec 12, 2019 for the analysis presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested. Results are expressed as "as received" unless otherwise noted.

QC sample results for this data met EPA or laboratory specifications except as noted in the Case Narrative or as noted with qualifiers in the QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained by ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

If you have any questions regarding this report, please feel free to call me.

Sincerely,

Generated By: JUMOKELAWAL Dane J. Wacasey

Page 1 of 22

# Client:SCS EngineersProject:Sandy CreekWork Order:HS19120609

Lab Samp ID	Client Sample ID	Matrix	TagNo	Collection Date	Date Received	Hold
HS19120609-01	BW-1	Groundwater		10-Dec-2019 14:30	12-Dec-2019 08:00	
HS19120609-02	MW-1	Groundwater		10-Dec-2019 14:50	12-Dec-2019 08:00	
HS19120609-03	MW-2	Groundwater		10-Dec-2019 15:03	12-Dec-2019 08:00	
HS19120609-04	MW-3	Groundwater		10-Dec-2019 15:30	12-Dec-2019 08:00	
HS19120609-05	DUP	Groundwater		10-Dec-2019 14:40	12-Dec-2019 08:00	

Page 2 of 22

RIGHT SOLUTIONS | RIGHT PARTNER VI.C-425

**CASE NARRATIVE** 

#### **ALS Houston, US**

## Client:SCS EngineersProject:Sandy CreekWork Order:HS19120609

#### Work Order Comments

· Sample received outside method holding time for pH. pH is an immediate test. Sample results are flagged with an "H" qualifier. The

temperature at the time of pH is reported. Please note that all pH results are already normalized to a temperature of 25 °C.

#### Metals by Method SW6020

#### Batch ID: 149347

Sample ID: BW-1 (HS19120609-01)

Sample ran at 5x due to high concentration of Sodium.

Sample ID: DUP (HS19120609-05)

Sample ran at 5x due to high concentration of Sodium.

#### Sample ID: HS19121499-01MS

· MS and MSD are for an unrelated sample

#### Sample ID: MW-2 (HS19120609-03)

Sample ran at 5x due to high concentration of Sodium.

Sample ID: MW-3 (HS19120609-04)

Sample ran at 5x due to high concentration of Sodium.

#### WetChemistry by Method SW9056

#### Batch ID: R354039

#### Sample ID: MW-3 (HS19120609-04MS)

 The MS and/or MSD recovery was outside of the control limits; however, the result in the parent sample is greater than 4x the spike amount. (Sulfate)

#### WetChemistry by Method SW9040C

#### Batch ID: R352956

• The test results meet requirements of the current NELAP standards, state requirements or programs where applicable.

#### WetChemistry by Method M2540C

#### Batch ID: R352817

. The test results meet requirements of the current NELAP standards, state requirements or programs where applicable.

Page 3 of 22

VI.C-426

							Date. IT ball Lo
Client:	SCS Engineer	s				ANALYT	CAL REPORT
Project:	Sandy Creek				WorkO	rder:HS19	120609
Sample ID:	BW-1				La	b ID:HS19	120609-01
Collection Date:	10-Dec-2019 ⁻	14:30			M	atrix:Grou	ndwater
ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A	100	Method	I:SW6020	Stand the literation	Prep:SW3010A	/ 03-Jan-2020	Analyst: JHD
Arsenic	0.00236	J	0.00200	0.0100	mg/L	5	06-Jan-2020 23:09
Boron	2.98		0.0550	0.100	mg/L	5	06-Jan-2020 23:09
Calcium	591		0.170	2.50	mg/L	5	06-Jan-2020 23:09
Selenium	U		0.00550	0.0100	mg/L	5	06-Jan-2020 23:09
TOTAL DISSOLVED SOLIDS B	Y SM2540C	Method	I:M2540C				Analyst: KAH
Total Dissolved Solids (Residu Filterable)	ie, 6,300		5.00	10.0	mg/L	1	17-Dec-2019 16:30
PH BY SW9040C		Method:	SW9040C				Analyst: MWG
pН	7.11	н	0.100	0.100	pH Units	1	19-Dec-2019 16:00
Temp Deg C @pH	22.4	н	0	0	DEG C	1	19-Dec-2019 16:00
ANIONS BY SW9056A		Method	I:SW9056				Analyst: KMU
Chloride	1,150		4.00	10.0	mg/L	20	07-Jan-2020 12:02
Fluoride	0.309		0.0500	0.100	mg/L	1	07-Jan-2020 11:47
Sulfate	2,830		20.0	50.0	mg/L	100	07-Jan-2020 15:49

Note: See Qualifiers Page for a list of qualifiers and their explanation.

Page 4 of 22

Client: Project: Sample ID: Collection Date:	SCS Engineers Sandy Creek MW-1 10-Dec-2019 14:50			La	ANALYTIC Drder:HS197 ab ID:HS197 fatrix:Groun	120609-02
ANALYSES	RESULT QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED

ICP-MS METALS BY SW6020A	1.5	Metho	d:SW6020	and the second second	Prep:SW3010A	03-Jan-2020	Analyst:	JHD
Arsenic	0.000667	J	0.000400	0.00200	mg/L	1	07-Jan-2020 1	14:24
Boron	1.10		0.0550	0.100	mg/L	5	06-Jan-2020 2	23:11
Calcium	534		0.170	2.50	mg/L	5	06-Jan-2020 2	23:11
Selenium	0.0809		0.00550	0.0100	mg/L	5	06-Jan-2020 2	23:11
TOTAL DISSOLVED SOLIDS BY SM	2540C	Metho	d:M2540C		1.1		Analyst:	KAH
Total Dissolved Solids (Residue, Filterable)	3,720		5.00	10.0	mg/L	1	17-Dec-2019	16:30
PH BY SW9040C		Method	:SW9040C				Analyst:	MWC
рН	7.43	н	0.100	0.100	pH Units	1	19-Dec-2019 1	16:00
Temp Deg C @pH	22.4	н	0	0	DEG C	1	19-Dec-2019 1	16:00
ANIONS BY SW9056A		Metho	d:SW9056				Analyst:	KML
Chloride	192		2.00	5.00	mg/L	10	07-Jan-2020 1	12:31
Fluoride	0.236		0.0500	0.100	mg/L	1	07-Jan-2020 1	12:16
Sulfate	2,420		20.0	50.0	mg/L	100	07-Jan-2020 1	16:04

Date: 14-Jan-20

Z							
Client:	SCS Engineer	's				ANALYT	CAL REPORT
Project:	Sandy Creek				WorkOrder:HS19120609		
Sample ID:	MW-2				La	b ID:HS19	120609-03
Collection Date:	10-Dec-2019	15:03			Ma	atrix:Grour	ndwater
ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	I:SW6020		Prep:SW3010A	/ 03-Jan-2020	Analyst: JHD
Arsenic	0.00219	J	0.00200	0.0100	mg/L	5	06-Jan-2020 23:14
Boron	1.48		0.0550	0.100	mg/L	5	06-Jan-2020 23:14
Calcium	660		0.170	2.50	mg/L	5	06-Jan-2020 23:14
Selenium	U		0.00550	0.0100	mg/L	5	06-Jan-2020 23:14
TOTAL DISSOLVED SOLIDS B	Y SM2540C	Method	I:M2540C				Analyst: KAH
Total Dissolved Solids (Residu Filterable)	ie, 8,120		5.00	10.0	mg/L	1	17-Dec-2019 16:30
PH BY SW9040C		Method	SW9040C				Analyst: MWG
рН	6.93	Н	0.100	0.100	pH Units	1	19-Dec-2019 16:00
Temp Deg C @pH	23.4	Н	0	0	DEG C	1	19-Dec-2019 16:00
ANIONS BY SW9056A		Method	I:SW9056				Analyst: KMU
Chloride	2,180		10.0	25.0	mg/L	50	07-Jan-2020 13:00
Fluoride	0.229		0.100	0.200	mg/L	2	07-Jan-2020 15:34
Sulfate	2,620		10.0	25.0	mg/L	50	07-Jan-2020 13:00

Note: See Qualifiers Page for a list of qualifiers and their explanation.

Page 6 of 22

Client:	SCS Engineers		ANALYTICAL REPORT
Project:	Sandy Creek		WorkOrder:HS19120609
Sample ID:	MVV-3		Lab ID:HS19120609-04
Collection Date:	10-Dec-2019 15:30		Matrix:Groundwater
		REPORT	DILUTION DATE

ANALYSES	RESULT	QUAL	MDL.	REPORT LIMIT	UNITS	FACTOR	ANALYZED
ICP-MS METALS BY SW6020A		Method	I:SW6020	2 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Prep:SW3010A	/ 03-Jan-2020	Analyst: JHD
Arsenic	0.00240	J	0.00200	0.0100	mg/L	5	06-Jan-2020 23:16
Boron	1.26		0.0550	0.100	mg/L	5	06-Jan-2020 23:16
Calcium	572		0.170	2.50	mg/L	5	06-Jan-2020 23:16
Selenium	U		0.00550	0.0100	mg/L	5	06-Jan-2020 23:16
TOTAL DISSOLVED SOLIDS BY SM	12540C	Method	1:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	5,830		5.00	10.0	mg/L	1	17-Dec-2019 16:30
PH BY SW9040C		Method	SW9040C				Analyst: MWG
рН	6.67	н	0.100	0.100	pH Units	1	19-Dec-2019 16:00
Temp Deg C @pH	22.2	Н	0	0	DEG C	1	19-Dec-2019 16:00
ANIONS BY SW9056A		Method	I:SW9056				Analyst: KMU
Chloride	345		2.00	5.00	mg/L	10	07-Jan-2020 14:06
Fluoride	0.137		0.0500	0.100	mg/L	1	07-Jan-2020 13:22
Sulfate	3,140		20.0	50.0	mg/L	100	07-Jan-2020 16:18

Date: 14-Jan-20

Client:	SCS Engineer	s				CAL REPORT		
Project:	Sandy Creek				WorkOrder:HS19120609			
Sample ID:	DUP				La	b ID:HS19	120609-05	
Collection Date:	10-Dec-2019 1	14:40			M	atrix:Grour	ndwater	
ANALYSES	RESULT	QUAL	MDL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED	
ICP-MS METALS BY SW6020A		Method	:SW6020		Prep:SW3010A	/ 03-Jan-2020	Analyst: JHD	
Arsenic	0.00234	J	0.00200	0.0100	mg/L	5	06-Jan-2020 23:18	
Boron	2.86		0.0550	0.100	mg/L	5	06-Jan-2020 23:18	
Calcium	607		0.170	2.50	mg/L	5	06-Jan-2020 23:18	
Selenium	۰U		0.00550	0.0100	mg/L	5	06-Jan-2020 23:18	
TOTAL DISSOLVED SOLIDS B	Y SM2540C	Method	:M2540C				Analyst: KAH	
Total Dissolved Solids (Residu Filterable)	ie, 6,370		5.00	10.0	mg/L	1	17-Dec-2019 16:30	
PH BY SW9040C		Method:	SW9040C				Analyst: MWG	
рН	7.17	н	0.100	0.100	pH Units	1	19-Dec-2019 16:00	
Temp Deg C @pH	21.8	н	0	0	DEG C	1	19-Dec-2019 16:00	
ANIONS BY SW9056A		Method	:SW9056				Analyst: KMU	
Chloride	1,150		4.00	10.0	mg/L	20	07-Jan-2020 15:05	
Fluoride	0.230		0.0500	0.100	mg/L	1	07-Jan-2020 14:50	
Sulfate	2,890		40.0	100	mg/L	200	07-Jan-2020 15:20	

Note: See Qualifiers Page for a list of qualifiers and their explanation.

Page 8 of 22

## Client:SCS EngineersProject:Sandy CreekWorkOrder:HS19120609

Batch ID: 149347		Start Dat	e: 03 Jan 202	20 09:00	End Date: 03 Jan 2020 13:00		
Method: WATER -	SW3010A		$\hat{U} \in \hat{U}_{1,1}$	к	Prep Code: 3010A	· · · · · · · · · · · · · · · · · · ·	
Sample ID	Container	Sample Wt/Vol	Final Volume	Prep Factor			
HS19120609-01		10 (mL)	10 (mL)	1			
HS19120609-02		10 (mL)	10 (mL)	1			
HS19120609-03		10 (mL)	10 (mL)	1			
HS19120609-04		10 (mL)	10 (mL)	1			
HS19120609-05		10 (mL)	10 (mL)	1			

Weight / Prep Log

Date: 14-Jan-20

#### RIGHT SOLUTIONS PRICHT PARTNER VI.C-432

Client: Project: WorkOrder:	SCS Engineers Sandy Creek HS19120609				DATES RE	PORT
Sample ID	Client Samp ID	Collection Date	Leachate Date	Prep Date	Analysis Date	DF
Batch ID: 149347	7(0) Test Name	: ICP-MS METALS BY S	W6020A		Matrix: Groundw	ater
HS19120609-01	BW-1	10 Dec 2019 14:30		03 Jan 2020 13:00	06 Jan 2020 23:09	5
HS19120609-02	MW-1	10 Dec 2019 14:50		03 Jan 2020 13:00	07 Jan 2020 14:24	1
HS19120609-02	MW-1	10 Dec 2019 14:50		03 Jan 2020 13:00	06 Jan 2020 23:11	5
HS19120609-03	MW-2	10 Dec 2019 15:03		03 Jan 2020 13:00	06 Jan 2020 23:14	5
HS19120609-04	MW-3	10 Dec 2019 15:30		03 Jan 2020 13:00	06 Jan 2020 23:16	5
HS19120609-05	DUP	10 Dec 2019 14:40		03 Jan 2020 13:00	06 Jan 2020 23:18	5
Batch ID: R3528	17(0) Test Name	: TOTAL DISSOLVED S	OLIDS BY SM2540C		Matrix: Groundw	ater
HS19120609-01	BW-1	10 Dec 2019 14:30			17 Dec 2019 16:30	1
HS19120609-02	MW-1	10 Dec 2019 14:50			17 Dec 2019 16:30	1
HS19120609-03	MW-2	10 Dec 2019 15:03			17 Dec 2019 16:30	1
HS19120609-04	MW-3	10 Dec 2019 15:30			17 Dec 2019 16:30	1
HS19120609-05	DUP	10 Dec 2019 14:40			17 Dec 2019 16:30	1
Batch ID: R3529	56 ( 0 ) Test Name	: PH BY SW9040C			Matrix: Groundw	ater
HS19120609-01	BW-1	10 Dec 2019 14:30			19 Dec 2019 16:00	1
HS19120609-02	MW-1	10 Dec 2019 14:50			19 Dec 2019 16:00	1
HS19120609-03	MW-2	10 Dec 2019 15:03			19 Dec 2019 16:00	1
HS19120609-04	MW-3	10 Dec 2019 15:30			19 Dec 2019 16:00	1
HS19120609-05	DUP	10 Dec 2019 14:40			19 Dec 2019 16:00	1
Batch ID: R3540	39 ( 0 ) Test Name	: ANIONS BY SW9056A			Matrix: Groundw	ater
HS19120609-01	BW-1	10 Dec 2019 14:30			07 Jan 2020 15:49	100
HS19120609-01	BW-1	10 Dec 2019 14:30			07 Jan 2020 12:02	20
HS19120609-01	BW-1	10 Dec 2019 14:30			07 Jan 2020 11:47	1
HS19120609-02	MW-1	10 Dec 2019 14:50			07 Jan 2020 16:04	100
HS19120609-02	MW-1	10 Dec 2019 14:50			07 Jan 2020 12:31	10
HS19120609-02	MW-1	10 Dec 2019 14:50			07 Jan 2020 12:16	1
HS19120609-03	MW-2	10 Dec 2019 15:03			07 Jan 2020 15:34	2
HS19120609-03	MW-2	10 Dec 2019 15:03			07 Jan 2020 13:00	50
HS19120609-04	MW-3	10 Dec 2019 15:30			07 Jan 2020 16:18	100
HS19120609-04	MW-3	10 Dec 2019 15:30			07 Jan 2020 14:06	10
HS19120609-04	MW-3	10 Dec 2019 15:30			07 Jan 2020 13:22	1
HS19120609-05	DUP	10 Dec 2019 14:40			07 Jan 2020 15:20	200
HS19120609-05	DUP	10 Dec 2019 14:40			07 Jan 2020 15:05	20
HS19120609-05	DUP	10 Dec 2019 14:40			07 Jan 2020 14:50	1

Page 10 of 22

=

# Client:SCS EngineersProject:Sandy CreekWorkOrder:HS19120609

QC B	ATCH	REP	ORT
------	------	-----	-----

Batch ID: 1	49347 ( 0 )	Inst	rument: I	CPMS04	M	ethod: I	CP-MS MET	ALS BY SWE	020A
MBLK	Sample ID:	MBLK-149347		Units	mg/L	Ana	alysis Date:	08-Jan-2020	15:21
Client ID:		Ru	un ID: ICPM	S04_354019	SeqNo: 5	429119	PrepDate:	03-Jan-2020	DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Arsenic		U	0.00200						
Boron		U	0.0200						
Calcium		U	0.500						
Selenium		U	0.00200						
LCS	Sample ID:	LCS-149347		Units:	mg/L	Ana	alysis Date:	06-Jan-2020	22:52
Client ID:		R	un ID: ICPM	S05_353879	SeqNo: 5	426277	PrepDate:	03-Jan-2020	DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit		RPD %RPD Limit Qua
Arsenic		0.04952	0.00200	0.05	0	99.0	80 - 120		
Boron		0.4411	0.0200	0.5	0	88.2	80 - 120		
Calcium		4.91	0.500	5	0	98.2	80 - 120		
Selenium		0.04954	0.00200	0.05	0	99.1	80 - 120		
MS	Sample ID:	HS19121499-01MS	6	Units:	mg/L	Ana	alysis Date:	06-Jan-2020	22:58
Client ID:		R	un ID: ICPM	S05_353879	SeqNo: 5	426280	PrepDate:	03-Jan-2020	DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit		RPD %RPD Limit Qua
Arsenic		0.05025	0.00200	0.05	0.000332	99.8	80 - 120		
Boron		0.5313	0.0200	0,5	0.04774	96.7	80 - 120		
Calcium		92.56	0.500	5	86.11	129	80 - 120		S
Selenium		0.05255	0.00200	0.05	0.001974	101	80 - 120		
MSD	Sample ID:	HS19121499-01MS	SD	Units:	mg/L	Ana	alysis Date:	06-Jan-2020	23:00
Client ID:		R	un ID: ICPM	S05_353879	SeqNo: 5	426281	PrepDate:	03-Jan-2020	DF: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Arsenic		0.04878	0.00200	0.05	0.000332	96.9	80 - 120	0.05025	2.97 20
Boron		0.4838	0.0200	0.5	0.04774	87.2	80 - 120	0.5313	9.37 20
Calcium		88	0.500	5	86.11	37.8	80 - 120	92,56	5.06 20 S
		0.05123	0.00200	0.05	0.001974	98.5	80 - 120	0.05255	2.55 20

Page 11 of 22

÷

2

-

Client:	SCS Engineers
Project:	Sandy Creek
WorkOrder:	HS19120609

~~	DATON	DEDODT
QC	BAICH	REPORT

Batch ID:	149347 ( 0 )	Inst	rument:	ICPMS04	M	lethod: I	CP-MS MET	ALS BY SW6	020A	Al	1
PDS	Sample ID:	HS19121499-01PE	os	Units	mg/L	Ana	alysis Date:	06-Jan-2020	23:03		
Client ID:		R	un ID: ICPN	IS05_353879	SeqNo: !	5426282	PrepDate:	03-Jan-2020	DI	<del>.</del> :1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	
Arsenic		0.1027	0.00200	0.1	0.000332	102	75 - 125				
Calcium		96.55	0.500	10	86.11	104	75 - 125				(
Selenium		0.1061	0.00200	0.1	0.001974	104	75 - 125				
SD	Sample ID:	HS19121499-01SE	)	Units:	mg/L	Ana	alysis Date:	06-Jan-2020	22:56		
Client ID:		R	un ID ICPN	NS05_353879	SeqNo: !	5426279	PrepDate:	03-Jan-2020	DF	F: 5	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%D	%D Limil	t Qual
Arsenic		U	0.0100					0.000332		0 10	)
Boron		0.07153	0.100					0.04774		0 10	)
Calcium		85.08	2.50					86.11	1.1	19 10	)
Selenium		U	0.0100					0.001974		0 10	)
The following	g samples were analyze		120609-01 120609-05	HS191206	09-02	HS191206	09-03	HS19120609-	04		

Page 12 of 22

**QC BATCH REPORT** 

#### **Client:** SCS Engineers **Project:** Sandy Creek WorkOrder: HS19120609

			_				-			
Batch ID:	R352817 ( 0 )	Instrumen	it:	Balance1	1.00	Method:	TOTAL DISS	OLVED SOL	IDS BY S	SM2540C
MBLK	Sample ID:	WBLK-121719		Units:	mg/L	An	alysis Date:	17-Dec-2019	9 16:30	
Client ID:		Run ID:	Bala	ince1_352817	SeqNo:	5398043	PrepDate:		DF	:1
Analyte		Result	PQL	SPK Val	SPK Ref Value	f %REC	Control Limit	RPD Ref Value		RPD Limit Qual
Total Disso Filterable)	lved Solids (Residue,	U	10.0							
LCS	Sample ID:	WLCS-121719		Units	mg/L	An	alysis Date:	17-Dec-2019	9 16:30	
Client ID:		Run ID:	Bala	Ince1_352817	SeqNo:	5398044	PrepDate:		DF	:1
Analyte		Result	PQL	SPK Val	SPK Ref Value	f %REC	Control Limit	RPD Ref Value		RPD Limit Qual
Total Disso Filterable)	lved Solids (Residue,	1024	10.0	1000	0	) 102	85 - 115			
DUP	Sample ID:	HS19120760-27DUP		Units:	mg/L	An	alysis Date:	17-Dec-2019	9 16:30	
Client ID:	·	Run ID:	Bala	nce1_352817	SeqNo:	5398042	PrepDate:		DF	:1
Analyte		Result	PQL	SPK Val	SPK Ref Value	f %REC	Control Limit	RPD Ref Value		RPD Limit Qual
Total Disso Filterable)	lved Solids (Residue,	14520	10.0					14620	0.68	65
DUP	Sample ID:	HS19120466-02DUP		Units:	mg/L	An	alysis Date:	17-Dec-2019	16:30	
Client ID	•	Run ID:	Bala	ince1_352817	SeqNo:	5398022	PrepDate:		DF	1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value		RPD Limit Qual
Total Disso Filterable)	lved Solids (Residue,	1392	10.0					1382	0.72	15

The following samples were analyzed in this batch: HS19120609-01 HS19120609-05 HS19120609-04 HS19120609-02 HS19120609-03

Page 13 of 22

Client:	SCS Engineers
Project:	Sandy Creek
WorkOrder:	HS19120609

#### **QC BATCH REPORT**

Batch ID: R352956 ( 0 ) Instrument: WetChem_HS Method: PH BY SW9040C

DUP Client ID:	Sample ID:	HS19120942-01DUP Run	ID: WetCl	Units: hem_HS_3529	pH Units 56 SeqNo: 4		lysis Date: PrepDate:	19-Dec-2019	016:00 DF:	1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit			RPD .imit Qual
рН		7.64	0.100					7.64	C	10
Temp Deg C @pH		21.5	0					21.8	1.39	10
The following sample	es were analyze	ed in this batch: HS19120 HS19120		HS1912060	9-02	HS1912060	9-03	HS19120609	-04	

Page 14 of 22

Client:	SCS Engineers
Project:	Sandy Creek
WorkOrder:	HS19120609

QC I	BAT	СН	REP	ORT
------	-----	----	-----	-----

Batch ID:	R3540	39(0)	Inst	rument: IC	CS2100	M	ethod: A	NIONS BY	SW9056A	
MBLK		Sample ID:	WBLKW1-010720		Units:	mg/L	Ana	alysis Date:	07-Jan-2020	11:03
Client ID:			R	un ID: ICS21	00_354039	SeqNo: 5	428725	PrepDate:		DF: 1
Analyte			Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Chloride			U	0.500						
Fluoride			U	0.100						
Sulfate			U	0.500						
LCS		Sample ID:	WLCSW1-010720		Units:	mg/L	Ana	alysis Date:	07-Jan-2020	11:18
Client ID:			R	un ID: ICS21	00_354039	SeqNo: 5	428726	PrepDate:		DF: 1
Analyte			Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Chloride			19.35	0.500	20	0	96.8	80 - 120		
Fluoride			3.77	0.100	4	0	94.2	80 - 120		
Sulfate			19_32	0.500	20	0	96.6	80 - 120		
LCSD		Sample (D:	WLCSDW1-01072	0	Units:	mg/L	Ana	alysis Date:	07-Jan-2020	11:32
Client ID:			R	un ID: ICS21	00_354039	SeqNo: 5	428727	PrepDate:		DF: 1
Analyte			Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Chloride			19.09	0.500	20	0	95.4	80 - 120	19.35	1.38 20
Fluoride			3.712	0.100	4	0	92.8	80 - 120	3.77	1.55 20
Sulfate			10.10	0.500	20	0	96.0	80 - 120	19.32	0.665 20
ounate			19.19	0.500	20	0	00.0			
MS		Sample ID:	HS19120609-04MS			mg/L		Ilysis Date:	07-Jan-2020	14:21
	MW-3	Sample ID;	HS19120609-04MS		Units:		Ana	Ilysis Date: PrepDate:	07-Jan-2020	14:21 DF: 10
MS	MW-3	Sample ID;	HS19120609-04MS	3	Units:	mg/L	Ana	-		
MS Client ID:	MW-3	Sample ID;	HS19120609-04MS Ri	s un ID: ICS21	Units: 00_354039	mg/L SeqNo: 5 SPK Ref	Ana <b>428738</b>	PrepDate: Control	RPD Ref	DF: 10 RPD
<b>MS</b> Client ID: Analyte	MW-3	Sample ID;	HS19120609-04MS Ri Result	S un ID: ICS21 PQL	Units: 00_354039 SPK Val	<b>mg/L</b> SeqNo: 5 SPK Ref Value	Ana <b>428738</b> %REC	PrepDate: Control Limit	RPD Ref	DF: 10 RPD

Page 15 of 22

=

Client:	SCS Engineers
Project:	Sandy Creek
WorkOrder:	HS19120609

#### **QC BATCH REPORT**

Batch ID:	R354039 ( 0 )	Instrum	ent:	ICS2100	M	ethod: /	NIONS BY	SW9056A			9.4
MSD	Sample ID:	HS19120609-04MSD		Units:	mg/L	Ana	alysis Date:	07-Jan-2020	14:36		
Client ID:	MW-3	Run IE	) ICS:	2100_354039	SeqNo: 5	5428739	PrepDate:		DF: 1	0	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit		R %RPD L	PD imit (	Qual
Chloride		436.6	5.00	100	344.6	92.0	80 - 120	433.1	0.802	20	
Fluoride		19.02	1.00	20	0.165	94.3	80 - 120	18.02	5.38	20	
Sulfate		3004	5.00	100	2972	31,3	80 - 120	2981	0.757	20	SEC
l'he followin	g samples were analyz	ed in this batch: HS191206 HS191206		HS1912060	9-02	HS191206	09-03	HS19120609-	04		

Page 16 of 22

#### ALS Houston, US

37

Client: Project:	SCS Engineers Sandy Creek	QUALIFIERS, ACRONYMS, UNITS
WorkOrder:	HS19120609	
Qualifier	Description	
•	Value exceeds Regulatory Limit	
a	Not accredited	
В	Analyte detected in the associated Method Blank above the Reporting Limit	
E	Value above quantitation range	
н	Analyzed outside of Holding Time	
J	Analyte detected below quantitation limit	
M	Manually integrated, see raw data for justification	
n	Not offered for accreditation	
ND	Not Detected at the Reporting Limit	
0	Sample amount is > 4 times amount spiked	
Р	Dual Column results percent difference > 40%	
R	RPD above laboratory control limit	
S	Spike Recovery outside laboratory control limits	
U	Analyzed but not detected above the MDL/SDL	
Acronym	Description	
DCS	Detectability Check Study	
DUP	Method Duplicate	
LCS	Laboratory Control Sample	
LCSD	Laboratory Control Sample Duplicate	
MBLK	Method Blank	
MDL	Method Detection Limit	
MQL	Method Quantitation Limit	
MS	Matrix Spike	
MSD	Matrix Spike Duplicate	
PDS	Post Digestion Spike	
PQL	Practical Quantitaion Limit	
SD	Serial Dilution	
SDL	Sample Detection Limit	
TRRP	Texas Risk Reduction Program	

Page 17 of 22

_

## CERTIFICATIONS, ACCREDITATIONS & LICENSES

Agency	Number	Expire Date
Arkansas	19-028-0	27-Mar-2020
California	2919, 2019-2020	30-Apr-2020
Dept of Defense	ANAB L2231	20-Dec-2021
Florida	E87611-28	30-Jun-2020
Illinois	2000322019-2	09-May-2020
Kansas	E-10352 2019-2020	31-Jul-2020
Kentucky	123043, 2019-2020	30-Apr-2020
Louisiana	03087, 2019-2020	30-Jun-2020
Maryland	343, 2019-2020	30-Jun-2020
North Dakota	R-193 2019-2020	30-Apr-2020
Oklahoma	2019-067	31-Aug-2020
Texas	TX104704231-19-23	30-Apr-2020

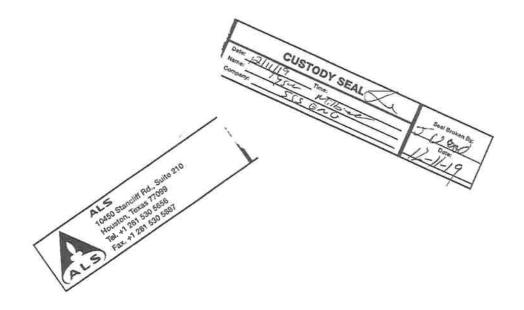
Page 18 of 22

						Sample Receipt	Checklis
Client Name:	SCS ENG	INEERS - Bedford TX		Date/	Time Received:	12-Dec-2019 08:00	1
Work Order:	HS19120	509		Rece	ived by:	JRM	
Checklist com	pleted by:	Raegen Giga eSignature	12-Dec-201 Date	9Reviewed by:	Dane J. Wa eSignature		ec-2019 Date
Matrices:	<u>GW</u>			Carrier name:	Greyhound		
Custody seals Custody seals VOA/TX1005/ Chain of custo Chain of custo Samplers nam Chain of custo Samples in pr Sample conta Sufficient sam All samples re	intact on sh intact on sa TX1006 Soli ody present? ody signed w ne present o ody agrees w oper contain iners intact? iple volume f iceived withi	ids in hermetically sealed when relinquished and rece n COC? vith sample labels? er/bottle?		Yes V Yes V	No       No         No       No	Not Present Not Present Not Present Not Present 1 Page(s) COC IDs:212588	
Temperature(	,			1.2°C uc/c		IR	25
Cooler(s)/Kit(s	s):			45387			
Date/Time sai	mple(s) sent	to storage:		12/12/2019 16:50			
Water - VOA	vials have ze	ero headspace?		Yes		No VOA vials submitted	
Water - pH ac	ceptable up	on receipt?		Yes	No 🗌	N/A	
pH adjusted?				Yes	No 🖌	N/A	
pH adjusted b	y:						
Login Notes:							
Client Contact	ted:		Date Contacted:		Person Cont	acted:	
Contacted By	:		Regarding:				
Comments:							

Date: 14-Jan-20

Corrective Action:

ALS Houston, US


Ċ	ALS)	Cincinnati, OH +1 513 733 5336 Everett, WA +1 425 356 2600	Holland	490 1511			e_ <u>i</u> o			n	I			SC	<b>191</b> S En Sandy	ginee	ers	<b></b>	
	Customer Information		1			AL	S Proje	et Manager	:										
Purchase Order			Designed		Proje	ct Informati	on		1.										
Work Order	Sandy Creek		Project I		Sand	dy Creek			A	pH V	/ 9040	C (904	OpH)					antin ta	11 1881
Company Name			Project Nu		_			_	В	9056	anions	W (9	056 Ci	. F, S(	04)				
Send Report To	SCS Engineers		Bill To Com	pany	SCS	Engineers			С		W 2540								
	Jim Lawrence		Invoice	e Attn	Krys	tal Kuntz - A	/P		D		W (602								
Address	1901 Central Drive		Adv	dress	1901	Central Driv	/e		E								-		
	Suite 550		Aut	01292	Suite	\$ 550			F										-
City/State/Zip	Bedford, TX 76021		City/State	e/Zip	Bedf	ord TX 7602	21		G			-		<u>x:</u>			-		
Phone	(817) 571-2288		P	hone		) 571-2288			н							-		-	
Fax				Fax		,			1				_						
e-Mail Address	JLawrence@scsengin	eers.com	e-Mail Add	1	kkuni	tz@scsengin	00000 000		1.										
No.	Sample Description		Date	Tir		Matrix	Pres.	# Bottles	J	P									
1 8W-1		10	2/10/19	143		Groundwa	_	4	-	B	C	D	E	F	G	н	1	J	Hold
2 MVV-1		1-	1	14	And in case of the local division of the loc	Groundwa			X		X	X.				<u> </u>			
3 MVV-2								4	X	X	X	X							
4 MW43				150		Groundwa		4	X	X	Х	Х							
5 DUP				2.	30	Groundwa	2,8	4	Х	Х	Х	X							
6			1	144	0	Groundwa	2,8	4	Х	Х	X	Х						F	
				-					5		1								
7								1	-		······								
8	4							1											
9									-	-	1	-							
0				1														-	
Sampler(s) Please F Tysur Mills Relinquished by:	rend Ki		Shipmer	nt Metho	d		red Turnar D 10 Wk Da	ound Time: (C			X 20					esults	Due Dat	e:	
TySen 1	Milbar Da	12/10/19 te: Time	1128	Received	30 a	111/		the second s	Vite Da Notes	sc	S Sand	the second second	ek	24 144					1
ogged by (Laboratory)	Da	<u>12-117/ 1</u> te: Time	1720	1	5.70	menory 1	2/12/	1 ORIAN	Co	oler ID		r Temp.	000	**			ox Below	1	
	1-HCI 2-HNO3 3-H	Time	5-Na ₂ S ₂ O ₃	Checked	by (Lab	oratory):	1 1		45	187	1	7.	Ĭ	-	it sui go Il sui qo				Checklet Lavyliv

Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse.
 The Chain of Custody is a legal document. All information must be completed accurately.

Copyright 2011 by ALS Environmental.

Page 20 of 22

RIGHT SOLUTIONS RIGHT PARTNER





Page 21 of 22

ALS	CUSTODY SEAL	Soul Broken By:
10450 Stancill Rd., Suite 210 Houston, Texas 77099 Tel. +1 281 530 5656 Fax. +1 281 530 56867	Date: 12-11-19 Time: 1730 Nema: 7 (Jan 2) Company: Art S	- 62/12/19

45387 DEC 12 2015.

			19. II 3
	11DEC19 21:02A	** LABE	
	Schd: GLI HOUSTON, TX	7219	GLI 3087836015
	ALS GLOBAL DALLAS 201-530-5656	US387	3m 12/12/11/1 08:00
ŝ	ALS GLOBAL DALLAS		Manual Wght:
	10450 STANCLIFF RD		180.0
			Tariff Wght:
	HOUSTON, TX 77099		180.0
	Phone: 281-530-565	6	PO/Ref #: 553191
	GPX DIRECT (B) Agency Phone: (713)	759-6550	WWW.SHIPGREYHOUND.COM

Page 22 of 22

RIGHT SOLUTIONS445 RIGHT PARTNER



Appendix C Historical Groundwater Analytical Data

SCES - December 2019 Semiannual Groundwater Monitoring Report

M/\Projects\16218157.00\Correspondence\R01312020 Sandy Creek Dec 2019 Annual Groundwater Monitoring and Corrective Action Report dock

												2161 R	REEK ENERG RATTLESNAK ESEL, TX 761	E ROAD												
Units	Water Level	Conductiviy wo/Su	Z Turbidity	uooog mg/L	Calcium	Chioride	2.52 te Hd Std. Units	Sulfate	Total Dissolved Solids	Antimony	yrsenic mg/L	Bartum Mg/L	Becyllium	Cadmium 1/8m	Chromium Walk	Cobait	read	(thium J/gm	Wercury	Motybdenum	Selentium T/Bu	mg/1	pCI/L	822-unijes pCl/L	7/D Combined Radium	T/Filuaride
MW-1 12/14/2015 2/25/2016 5/11/2016 8/16/2016 2/23/2017 6/7/2017 8/24/2017 12/20/2017 6/21/2018 12/13/2018 6/24/2019 12/10/2019	453.53 453.38 454.14 453.67 454.43 454.42 454.69 454.22 453.85 454.86 455.38 453.99	4.51 4.98 4.83 4.47 5.08 4.77 4.58 4.287 4.67 4.369 4.142 4.278	25.2 >800 800 17.7 452 500 223 66.2 681 30 22.9 64	1.2 1.4 2.6 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.25 1.35 1.1 1.1	454 520 1030 535 542 531 530 518 548 548 548 548 549 515 492 534	253 236 402 239 216 223 203 241 248 247 241 169 192	7.6 7.5 7.2 6.8 7 7 7.5 7.1 7.4 7.38 7.52 7.2 7.43	2090 2190 2580 2300 2130 2350 2010 2620 2340 2530 2570 2430 2420	4090 4060 5260 3880 3720 3980 3680 4550 4250 4270 4100 4030 3720	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 n/a n/a n/a n/a	<0.0050 <0.0050 0.12 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 n/a n/a n/a 0.00667	0.044 0.033 1 0.022 0.018 <0.20 0.019 0.02 0.017 n/a n/a n/a n/a	<0.0010 <0.0010 0.029 <0.0010 <0.0050 <0.0010 <0.0010 <0.0010 n/a n/a n/a n/a	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 n/a n/a n/a n/a n/a	0.0073 0.0074 0.69 <0.0050 <0.010 <0.0050 <0.0050 <0.0050 <0.0070 n/a n/a n/a n/a	<0.0025 <0.0025 0.087 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 n/a n/a n/a n/a n/a	<0.0050 0.0084 0.21 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.010 n/a n/a n/a n/a	0.43 0.39 0.78 0.41 0.37 0.44 0.395 0.38 n/a n/a n/a n/a	<0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 n/a n/a n/a n/a	<0.010 <0.010 <0.020 <0.010 <0.020 <0.010 <0.020 <0.020 <0.020 <0.020 <0.030 n/a n/a n/a n/a	0,16 0.2 0.039 0.13 0.16 0.066 0.15 0.17 0.18 n/a n/a n/a 0.0809	<0.00050 <0.00050 0.00089 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 n/a n/a n/a n/a n/a	1.04 ± 0.838 0.922 ± 0.720 3.94 ± 1.31 0.593 ± 0.620 0.338 ± 0.339 -0.207 ± 0.945 0.000 ± 0.449 0.577 ± 0.429 1.26 ± 0.629 n/a n/a n/a n/a n/a	$\begin{array}{c} 1.09 \pm 0.523 \\ 3.46 \pm 0.496 \\ 8.39 \pm 1.74 \\ 3.29 \pm 0.828 \\ 2.49 \pm 0.783 \\ 3.13 \pm 0.908 \\ 1.30 \pm 0.518 \\ 1.69 \pm 0.634 \\ 2.46 \pm 0.888 \\ n/a \\ n/a \\ n/a \\ n/a \\ n/a \end{array}$	2.13 2.382 12.33 3.883 2.828 2.923 1.3 2.267 3.72 n/a n/a n/a	<0.30 <0.30 <0.30 0.35 <0.30 <0.30 <0.30 <0.30 0.4 1.1 0.3 J 0.585 0.73 0.236
MW-2 12/14/2015 2/25/2016 5/11/2016 11/17/2016 2/23/2017 6/7/2017 8/24/2017 12/20/2017 6/21/2018 12/13/2018 6/24/2019 12/10/2019	424.11 429.50 430.72 430.80 430.85 431.12 431.20 429.47 430.02 430.72 432.28 430.72 432.28 430.19	10.6 11.3 10.8 11.9 10.7 13.7 11 11.4 6.198 12.66 11.89 10.77 8.676	2.8 52.2 23.7 5.5 0.4 6.2 30.5 8.1 37.7 4.42 15.1 9.87 19.1	1.9 2.4 2.2 2.1 1.9 1.9 1.9 2.2 1.9 2.58 1.7 1.48	569 697 613 680 701 646 640 664 716 706 690 656 660	1890 2080 2340 2440 2140 2320 2520 2520 2590 2840 2740 2420 2180	6.7 7.3 6.7 6.7 6.9 7.5 6.8 7.2 7.09 6.71 7.0 6.93	2810 2890 3010 3080 2770 3110 2970 3710 3100 3400 3220 3480 2620	8520 8070 9930 7870 9680 9630 14200 9600 9600 10200 10200 9560 8120	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 n/a n/a n/a n/a	<0.0050 0.014 0.0059 <0.0050 <0.0059 <0.010 <0.010 <0.012 n/a n/a n/a 0.00219	0.031 0.038 0.027 0.021 0.024 <0.20 0.016 0.017 0.022 n/a n/a n/a	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 n/a n/a n/a	<0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0010 <0.0020 <0.010 n/a n/a n/a n/a	<0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0014 n/a n/a n/a n/a	0.0061 <0.011 0.0079 0.0084 <0.010 0.0051 0.0055 0.0075 n/a n/a n/a	<0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,010 <0,020 n/a n/a n/a n/a	0.69 0.74 0.87 0.84 0.82 0.75 0.729 0.74 n/a n/a n/a	<0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 n/a n/a n/a n/a	<0,010 <0.010 <0.010 <0.024 <0.010 <0.020 <0.020 <0.020 n/a n/a n/a n/a	<0.010 <0.010 <0.010 <0.010 <0.020 <0.010 0.026 <0.040 n/a n/a n/a <0.010	<0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 n/a n/a n/a n/a	$\begin{array}{c} 1.41 \pm 0.938 \\ 0.857 \pm 0.590 \\ 0.859 \pm 0.561 \\ 0.237 \pm 0.329 \\ 0.923 \pm 0.594 \\ 1.52 \pm 1.50 \\ 0.344 \pm 0.415 \\ 1.12 \pm 0.610 \\ 0.945 \pm 0.578 \\ n/a \\ n/a \\ n/a \\ n/a \\ n/a \end{array}$	2.76 ± 0.771 2.57 ± 0.665 3.13 ± 0.822 3.28 ± 0.775 3.16 ± 0.826 4.27 ± 1.07 3.82 ± 0.931 3.78 ± 0.960 4.07 ± 0.940 n/a n/a n/a n/a	4.17 3.427 3.989 3.517 4.083 5.79 4.164 4.9 5.015 n/a n/a n/a n/a	0.98 <0.30 <0.30 0.64 0.35 0.46 1.3 0.32 <0.50 <0.6 0.618 <0.18 0.229
MW-3 12/14/2015 2/25/2016 5/11/2016 8/16/2016 11/17/2016 2/23/2017 6/7/2017 8/24/2017 12/20/2017 6/21/2018 12/13/2018 6/24/2019 12/10/2019	421.77 421.66 421.94 420.42 421.03 422.58 422.23 419.66 421.08 418.68 422.36 423.00 419.87	1.17 6.04 3.82 6.01 5.43 6.79 3.68 6.55 6.459 6.633 4.47 5.659 6.189	11.9 93.3 197 101 87 82 145 82.6 22.4 51.1 10.6 10.3 34.3	0.35 1.2 1.1 1.2 1.1 1.1 1.1 1.3 1.13 1.00 0.99 1.26	67.6 479 465 505 494 389 486 519 563 526 327 452 572	12.3 347 349 381 322 202 327 401 380 396 206 306 306 345	7.2 7 6.5 7.3 6.6 7 7.1 6.5 6.5 6.5 6.6 6.61 6.6 6.67	135 2430 2950 2420 1450 2860 2830 3160 1790 3130 3140	586 5440 5680 5420 2900 4740 6160 5790 6090 3520 5740 5830	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 n/a n/a n/a n/a n/a	<0.0050 0.0061 <0.0050 <0.0050 <0.010 <0.0050 <0.010 <0.0060 n/a n/a n/a 0.0024	0.021 0.052 0.024 0.018 0.028 <0.20 0.015 0.014 0.034 n/a n/a n/a n/a	<0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0010 <0.0010 <0.0010 n/a n/a n/a n/a	<0.0010 <0.0010 <0.0010 <0.0050 <0.0050 <0.0050 <0.0050 n/a n/a n/a n/a n/a	<0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0070 n/a n/a n/a n/a	<0.0025 0.0098 0.0059 0.006 0.0068 <0.010 0.0058 0.0088 n/a n/a n/a	<0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.010 <0.010 n/a n/a n/a n/a n/a	<0.050 0.85 0.98 0.94 0.7 0.62 1.03 0.92 n/a n/a n/a n/a	<0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 n/a n/a n/a n/a	<0.010 <0.010 <0.010 <0.020 <0.020 <0.020 <0.020 <0.030 n/a n/a n/a n/a	<0.010 <0.010 <0.010 <0.020 <0.020 <0.020 <0.020 <0.020 n/a n/a n/a <0.010	<0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 n/a n/a n/a n/a	$\begin{array}{c} 0.997 \pm 0.813 \\ 1.26 \pm 0.762 \\ 1.54 \pm 0.797 \\ 0.891 \pm 0.626 \\ 0.872 \pm .0579 \\ 0.239 \pm 1.09 \\ 0.941 \pm 0.658 \\ 1.26 \pm 0.600 \\ 0.626 \pm 0.567 \\ n/a \\ n/a$	0.736 ± 0.505 3.02 ± 0.791 1.62 ± 0.547 5.10 ± 1.13 5.23 ± 1.30 4.07 ± 1.03 2.76 ± 0.765 4.41 ± 1.07 2.77 ± 0.728 n/a n/a n/a n/a	1.733 4.28 3.16 5.991 6.102 3.831 3.701 5.67 3.396 n/a n/a n/a n/a	0.62 0.9 <0.30 <0.30 <0.30 0.45 0.57 <0.30 0.61 <0.3 0.662 <0.18 0.137
BW-1 12/14/2015 2/25/2016 5/11/2016 8/16/2016 11/17/2016 2/23/2017 6/7/2017 8/24/2017 12/20/2017 6/21/2018 12/13/2018 6/24/2019 12/10/2019 MCL	465.60 465.44 465.56 465.71 466.12 466.57 466.38 466.51 466.51 466.13 467.24 467.37 467.39	5.35 5.8 7.5 7.52 7.36 7.17 7.58 7.81 7.063 7.755 7.159 7.21 6.612	155 307 866 56 8.1 245 852 162 180 39.3 81.8 157 214	1.8 3.5 4 3.7 2.8 3.1 3.8 3.4 3.5 3.31 3.25 3.1 2.98 n/a	465 586 566 548 532 539 531 658 610 637 564 591	727 1050 1120 1130 991 1080 1020 1160 1200 1120 1160 1150	9.5 7.4 7 7.2 6.8 7.2 7.7 7.1 7.2 7.2 7.1 7.1 7.11 7.11 7	2130 2690 2610 2720 2590 2220 2870 2620 3030 2780 2930 2830 2830	4900 6420 6360 6280 7320 7260 6140 6640 6640 6380 6380 6300	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 n/a n/a n/a n/a n/a n/a n/a	<0,0050 0,015 0,0084 0,0066 <0,010 <0,0050 <0,010 <0,0050 n/a n/a n/a n/a 0,0026 0,0060	0.17 0.055 0.04 0.023 <0.20 0.026 0.037 0.044 n/a n/a n/a n/a 2	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 n/a n/a n/a n/a n/a n/a	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0010 <0.0020 <0.0020 n/a n/a n/a n/a n/a n/a 0.005	0.015 0.0053 0.011 0.0073 <0.0050 <0.0050 <0.0050 <0.0050 <0.0070 n/a n/a n/a n/a n/a 0.1	0.0026 0.0035 0.0035 0.0029 <0.0025 <0.0010 <0.0025 <0.0050 0.0034 n/a n/a n/a n/a n/a	<0.0050 0.0069 0.0091 <0.0050 <0.0050 <0.0050 <0.010 <0.010 <0.010 n/a n/a n/a n/a n/a n/a 0.015	0.7 0.71 0.79 0.78 0.74 0.73 0.79 0.738 0.73 n/a n/a n/a n/a	<0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 n/a n/a n/a n/a n/a 0.002	<0.010 <0.010 <0.010 0.022 <0.010 <0.020 <0.020 <0.020 <0.020 n/a n/a n/a n/a n/a	<0.010 <0.010 <0.010 <0.010 <0.020 <0.020 <0.020 <0.020 n/a n/a n/a n/a o.010	0.00073 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 n/a n/a n/a n/a n/a 0.002		1.82 ± 0.541 2.80 ± 0.710 3.42 ± 0.777	2.03 2.707 5.2 4.03 3.545 4.886 4.49 4.38 4.2 n/a n/a n/a n/a 5	<0.30 0.67 0.32 0.94 0.85 <0.30 <0.30 <0.30 <0.37 <0.50 <0.3 0.586 0.9 0.309 4

APPENDIX C - GROUNDWATER ANALYTICAL DATA 2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION SANDY CREEK ENERGY STATION

MCL - EPA Primary Drinking Water Maximum Contaminant Level

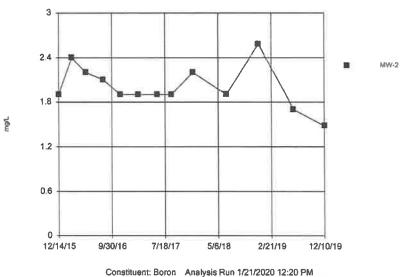
MCL - EPA Primary Drinking Water Maximum Contaminant Level 0.015 Exceedance of EPA Primary MCL 40 CFR 257 Appendix III Constituent 40 CFR 257 Appendix III & IV Constituent 40 CFR 257 Appendix III & IV Constituent "s" - Indicates analyte was not detected above the laboratory reporting limit "n/a" - Indicates constituent has no EPA Primary MCL

Appendix D Time Series Graphs

SCES - December 2019 Semiannual Groundwater Monitoring Report

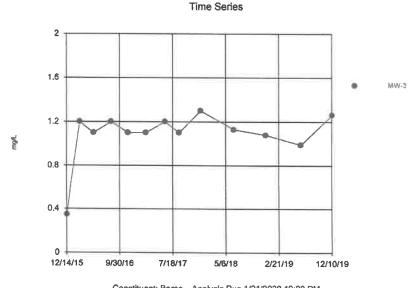
Mr/Projects/16218157.00/Correspondence/R01312020 Sandy Creak Dec 2019 Anniaci Groundwater Monitoling and Cerrective Action Report dock

Senter" v 9.5.32 Software licensed to SCS Aquesina, EPA


# The second secon

Time Series

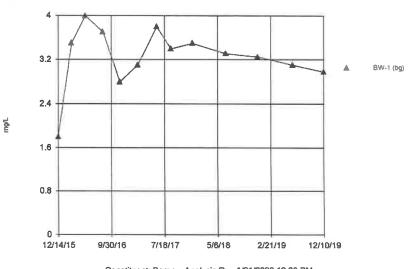
Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21 2020


Sentes" v.9.5 32 Software licensed to SCS Aquaterts, EPA

**Time Series** 



Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21.2020


Sentes" v 9 5 32 Solwers looned to 8CS Aqueters. EPA



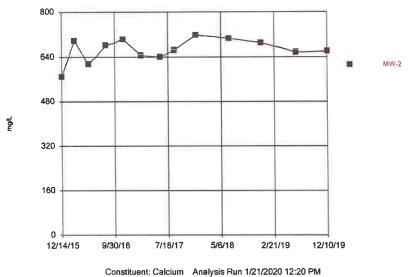
Constituent: Boron Analysis Run 1/21/2020 12:20 PM Sandy Creek Energy Station Client: Sandy Creek Date: Sandy Creek GWdata (Sanitas)_1 21.2020 Banitas^m v 8.5.32 Schwara licensed to SCS Aqualerta. EPA

VI.C-449





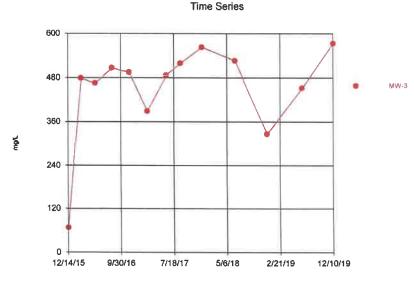
Constituent: Boron Analysis Run 1/21/2020 12:20 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21.2020


#### Sansan" v 9.5.32 Software Roursed to SCS Aquaterie EPA

**J** 

Time Series

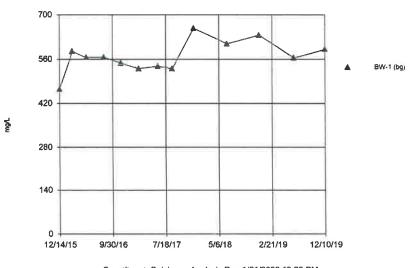
Constituent: Calcium Analysis Run 1/21/2020 12:20 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21.2020 Sanstan¹⁴ v.9 5 32 Software loansed to 6CS Aquaterne, EPA


Time Series



Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21.2020

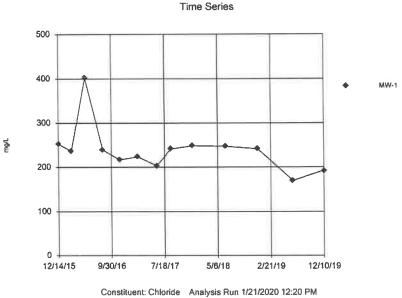
Time Series


Sentes* v 9.5.32 Soltware loaneed to BCB Aquaterra EPA

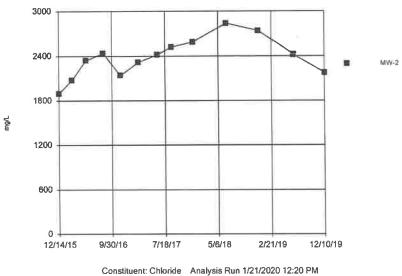


Constituent: Calcium Analysis Run 1/21/2020 12:20 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21.2020

VI.C-450


Senites" v 8 5 12 Software loansed to SCS Aquaterte EPA



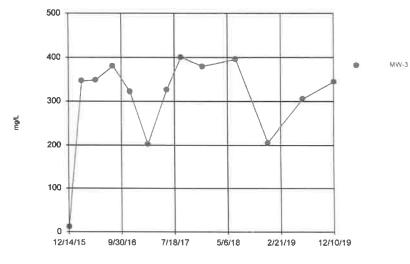

Constituent: Calcium Analysis Run 1/21/2020 12:20 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21.2020

#### Senites* v 9.5.32 Software licensed to SCS Aquataria EPA

Senites¹¹ v 9.5.32 Software licented to SCS Aquaterta. EPA





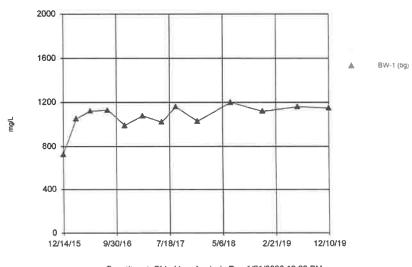



Time Series

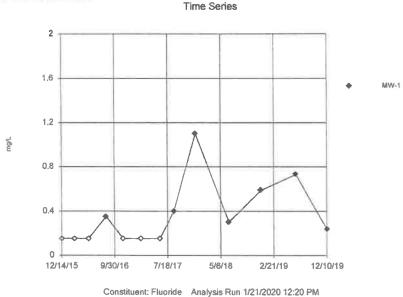
Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21.2020

Santas * v 9 5 32 Software licensed to SCS Aquaterra. EPA

Time Series



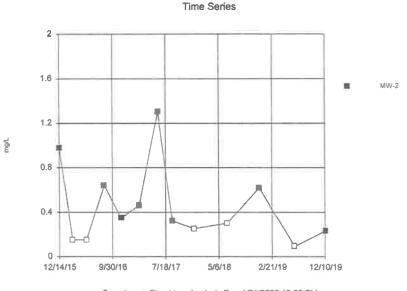

Constituent: Chloride Analysis Run 1/21/2020 12:20 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21.2020


VI.C-451

Senter* v 9.5.32 Software licensed to SCS Aquaterra. EPA

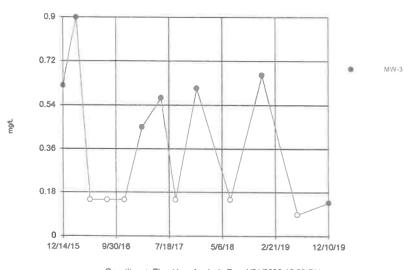





Constituent: Chloride Analysis Run 1/21/2020 12:20 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21.2020 Sentee" y 9.5.32 Software lowreed to SCS Aquaterra EPA Hollow symbols indicate censored values.

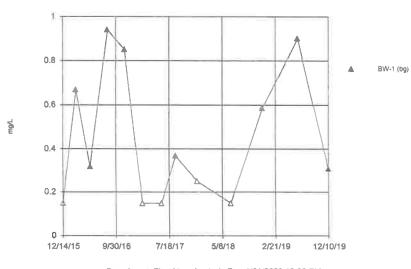





Time Series

Santas¹⁴ + 9.5.32 Software tooneed to SCS Aquateria EPA Hollow symbols indicate cansored values.




Constituent: Fluoride Analysis Run 1/21/2020 12:20 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21.2020

Sentes* + 8.5.32 Software licensed to SCS Aquateria: EPA Hollow symbols indicate consored values



Constituent: Fluoride Analysis Run 1/21/2020 12:20 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21.2020 Santan® + 9.5.32 Software licensed to SC8 Aquaterra EPA Hollow symbols indicate censored values.





Constituent: Fluoride Analysis Run 1/21/2020 12:20 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21.2020

VI.C-452

Senitas* v 9.5.32 Software loaneed to SCS Aqueteria, EPA

8

6.4

4.8

3.2

1.6

0

12/14/15

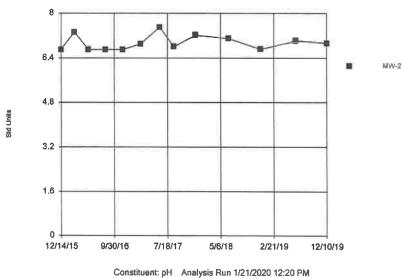
9/30/16

7/18/17

5/6/18

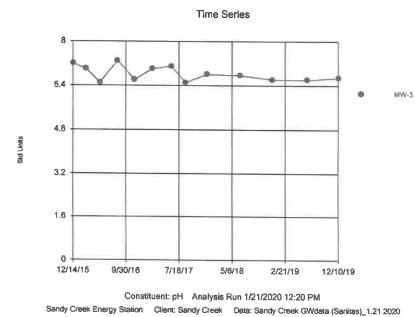
Constituent: pH Analysis Run 1/21/2020 12:20 PM

Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21.2020


2/21/19

12/10/19

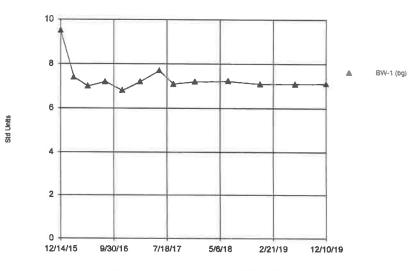
Std Unlis


Senter" v 9 5 32 Software Iconsed to SCS Aquaterta EPA





Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21.2020


Senter* v.9.5.22 Solivers licensed to SCS Aquaterra: EPA



**Time Series** 

Senitor* v.9.5 32 Software licensed to SCS Aquatienze EPA

**Time Series** 



Constituent: pH Analysis Run 1/21/2020 12:20 PM Sandy Creek Energy Station Client: Sandy Creek Date: Sandy Creek GW/data (Sanitas)_1.21.2020

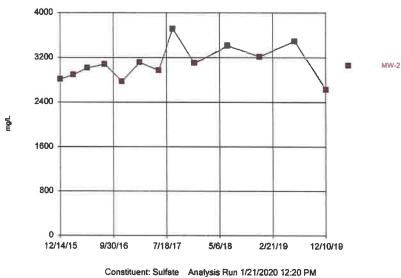
VI.C

MW-1

٠

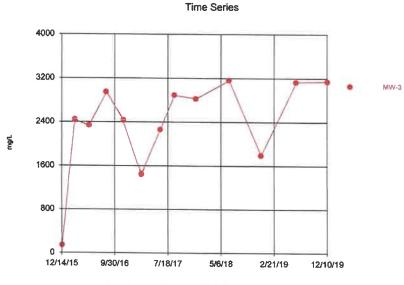
VI.C-453

Senius" v 9 5.32 Software increased to SCS Aquations EPA


3000 2400 MW-1 ٠ 1800 шĝЛ 1200 600 0 12/14/15 9/30/16 7/18/17 5/6/18 2/21/19 12/10/19 Constituent: Sulfate Analysis Run 1/21/2020 12:20 PM

Time Series

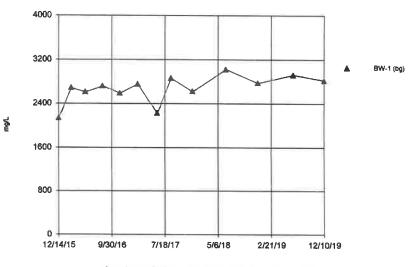
Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21.2020


Benites¹⁴ v.9 5 32 Software licensed to SCS Aquaterra, EPA

Time Series

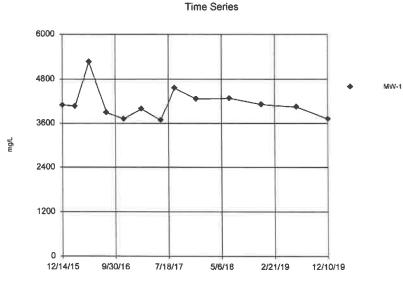


Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21.2020


Senters' v.9.5.32 Software Iconsed to SCS Aqueterre. EPA



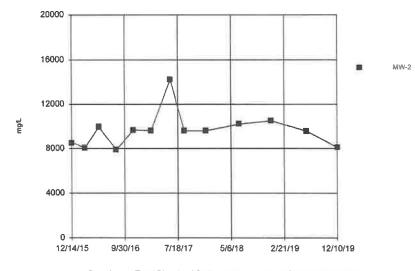
Constituent: Sulfate Analysis Run 1/21/2020 12:20 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21.2020 Senten* + 8 5 32 Solvere iconsed to BCS Aquatarte, EPA


VI.C-454



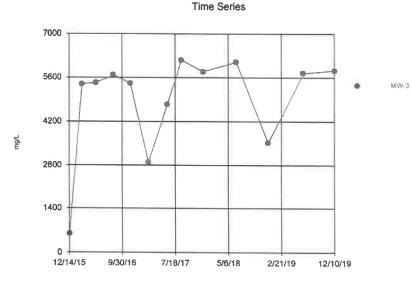


Constituent: Sulfate Analysis Run 1/21/2020 12:20 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21.2020


#### Sentes** + 9.5.32 Software licensed to SCS Aquateria EPA



Constituent: Total Dissolved Solids Analysis Run 1/21/2020 12:20 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21.2020

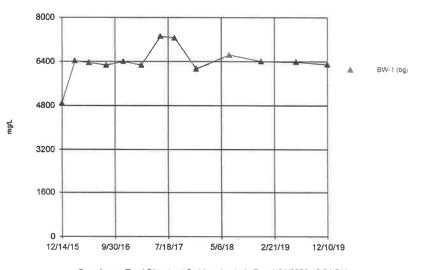

Services¹⁴ v 9.5 32 Software licensed to SCS Aquaterra EPA

Time Series



Constituent: Total Dissolved Solids Analysis Run 1/21/2020 12:21 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21.2020

Sameles* + 9.5.32 Software licensed to SCS Aquaterra EPA




Constituent: Total Dissolved Solids Analysis Run 1/21/2020 12:21 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21.2020

VI.C-455

Sentes" v 9.5.32 Software Iconeed to 8CS Aquaterra EPA

Time Series



Constituent: Total Dissolved Solids Analysis Run 1/21/2020 12:21 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21.2020

Appendix E 2019 Alternate Source Demonstrations

SCES - December 2019 Semiannual Groundwater Monitoring Report

MINProtects/16218157.00/Correspondence/R01312020 Sandy Creek Dec 2019 Annual Groundwater Monitoring and Corrective Action Report. dom

# SCS ENGINEERS

September 6, 2019 SCS Project 16218157.00

Mr. Darryl Sparks Compliance Manager NAES Corporation 2161 Rattlesnake Road Riesel, Texas 76682

Subject: Alternate Source Demonstration for Fluoride in MW-1 June 2019 Semiannual Groundwater Monitoring Report Sandy Creek Energy Station McLennan County, Texas

Dear Mr. Sparks:

On behalf of the Sandy Creek Energy Station (SCES), SCS Engineers (SCS) is submitting this Alternate Source Demonstration (ASD) in accordance with the site Groundwater Sampling and Analysis Plan (GWSAP) prepared by SCS, dated March 2, 2016, and Coal Combustion Residual Rule (CCR) 40 CFR §257.94(e)(2) for a fluoride detection in groundwater monitoring well MW-1. During the June 2019 groundwater monitoring event, fluoride was detected in MW-1 at 0.73 mg/L, above the statistical limit of 0.4 mg/L. This ASD was conducted to investigate the likely source of the fluoride detection. In accordance with 40 CFR §257.94(e)(2), this ASD is being submitted within 90 days of detecting an unconfirmed statistically significant increase (SSI) above background values.

#### **Project Background**

SCES is a pulverized coal-fired electric generation facility which operates a landfill for disposal of dry scrubber ash and bottom ash generated during the coal combustion process at the facility. Incidental wastes generated during the operation of the facility may also be disposed in the landfill, as described in the initial registration notification to TCEQ and the most recent version of the Landfill Operations Plan for the facility. The landfill is currently comprised of two CCR disposal cells, Cells 1 and 2, which commenced receiving waste in early 2013 and October 2014, respectively. The approximate area of Cells 1 and 2 are 10.0 and 14.3 acres, respectively.

In accordance with 40 CFR §257 Appendix III and IV, the list of constituents for monitoring at SCES includes 18 inorganic compounds, total dissolved solids, radium-226, and radium-228. Currently, all monitoring wells are sampled and analyzed for 40 CFR §257 Appendix III constituents, in accordance with 40 CFR §257.94(a).

#### June 2019 Fluoride Detection

Fluoride was detected in MW-1 at a concentration of 0.73 mg/L during the June 2019 semiannual groundwater monitoring event.

Mr. Darryl Sparks September 6, 2019 Page 2

#### Naturally Occurring Fluoride in Regional Groundwater

Median fluoride concentrations in groundwater samples from a regional major aquifer (Trinity) and a regional minor aquifer (Woodbine) are 0.7 mg/L (n=1,524) and 1.0 mg/L (n=179), respectively (Reedy et al., 2011). The June 2019 MW-1 fluoride detection of 0.73 mg/L in MW-1 is consistent with expected regional fluoride concentrations in groundwater. Fluoride concentrations in SCES upgradient well BW-1 range from <0.3 mg/L to 0.94 mg/L, indicating that SCES background groundwater fluoride concentrations are comparable to regional naturally-occurring concentrations.

#### Naturally Occurring Fluoride in Texas Soils

The Texas Commission on Environmental Quality (TCEQ) Texas-Specific Soil Background Concentration (TSBC) for fluoride is 190 mg/kg (equivalent mg/L) in soil (see attached TCEQ TSBC guidance). Note that the naturally-occurring median fluoride concentration expected in Texas soils is orders of magnitude greater than the concentration that is the subject of this ASD, detected in groundwater on June 24, 2019.

#### **Statistical Analysis**

Initial statistical analysis of fluoride in MW-1 included the use of a non-parametric prediction limit, using background data collected from MW-1. This test is appropriate because the background data pool for fluoride in MW-1 is non-normally distributed. Therefore, the intrawell statistical limit is represented as the highest of the eight background values from fluoride in MW-1 (see "Intrawell Limit" in Table 1).

Since the June 2019 laboratory result for fluoride in MW-1 exceeded its respective intrawell limit, additional statistical evaluation was performed in accordance with 40 CFR §257.94(e)(2). This additional analysis consisted of calculating an interwell parametric prediction limit (see "Interwell Limit" in Table 1 and attachments). This test is commonly used to provide a comparison between a detection in a downgradient monitoring well and a statistical limit derived from background data from one or more upgradient monitoring wells. If the detection falls below the interwell statistical limit, this is evidence that the detection is representative of background data.

Table 1 - Jun	e 2019	Unconfirmed	SSIs	(mg/L)
---------------	--------	-------------	------	--------

MW-ID	Constituent	Lab Result	Intrawell Limit	Interwell Limit
MW-1	Fluoride	0.73	0.4	1.187

Without the second statement of the second s

Mr. Darryl Sparks September 6, 2019 Page 3

#### Conclusion

As a result of this analysis comparing upgradient to downgradient data, the interwell statistical limit is higher than the June 2019 laboratory result for fluoride in MW-1. Attached are the interwell statistical graph and data, demonstrating the comparison between the upgradient and downgradient wells. The detection appears to be coming from a non-landfill, upgradient source, so no further action is recommended. The detection is most likely a naturally-derived component of the site geology, which can result in a natural variation in groundwater quality. The detected concentration is consistent with expected naturally-occurring fluoride concentrations in regional groundwater.

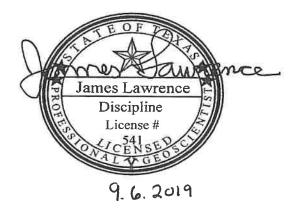
#### Closing

SCS recommends that the facility remain in detection monitoring, in accordance with 40 CFR §257.94, as these ASDs satisfy the 90-day demonstration period requirement outlined in 40 CFR §257.94(e)(2). Please contact Jim Lawrence at (817) 358-6106 if you have comments or require additional information.

Sincerely,

Dayle P Stra

Doug Steen Staff Professional SCS ENGINEERS TBPE Registration No. F-3407

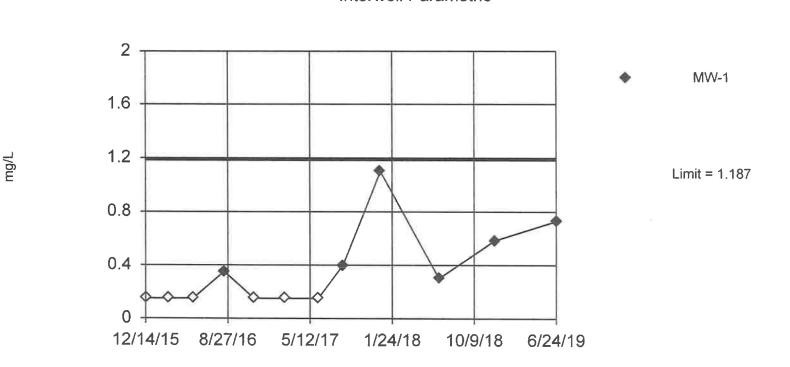

James Lawrence, P.G. Project Director SCS ENGINEERS

Attachments:

Interwell Statistical Graph and Data TCEQ Texas-Specific Soil Background Concentrations Guidance

References:

Reedy, R.C., B.R. Scanlon, S. Walden, and G. Strassberg (2011), Naturally Occurring Groundwater Contamination in Texas, *Bureau of Economic Geology, The University of Texas at Austin, TWDB Contract No.* 1004831125, 203 p.




Sanitas[™] v.9.5.32 Software licensed to SCS Engineers. EPA Hollow symbols indicate censored values.

Within Limit

# Prediction Limit

Interwell Parametric



Background Data Summary (after Cohen's Adjustment): Mean=0.4018, Std. Dev.=0.3908, n=8, 37.5% NDs. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8478, critical = 0.818. Report alpha = 0.05. Most recent point compared to limit.

Constituent: Fluoride Analysis Run 8/16/2019 9:19 AM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_7.31.2019

#### **Prediction Limit**

Constituent: Fluoride (mg/L) Analysis Run 8/16/2019 9:20 AM

Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas), 7,31.2019

	MW-1	BW-1 (bg)
12/14/2015	<0.3	<0.3
2/25/2016	<0.3	0,67
5/11/2016	<0.3	0.32
8/16/2016	0.35	0.94
11/17/2016	<0.3	0.85
2/23/2017	<0.3	<0.3
6/7/2017	<0.3	<0.3
8/24/2017	0.4	0.37
12/20/2017	1.1	
6/21/2018	0.3	
12/13/2018	0.585	
6/24/2019	0.73	

Texas-Specific milligr	c Soil Background Concentrations ams per kilogram (mg/kg) ¹
Metal	Median Background Concentration (mg/kg)
Aluminum	30,000
Antimony	1
Arsenic	5.9
Barium	300
Beryllium	1.5
Boron	30
Total Chromium	30
Cobalt	7
Copper	15
Fluoride	190
Iron	15,000
Lead	15
Manganese	300
Mercury	0.04
Nickel	10
Selenium	0.3
Strontium	100
Tin	0.9
Titanium	2,000
Thorium	9.3
Vanadium	50
Zinc	30

¹ Source: "Background Geochemistry of Some Rocks, Soils, Plants, and Vegetables in the Conterminous United States", by Jon J. Connor, Hansford T. Shacklette, et al., Geological Survey Professional Paper 574-F, US Geological Survey.

## SCS ENGINEERS

January 31, 2020 SCS Project 16218157.00

Mr. Darryl Sparks Compliance Manager NAES Corporation 2161 Rattlesnake Road Riesel, Texas 76682

Subject: Alternate Source Demonstration for Boron in MW-3 2019 Annual Groundwater Monitoring and Corrective Action Report Sandy Creek Energy Station McLennan County, Texas

Dear Mr. Sparks:

On behalf of the Sandy Creek Energy Station (SCES), SCS Engineers (SCS) is submitting this Alternate Source Demonstration (ASD) in accordance with the site Groundwater Sampling and Analysis Plan (GWSAP) prepared by SCS, dated March 2, 2016, and Coal Combustion Residual Rule (CCR) 40 CFR §257.94(e)(2) for a boron detection in groundwater monitoring well MW-3. During the December 2019 groundwater monitoring event, boron was detected in MW-3 at 1.26 mg/L, above the statistical limit of 1.2 mg/L. This ASD was conducted to investigate the likely source of the boron detection. In accordance with 40 CFR §257.94(e)(2), this ASD is being submitted within 90 days of detecting an unconfirmed statistically significant increase (SSI) above background values.

#### Project Background

SCES is a pulverized coal-fired electric generation facility which operates a landfill for disposal of dry scrubber ash and bottom ash generated during the coal combustion process at the facility. Incidental wastes generated during the operation of the facility may also be disposed in the landfill, as described in the initial registration notification to TCEQ and the most recent version of the Landfill Operations Plan for the facility. The landfill is currently comprised of two CCR disposal cells, Cells 1 and 2, which commenced receiving waste in early 2013 and October 2014, respectively. The approximate area of Cells 1 and 2 are 10.0 and 14.3 acres, respectively.

In accordance with 40 CFR §257 Appendix III and IV, the list of constituents for monitoring at SCES includes 18 inorganic compounds, total dissolved solids, radium-226, and radium-228. Currently, all monitoring wells are sampled and analyzed for 40 CFR §257 Appendix III constituents, in accordance with 40 CFR §257.94(a).

#### **December 2019 Boron Detection**

Boron was detected in MW-3 at a concentration of 1.26 mg/L during the December 2019 semiannual groundwater monitoring event.

Mr. Darryl Sparks January 31, 2020 Page 2

#### Naturally Occurring Boron in Texas Soils

The Texas Commission on Environmental Quality (TCEQ) Texas-Specific Soil Background Concentration (TSBC) for boron is 30 mg/kg (equivalent mg/L) in soil (see attached TCEQ TSBC guidance). Note that the naturally-occurring median boron concentration expected in Texas soils is much greater than the concentration that is the subject of this ASD, detected in groundwater on December 10, 2019.

#### **Statistical Analysis**

Initial statistical analysis of boron in MW-3 included the use of a non-parametric prediction limit, using background data collected from MW-3. This test is appropriate because the background data pool for boron in MW-3 is non-normally distributed. Therefore, the intrawell statistical limit is represented as the highest of the eight background values from boron in MW-3 (see "Intrawell Limit" in Table 1).

Since the December 2019 laboratory result for boron in MW-3 exceeded its respective intrawell limit, additional statistical evaluation was performed in accordance with 40 CFR §257.94(e)(2). This additional analysis consisted of calculating an interwell parametric prediction limit (see "Interwell Limit" in Table 1 and attachments). This test is commonly used to provide a comparison between a detection in a downgradient monitoring well and a statistical limit derived from background data from one or more upgradient monitoring wells. If the detection falls below the interwell statistical limit, this is evidence that the detection is representative of background data.

Table 1 – December 2019	Unconfirmed SSIs (mg/L)
-------------------------	-------------------------

MW-ID	Constituent	Lab Result	Intrawell Limit	Interwell Limit
MW-3	Boron	1.26	1.2	4.268

Mr. Darryl Sparks January 31, 2020 Page 3

#### Conclusion

As a result of this analysis comparing upgradient to downgradient data, the interwell statistical limit is higher than the December 2019 laboratory result for boron in MW-3. Attached are the interwell statistical graph and data, demonstrating the comparison between the upgradient and downgradient wells. The detection appears to be coming from a non-landfill, upgradient source, so no further action is recommended. The detection is most likely a naturally-derived component of the site geology, which can result in a natural variation in groundwater quality. The detected concentration is consistent with expected naturally-occurring boron concentrations in regional groundwater.

#### Closing

SCS recommends that the facility remain in detection monitoring, in accordance with 40 CFR §257.94, as these ASDs satisfy the 90-day demonstration period requirement outlined in 40 CFR §257.94(e)(2). Please contact Jim Lawrence at (817) 358-6106 if you have comments or require additional information.

Sincerely,

Jun Mitho

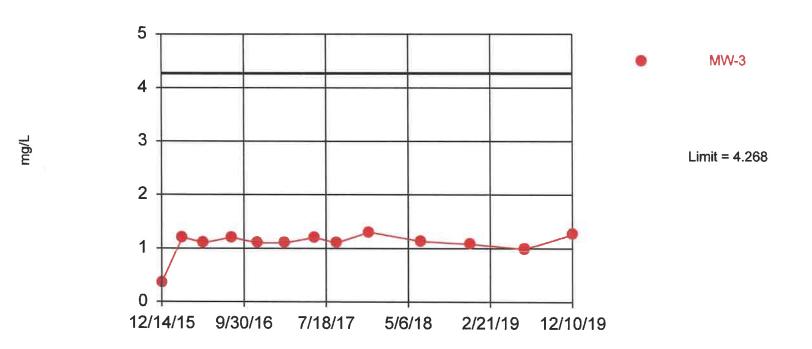
Tyson Milbrand Staff Professional SCS ENGINEERS TBPE Registration No. F-3407

James Lawrence

James Lawrence, P.G. Project Director SCS ENGINEERS

Attachments:

Interwell Statistical Graph and Data TCEQ Texas-Specific Soil Background Concentrations Guidance




1.31.2020

#### Sanitas™ v.9.5.32 Software licensed to SCS Aquaterra. EPA



# Prediction Limit



Background Data Summary: Mean=3.249, Std. Dev.=0.5509, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8952, critical = 0.866. Report alpha = 0.05. Most recent point compared to limit.

Constituent: Boron Analysis Run 1/21/2020 12:23 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21.2020

#### **Prediction Limit**

Constituent: Boron (mg/L) Analysis Run 1/21/2020 12:24 PM

Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21.2020

	BW-1 (bg)	MW-3
12/14/2015	1.8	0.35
2/25/2016	3.5	1.2
5/11/2016	4	1.1
8/16/2016	3.7	1.2
11/17/2016	2.8	1.1
2/23/2017	3.1	1.1
6/7/2017	3.8	1.2
8/24/2017	3.4	1.1
12/20/2017	3.5	1.3
6/21/2018	3.31	1.13
12/13/2018	3.25	1.08
6/24/2019	3.1	0.99
12/10/2019	2.98	1.26

÷

#### **Non-Parametric ANOVA**

Constituent: Boron Analysis Run 1/21/2020 12:23 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21.2020

For observations made between 12/14/2015 and 12/10/2019, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 18.88

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 4 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 18.78 Adjusted Kruskal-Wallis statistic (H') = 18.88

The contrast test was performed to determine if any compliance group concentration was significantly higher than the background concentration. The contrast test indicates statistical significance in none of the compliance wells.

Contrast table:			
Well	Difference	Contrast	Significant?
MW-3	-13	4.932	No

The critical (contrast) value was computed with 1 degree of freedom and a 5% error level for each well comparison. (Note: In this case, with Anova indicating differences that are not reflected in the contrast test, It should be concluded that it is the median of the Background data which is significantly higher.)

Non-parametric test used in lieu of parametric anova because the Shapiro Wilk normality test showed the residuals to be non-normal at the 0.01 alpha level.

### **Non-Parametric ANOVA**

Constituent: Boron (mg/L) Analysis Run 1/21/2020 12:23 PM

4

Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_1.21,2020

	BW-1 (bg)	MW-3
12/14/2015	1.8	0.35
2/25/2016	3.5	1.2
5/11/2016	4	1.1
8/16/2016	3.7	1.2
11/17/2016	2.8	1.1
2/23/2017	3.1	1:1
6/7/2017	3.8	1.2
8/24/2017	3.4	1:1
12/20/2017	3.5	1.3
6/21/2018	3.31	1.13
12/13/2018	3 25	1.08
6/24/2019	3 1	0.99
12/10/2019	2.98	1.26

---

Texas-Speci milli	fic Soil Background Concentrations grams per kilogram (mg/kg) ¹
Metal	Median Background Concentration (mg/kg)
Aluminum	30,000
Antimony	1
Arsenic	5.9
Barium	300
Beryllium	1.5
Boron	30
Total Chromium	30
Cobalt	7
Copper	15
Fluoride	190
Iron	15,000
Lead	15
Manganese	300
Mercury	0.04
Nickel	10
Selenium	0.3
Strontium	100
Tin	0.9
Titanium	2,000
Thorium	9.3
Vanadium	50
Zinc	30

¹ Source: "Background Geochemistry of Some Rocks, Soils, Plants, and Vegetables in the Conterminous United States", by Jon J. Connor, Hansford T. Shacklette, et al., Geological Survey Professional Paper 574-F, US Geological Survey.

#### 2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

January 29, 2021 SCS Project No. 16220013.00

Mr. Darryl Sparks **Compliance Manager NAES** Corporation 2161 Rattlesnake Road Riesel, Texas 76682

Subject: Sandy Creek Energy Station McLennan County, Texas 2020 Annual Groundwater Monitoring and Corrective Action Report Submittal

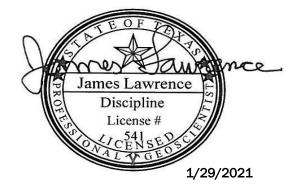
Dear Mr. Sparks:

SCS Engineers (SCS) is pleased to submit the 2020 Annual Groundwater Monitoring and Corrective Action Report to the Sandy Creek Energy Station (SCES), in accordance with Coal Combustion Residual Rule (CCR) 40 CFR Part §257.105(h)(1), and the site Groundwater Sampling and Analysis Plan (GWSAP), prepared by SCS, dated March 2, 2016.

Please contact James Lawrence at (817) 358-6106 if you have comments or require additional information.

Sincerely,

Asher Boudreaux Associate Staff Professional SCS ENGINEERS TBPE Registration No. F-3407

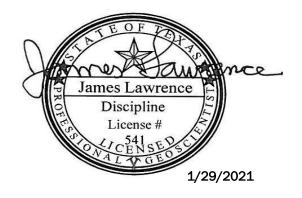



SCS ENGINEERS

ames

James Lawrence, P.G. **Project Director** SCS ENGINEERS

Attachment: 2020 Annual Groundwater Monitoring and Corrective Action Report




# 2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

# Sandy Creek Energy Station McLennan County, Texas

Prepared For:

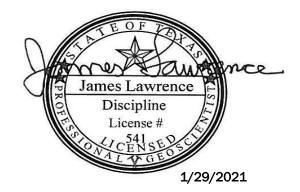
Sandy Creek Energy Station 2161 Rattlesnake Road Riesel, Texas 76682



## SCS ENGINEERS

SCS Project 16220013.00 | January 29, 2021

1901 Central Drive, Suite 550 Bedford, TX 76021 817-571-2288


1.0	Intro	duction and Background	1
2.0	Grou	ndwater Monitoring Summary	2
	2.1	Groundwater Monitoring System	2
	2.2	Summary of 2020 Sampling Events	2
3.0	Resu	Its and Statistical Analysis	3
4.0 G	iround	Iwater Flow Rate And Direction Calculations	5
5.0 R	ecom	mendations	6

#### Figures

Figure 1.	Monitoring Well Location Map7

#### Appendices

- Appendix A: 2020 Groundwater Monitoring Field Forms
- Appendix B: 2020 Laboratory Report with Chain of Custody
- Appendix C: Historical Analytical Data
- Appendix D: Time Series Graphs
- Appendix E: Alternate Source Demonstrations



## 1.0 INTRODUCTION AND BACKGROUND

SCS Engineers (SCS) is submitting this 2020 Annual Groundwater Monitoring and Corrective Action Report for the Sandy Creek Energy Station (SCES). This report is prepared in accordance with Coal Combustion Residual Rule (CCR) 40 CFR §257.105(h)(1) and the site Groundwater Sampling and Analysis Plan (GWSAP) prepared by SCS, dated March 2, 2016. This report includes results for two semiannual detection monitoring events, conducted in April 2020 and November 2020.

SCES is a pulverized coal-fired electric generation facility which operates a landfill for disposal of dry scrubber ash and bottom ash generated during the coal combustion process at the facility. Incidental wastes generated during the operation of the facility may also be disposed in the landfill, as described in the initial registration notification to TCEQ and the most recent version of the Operations Plan for the facility. The landfill is currently comprised of two CCR disposal cells, Cells 1 and 2, which commenced receiving waste in early 2013 and October 2014, respectively. The approximate area of Cells 1 and 2 are 10.0 and 14.3 acres, respectively.

Sampling of groundwater monitoring wells is conducted in accordance with 40 CFR §257.93 and the GWSAP. Initial monitoring of four wells (MW-1, MW-2, MW-3, and BW-1; as depicted on **Figure 1**) was performed for eight consecutive quarters in accordance with 40 CFR §257.94(b) (i.e., eight independent samples were collected for each well). The initial monitoring described above commenced in December 2015 and was completed in August 2017 in accordance with 40 CFR §257.94 (b). The constituents monitored during the required background monitoring period and the first semiannual detection monitoring event included 18 inorganic compounds, total dissolved solids, radium-226, and radium-228, while the constituents monitored in subsequent events and during the November 2020 semiannual detection monitoring event included Appendix III constituents only, in accordance with 40 CFR §257 Appendix III.

The site started 2020 in detection monitoring status. The observation of potential SSIs for boron and chloride were resolved through alternate source demonstrations (Appendix E). Accordingly, the site remains in its detection monitoring program.

## 2.0 GROUNDWATER MONITORING SUMMARY

### 2.1 GROUNDWATER MONITORING SYSTEM

The current groundwater monitoring system at the SCES landfill consists of four wells (see **Table 1** below). One upgradient (BW-1) and three downgradient (MW-1, MW-2, & MW-3). All four wells are currently in detection monitoring. **Figure 1** shows monitoring well locations at SCES.

Well Name (U/D) ¹	Completion Date	Status	Top of Casing Elevation (ft msl) ²	Well Depth (ft bgs) ²	Screen Interval (ft bgs)²	Water Level Elevation (ft msl on 11/10/2020)
MW-1 (D)	9/21/2015	Detection	465.87	34.23	23.90 - 33.90	454.45
MW-2 (D)	9/23/2015	Detection	442.15	19.63	9.30 - 19.30	430.96
MW-3 (D)	9/1/2010	Detection	430.06	16.23	5.98 - 15.98	420.03
BW-1 (U)	9/22/2015	Detection	485.57	38.63	28.30 - 38.30	468.39

 Table 1.
 Sandy Creek Energy Station Groundwater Monitoring System

¹ (U) = upgradient, (D) = downgradient; ² Top of Casing Elevation, Well Depth, and Screen Interval information obtained from Table 1 – Monitoring Well and Piezometer Construction Details and Groundwater Elevations prepared by Geosyntec Consultants, dated March 11, 2016; **ft msl** = feet above mean sea level; **ft bgs** = feet below ground surface

### 2.2 SUMMARY OF 2020 SAMPLING EVENTS

All sampling events followed the groundwater sampling and laboratory analysis procedures outlined in the GWSAP. A duplicate sample was collected from one well during each event for Quality Assurance & Quality Control (QA/QC) purposes. All monitoring wells were sampled and analyzed for 40 CFR §257 Appendix III constituents, in accordance with 40 CFR §257.94(a).

#### April 2020 – Semiannual Detection Monitoring Event

All four wells (MW-1, MW-2, MW-3, and BW-1) were purged and sampled on April 8, 2020 using the conventional purge and sampling method with disposable PVC bailers. The results of the sampling were provided to the SCES in a report dated June 18, 2020. Field forms and laboratory results are provided in **Appendices A** & **B**, respectively, and summarized in **Table 2**. The Laboratory Review Checklist was reviewed and the data were determined to conform to the most current National Environmental Laboratories Accreditation Conference (NELAC) standards.

#### November 2020 – Semiannual Detection Monitoring Event

All four wells (MW-1, MW-2, MW-3, and BW-1) were purged and sampled on November 10, 2020 using the conventional purge and sampling method with disposable PVC bailers. Field forms and laboratory results are provided in **Appendices A** & **B**, respectively, and summarized in **Table 2**. The Laboratory

Review Checklist was reviewed and the data were determined to conform to the most current NELAC standards.

### **3.0 RESULTS AND STATISTICAL ANALYSIS**

A summary of April 2020 and November 2020 laboratory results and statistical limits in each wellconstituent pair is provided in **Table 2**. Time series graphs of Appendix III constituent concentrations are provided in **Appendix D**. Statistical limits were determined in accordance with 40 CFR §257.93(fg) and the GWSAP using the software program Sanitas®. Statistical limits were determined in the 2017 Annual Groundwater Monitoring and Corrective Action report, and were presented using Shewhart-CUSUM control charts, non-parametric prediction limits, or parametric prediction limits as deemed appropriate by background data distributions.

MW-ID	Constituent	Lab Results April 2020	Lab Results Nov 2020	Statistical Limit*
	Boron (mg/L)	1.3	1.18	2.6
	Calcium (mg/L)	524	539	1030
	Chloride (mg/L)	152	168	402
MW-1 (D)	pH at 25°C	7.1	7.2	6.136 - 8.289
	Sulfate (mg/L)	2430	2350	3402
	TDS (mg/L)	4330	4060	6765
	Fluoride (mg/L)	<0.20	0.26 J	0.4
	Boron (mg/L)	1.9	2.13	2.4
	Calcium (mg/L)	650	715	874.4
	Chloride (mg/L)	2410	2350	3336
MW-2 (D)	pH at 25°C	6.8	6.8	6.7 - 7.5
	Sulfate (mg/L)	3120	2830	4635
	TDS (mg/L)	9820	9670	23969
	Fluoride (mg/L)	<0.20	<0.20	2.831
	Boron (mg/L)	1.1	3.07	1.2
MW-3 (D)	Calcium (mg/L)	530	597	688.1
	Chloride (mg/L)	307	1160	606.9
	pH at 25 °C	6.5	7.1	5.71-8.09

Table 2.Sandy Creek Energy Station 2020 Sampling Results and Statistical Limits

MW-ID	Constituent	Lab Results April 2020	Lab Results Nov 2020	Statistical Limit*
	Sulfate (mg/L)	3020	2950	4447
MW-3 (D)	TDS (mg/L)	5980	6920	9375
	Fluoride (mg/L)	<0.20	<0.20	2.201
	Boron (mg/L)	3.7	3.14	6.787
	Calcium (mg/L)	545	612	723.7
	Chloride (mg/L)	1070	1170	1540
BW-1 (U)	pH at 25°C	6.9	7.1	6.8 - 9.5
	Sulfate (mg/L)	2760	2710	3884
	TDS (mg/L)	6660	6000	10119
	Fluoride (mg/L)	<0.20	<0.20	2.356
*Calculated in 2017 Annual Report (U) = upgradient, (D) = downgradient <b>Bolded italicized value</b> indicates that constituent exceeded intrawell statistical limit "J" Indicates value is above method detection limit (MDL) but below laboratory reporting limit				

Unconfirmed statistically significant increases (SSI) were determined for boron and chloride in MW-3 (November 2020). In accordance with 40 CFR §257.94(e), alternate source demonstrations (ASDs) are provided in **Appendix E**.

### **4.0 GROUNDWATER FLOW RATE AND DIRECTION CALCULATIONS**

In accordance with 40 CFR Part §257.93(c), the groundwater flow rate and direction in the uppermost aquifer in the area of the existing groundwater monitoring wells were calculated.

#### Flow Rate Calculation Using November 2020 Data

Va = 
$$\underline{KI}$$
 (Driscoll, 1986, Groundwater and Wells)  
7.5N

Where:

Va = Actual Velocity of Groundwater Flow (ft/day)

- K = Hydraulic Conductivity (gpd/ft²)
- I = Hydraulic Gradient (ft/ft)
- N = Effective Porosity (%)

Then:

- K = 2.0 x 10⁻⁴ cm/sec (geometric mean hydraulic conductivity obtained from slug tests performed by Geosyntec in 2010)

Find K equivalent in units of gpd/ft²:

 $(1 \text{ cm/sec} = 21,200 \text{ gallons/day/ft}^2)$ 

2.0 x 10⁻⁴ cm/sec x 21,200 gallons/day/ft² = 4.24 gpd/ft²

Find I: <u>BW-1 elevation – MW-3 elevation</u>:  $\frac{468.39 \text{ ft} - 420.03 \text{ ft}}{2,350 \text{ ft}} = 0.0206 \text{ ft/ft}$ 

I = 0.0206 ft/ft

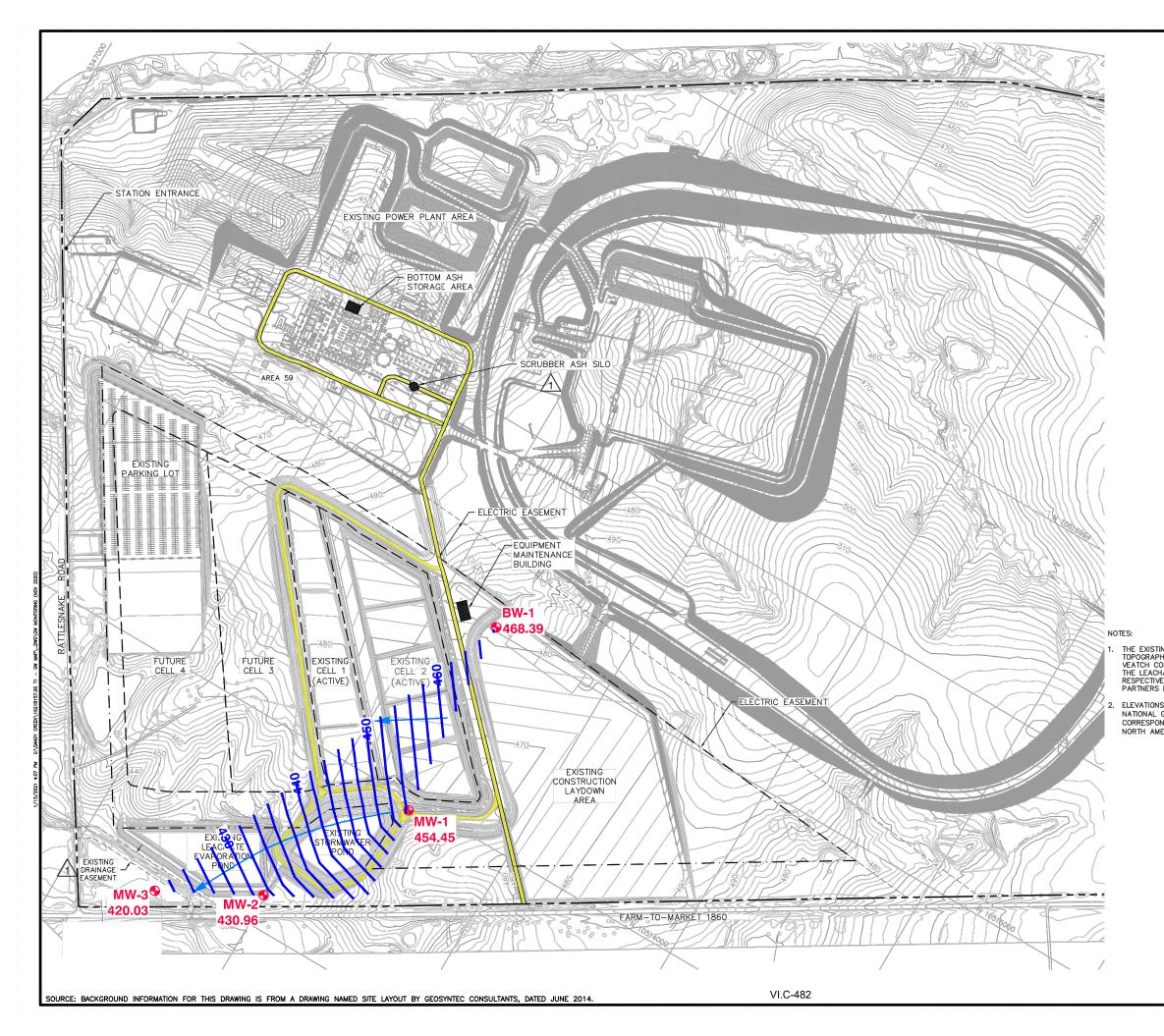
N = 6% (representative effective porosity for clay from Morris and Johnson, 1967)

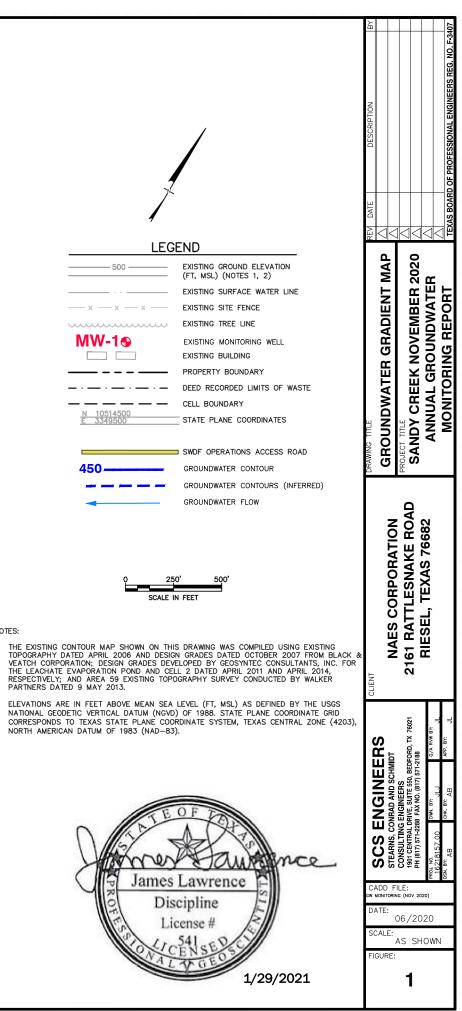
Therefore:

Va =  $\frac{4.24 \text{ gpd/ft}^2 \text{ x} (0.0206 \text{ ft/ft})}{7.5 (0.06)}$  = 0.194 ft/day

(0.194 ft/day)(365 days/year) = 71 ft/year

#### Conclusion


The November 2020 site groundwater flow rate is calculated to be **71 ft/year**. The gradient was measured using BW-1 and MW-3. The November 2020 groundwater flow direction is to the west-southwest. The calculated groundwater flow rate and direction are consistent with conditions previously observed at the site. See the attached groundwater gradient map for details, provided in accordance with 40 CFR Part §257.93(c).


### **5.0 RECOMMENDATIONS**

As outlined in the attached ASDs for boron and chloride in MW-3, no confirmed SSIs were identified for any Appendix III constituents during 2020 detection monitoring at the SCES. SCS recommends that the facility remain in semiannual detection monitoring, in accordance with 40 CFR §257.94.

Due to the lack of confirmed SSIs for Appendix III constituents during 2020 detection monitoring, the facility will continue monitoring for all constituents listed in 40 CFR §257 Appendix III during semiannual groundwater monitoring events, in accordance with 40 CFR §257.94(a). The Appendix IV constituent list will be analyzed if any confirmed statistical exceedances of the Appendix III list are indicated in future events. The next planned groundwater monitoring event is a semiannual detection monitoring event scheduled for June 2021.

Figure 1. Monitoring Well Location Map





## Appendix A

## 2020 Groundwater Monitoring Field Forms

Facility name:	Sandy Creek Energy Station		1. Facility Type: Pow	ver Station	
Permittee:	Sandy Creek Energy Associat	es, L.P.	2. Monitor well no.: MW	-1	
County:	McLennan		3. Date of sampling: 4/8/	2020	
Name of sample		Boudreaux	Most recent previous sam	pling: <u>12/10/2019</u>	
Affiliation of sampler: SCS Engineers			Date of water level measu	irements: 4/8/2020	
If split sampled, with whom? N/A			Datum reference point:	Top of Casing	
Integrity of well: Good			Datum elevation*:	465.87	
Installation date: 9/21/2015		Depth to water(below date	um)*: 10.88		
			4. Water level elevation*:	454.99	
5. Purging/Sam	pling method: Bailer	(Enter bailer or pump)	11. Sample event: Detect	ion	
Were low-flow	w methods used?	no (check one)	- Background	- Corrective Action	
If yes, what volume was purged? N/A gal.			- Detection	- Other	
6. Well volumes purged: 2.4			- Assessment		
7. Was the well	dry before purging? □yes	no (check one)	12. Sample schedule: Semi-Annual		
	dry after purging? ■ yes		- Quarterly	- Fourth Year	
9. How long bet	fore sampling? 1		- Semi-Annual	- Other	
10. Unit of meas	ure? hours (Enter va	alue as days, hours, or mins.)	- Annual		
			13. Sample type: Regula	ar	
			- Regular	- Split	
			- Duplicate	- Other	
Field Measurem	ients:		- Resample		
	14. pH	7.22			
	15. Spec. cond.	4.66	16. 🔳 mS/cm		
	17. Temp.	25.70	18. 🗆 F or 🔳 C	(check one)	
	19. Turbidity	137	20. <b>I</b> NTU	•	
Laboratory:					
21. Nam	ne Pace Analytical Allen	Laboratory	Phone	: (972)-727-1123	
Address: 3714, 400 W Bethany Dr #190, Allen, TX 75013					
Rep	resentative's signature:	Think the	7		
	<u> </u>				
Site operator's	signature:		Date:		

Facility name:	Sandy Creek Energy Station		1. Facility Type:	Power Station
Permittee:	Sandy Creek Energy Associat	tes, L.P.	2. Monitor well no.:	MW-2
County:	McLennan		3. Date of sampling:	4/8/2020
Name of sample	er: Asher I	Boudreaux	Most recent previous s	ampling: <u>12/10/2019</u>
Affiliation of san	ffiliation of sampler: SCS Engineers			asurements: <u>4/8/2020</u>
If split sampled,	f split sampled, with whom? N/A			: Top of Casing
Integrity of well: Good			Datum elevation*:	442.15
Installation date: 9/23/2015		Depth to water(below of	datum)*: <u>12.08</u>	
			4. Water level elevatio	n*: 430.07
5. Purging/Sar	npling method:Bailer	(Enter bailer or pump)	11. Sample event: Det	tection
Were low-fle	ow methods used? 🔲 yes	no (check one)	- Backgrou	nd - Corrective Action
If yes, what volume was purged? <u>N/A</u> gal.			- Detection	- Other
6. Well volumes purged: 2.7			- Assessme	ent
7. Was the we	II dry before purging? 🛛 yes 🛛	no (check one)	12. Sample schedule:	Semi-Annual
8. Was the we	ll dry after purging? 🔳 yes	□ no (check one)	- Quarterly	- Fourth Year
9. How long be	efore sampling? 1		- Semi-Ann	ual - Other
10. Unit of mea	sure? hours (Enter va	alue as days, hours, or mins.)	- Annual	
			13. Sample type: Reg	gular
			- Regular	- Split
			- Duplicate	- Other
Field Measure	ments:		- Resample	)
	14. pH	6.70		
	15. Spec. cond.	13	16. mS/cm	
	17. Temp.	23.90	18. 🗆 F or 🔳 🤇	C (check one)
	19. Turbidity	6.6	20. 🔳 NTU	
Laboratory:				
21. Na	me Pace Analytical Aller	Laboratory	Pho	one: (972)-727-1123
Ade	dress: 3714, 400 W Bethan	y Dr #190, Allen, TX 75013		
Re	presentative's signature:	Think dog		
	alamatura.		D	
Site operator's	signature:		Dat	.e.

Facility name:	Sandy Creek Energy Station		1. Facility Type: Pov	ver Station
Permittee:	Sandy Creek Energy Associat	es, L.P.	2. Monitor well no.: MW	/-3
County:	McLennan		3. Date of sampling: 4/8/	2020
Name of sampler:	Asher E	Boudreaux	Most recent previous sam	pling: <u>12/10/2019</u>
Affiliation of sampler: SCS Engineers			Date of water level measu	urements: 4/8/2020
f split sampled, with whom? N/A			Datum reference point:	Top of Casing
Integrity of well: Good			Datum elevation*:	430.06
Installation date: 9/1/2010		Depth to water(below dat	um)*: <u>8.00</u>	
			4. Water level elevation*:	422.06
5. Purging/Samp	oling method:Bailer	(Enter bailer or pump)	11. Sample event: <u>Detec</u>	tion
Were low-flow	v methods used? 🔲 yes	no (check one)	- Background	- Corrective Action
lf yes, wha	t volume was purged? N	/A gal.	- Detection	- Other
6. Well volumes purged: 3.0			- Assessment	
7. Was the well	dry before purging? 🛛 yes 🛽	no (check one)	12. Sample schedule: S	emi-Annual
8. Was the well	dry after purging? 🔲 yes	no (check one)	- Quarterly	- Fourth Year
9. How long befo	ore sampling? 1		- Semi-Annual - Other	
10. Unit of measu	ire? hours (Enter va	alue as days, hours, or mins.)	- Annual	
			13. Sample type: Regulation	ar
			- Regular	- Split
			- Duplicate	- Other
Field Measureme	ents:		- Resample	
	14. pH	6.38		
	15. Spec. cond.	6.46	16. 🔳 mS/cm	
	17. Temp.	23.29	18. 🗆 F or 🔳 C	(check one)
	19. Turbidity	21.6	20. 🗖 NTU	
Laboratory:				
21. Name	e Pace Analytical Allen	Laboratory	Phone	: (972)-727-1123
Addre	ess: 3714, 400 W Bethan	y Dr #190, Allen, TX 75013		
Repro	esentative's signature:	King dog		
Site operator's s	ignature:		Date:	

Facility name:	Sandy Creek Energy Station		1. Facility Type: Pov	wer Station	
Permittee:	Sandy Creek Energy Associate	es, L.P.	2. Monitor well no.: BW	/-1	
County:	McLennan		3. Date of sampling: 4/8	/2020	
			•• • •		
Name of sample		Boudreaux	Most recent previous san		
Affiliation of sampler: SCS Engineers			Date of water level meas		
If split sampled, with whom? N/A			Datum reference point:		
Integrity of well: Good			Datum elevation*:		
Installation date: 9/22/2015		Depth to water(below dat			
			4. Water level elevation*:	467.63	
5. Purging/San	npling method:Bailer	(Enter bailer or pump)	11. Sample event: Detec	tion	
Were low-flo	ow methods used? 🔲 yes	no (check one)	- Background	- Corrective Action	
If yes, what volume was purged? N/A gal.			- Detection	- Other	
6. Well volumes purged: 2.8			- Assessment		
7. Was the we	Il dry before purging? □yes	no (check one)	12. Sample schedule: <u>Semi-Annual</u> - Quarterly - Fourth Year - Semi-Annual - Other		
8. Was the we	ll dry after purging? 🔳 yes	] no (check one)			
9. How long be	efore sampling?1				
10. Unit of meas	sure? hours (Enter va	alue as days, hours, or mins.)	- Annual		
			13. Sample type: Regul	ar	
			- Regular	- Split	
			- Duplicate	- Other	
Field Measurer	ments:		- Resample		
	14. pH	7.05			
	15. Spec. cond.	8.15	16. mS/cm		
	17. Temp.	27.37	18. 🗆 F or 🔳 C	(check one)	
	19. Turbidity	428	20. 🔳 NTU		
Laboratory:					
21. Nar	me Pace Analytical Allen	Laboratory	Phone	e: (972)-727-1123	
Add	dress: 3714, 400 W Bethany	y Dr #190, Allen, TX 75013			
Rep	presentative's signature:	Kick Elong			
Site operator's	signature:		Date:		

Facility name:	Sandy Creel	k Energy Station		1. Facility Type:	Powe	er Station
Permittee:	Sandy Creel	k Energy Associate	es, L.P.	2. Monitor well no.:	DUP	
County:	McLennan			3. Date of sampling	j: 4/8/2	2020
Name of sample	er:	Asher B	oudreaux	Most recent previo	us samp	oling: <u>N/A</u>
Affiliation of sampler: SCS Engineers			Date of water level	measu	rements: N/A	
If split sampled, with whom? N/A			Datum reference p	oint:	Top of Casing	
Integrity of well: N/A			Datum elevation*:		N/A	
Installation date:	: <u>N/A</u>			Depth to water(belo	ow datu	m)*: <u>N/A</u>
				4. Water level elev	ation*:	N/A
5. Purging/San	npling method:	N/A	(Enter bailer or pump)	11. Sample event:	Detectio	on
Were low-flo	ow methods us	ed? 🗆 yes 🗆	 ] no (check one)	- Backg	round	- Corrective Action
lf yes, wh	nat volume was	s purged? N/	A gal.	- Detection - Other		
6. Well volumes purged: N/A			- Asses	sment		
7. Was the wel	ll dry before pu	urging? □yes □	] no (check one)	12. Sample schedu	le: Se	emi-Annual
8. Was the wel	ll dry after purg	ging? 🗆 yes 🗆	no (check one)	- Quarte	erly	- Fourth Year
9. How long be	efore sampling	? N/A		- Semi-	- Semi-Annual - Other	
10. Unit of meas	sure? N/A	A (Enter va	lue as days, hours, or mins.)	- Annua	I	
				13. Sample type:	Duplica	te
				- Regula	ar	- Split
				- Duplic	ate	- Other
Field Measuren	nents:			- Resan	nple	
	14. pH	l	N/A			
	15. Sp	ec. cond.	N/A	16.□ mS/cm		
	17. Te	mp.	N/A	18. 🗆 F or	□C	(check one)
	19. Tu	rbidity	N/A	20. 🗆 NTU		
Laboratory:						
21. Nar	ne Pa	ce Analytical Allen	Laboratory		Phone:	(972)-727-1123
Add	dress: <u>37</u> 1	14, 400 W Bethany	Dr #190, Allen, TX 75013			
Rep	presentative's	signature:	Think dopy			
Site operator's	signature:				Date:	

Facility name:	Sandy Creek Energy Station	1. Fac
Permittee:	Sandy Creek Energy Associates, L.P.	2. Moi
County:	McLennan	3. Dat

Facility Type:	Power Station
Monitor well no .:	MW-1
Date of sampling:	11/10/2020

Name of sampler:	Asher Bo	Idreaux	Most recent prev	ious sampl	ling: 4/8/2020
Affiliation of sampler:	SCS Engineers		•	•	ements: 11/10/2020
If split sampled, with whom			Datum reference		
Integrity of well:	Good		Datum elevation	-	
Installation date: 9/21/201					n)*: 11.42
	0		4. Water level el		
5. Purging/Sampling meth	hod: Bailer	(Enter bailer or pump)	11. Sample ever	nt: <u>Detectio</u>	n
Were low-flow methods	s used? 🔲 yes 🔳	no (check one)	- Bac	kground	- Corrective Action
If yes, what volume	was purged? N/A	gal.	- Dete	ection	- Other
6. Well volumes purged:	2.1	- Assessment			
7. Was the well dry before	12. Sample schedule: Semi-Annual				
8. Was the well dry after	no (check one)	- Quarterly - Fourth Year			
9. How long before samp	ling? 2		- Sen	ni-Annual	- Other
10. Unit of measure?	hours (Enter valu	e as days, hours, or mins.)	- Ann	ual	
			13. Sample type	: Regular	
			- Reg	gular	- Split
			- Dup	olicate	- Other
Field Measurements:			- Res	ample	
14.	. рН	6.91			
15.	. Spec. cond.	4.73	16. 🔳 mS/cm		
17.	. Temp.	23.21	18. 🗆 F 🛛 or	C	(check one)
19.	. Turbidity	4.7	20. 🔳 NTU		
Laboratory:					
21. Name	Pace Analytical Allen L	aboratory		Phone:	(972)-727-1123
Address:	3714, 400 W Bethany I	Dr #190, Allen, TX 75013			

Facility name:	Sandy Creek Energy Station	1.
Permittee:	Sandy Creek Energy Associates, L.P.	2.
County:	McLennan	3.

wer Station
N-2
/10/2020

Name of sampler:	Asher	Boudreaux	Most recent previous sam	pling: <u>4/8/2020</u>	
Affiliation of sampler:	SCS Engineers	S	Date of water level measu	urements: <u>11/10/2020</u>	
If split sampled, with w	hom? N/A		Datum reference point:	Top of Casing	
Integrity of well:	Good		Datum elevation*:	442.15	
Installation date: 9/23	/2015		Depth to water(below date	um)*: <u>11.19</u>	
			4. Water level elevation*:	430.96	
5. Purging/Sampling	method: Bailer	(Enter bailer or pump)	11. Sample event: Detect	ion	
Were low-flow met	thods used? 🔲 yes 🛛	no (check one)	- Background	- Corrective Action	
If yes, what vol	ume was purged?	- Detection	- Other		
6. Well volumes purg	jed: <u>2.5</u>	- Assessment			
7. Was the well dry b	efore purging?	12. Sample schedule: Semi-Annual			
8. Was the well dry a	ifter purging? 🔳 yes 🛛	- Quarterly	- Fourth Year		
9. How long before s	ampling? 2		- Semi-Annual	- Other	
10. Unit of measure?	hours (Enter v	alue as days, hours, or mins.)	- Annual		
			13. Sample type: Regula	ar	
			- Regular	- Split	
			- Duplicate	- Other	
Field Measurements:			- Resample		
	14. pH	6.35			
	15. Spec. cond.	13.7	16. 🔳 mS/cm		
	17. Temp.	23.51	18. 🛛 F 🛛 or 🔳 C	(check one)	
	19. Turbidity	20.4	20. 🗖 NTU		
Laboratory:					
21. Name	Pace Analytical Aller	n Laboratory	Phone	: (972)-727-1123	
Address:	3714, 400 W Bethar	ny Dr #190, Allen, TX 75013			

Facility name:	Sandy Creek	Energy Static	on	1. Facility Type:	Power Station	
Permittee:	Sandy Creek	Energy Asso	ciates, L.P.	2. Monitor well no.: MW-3		
County:	ounty: McLennan				11/10/2020	
Name of samp	ler:	Ash	er Boudreaux	Most recent previous	sampling: <u>4/8/2020</u>	
Affiliation of sampler: SCS Engineers		Date of water level m	neasurements: <u>11/10/2020</u>			
If split sampled, with whom? N/A Da		Datum reference poi	nt: Top of Casing			
Integrity of well: Good		Datum elevation*:	430.06			
Installation date: 9/1/2010		Depth to water(below datum)*:10.03				
				4. Water level elevat	ion*: 420.03	
5. Purging/Sa	mpling method:	Bailer	(Enter bailer or pump)	11. Sample event: D	etection	
Were low-f	low methods use	ed? □ yes	no (check one)	- Backgro	und - Corrective Action	
lf yes, w	hat volume was	purged?	N/A gal.	- Detectio	n - Other	

6. Well volumes purged: 3.0

Address:

- 7. Was the well dry before purging? □ yes no (check one)
- 8. Was the well dry after purging? □ yes no (check one)
- 9. How long before sampling? 2
- 10. Unit of measure? hours (Enter value as days, hours, or mins.)

- Semi-Annual	- Other
- Annual	

- Quarterly

- Assessment

12. Sample schedule: Semi-Annual

- Fourth Year

13. Sample type: Regular

			- Regular - Split
			- Duplicate - Other
Field Measurements	:		- Resample
	14. pH	6.10	
	15. Spec. cond.	7.21	16. <b>■</b> mS/cm
	17. Temp.	24.01	18. □ F or ■ C (check one)
	19. Turbidity	18.9	20. ■ NTU
Laboratory:			
21. Name	Pace Analytical Alle	n Laboratory	Phone: (972)-727-1123

* Report depth to water and elevations to nearest 0.01 foot relative to mean sea level (msl).

3714, 400 W Bethany Dr #190, Allen, TX 75013

Facility name:	Sandy Creek Energy Station	1	1. Facility Type: Power Station		
Permittee:	Sandy Creek Energy Assoc	ates, L.P.	2. Monitor well no.: BW-1		
County:	McLennan		3. Date of sampling: <u>11/10/2020</u>		
Name of sample	r:Ashe	r Boudreaux	Most recent previous sampling: <u>4/8/2020</u>		
Affiliation of sam	pler: SCS Enginee	rs	Date of water level measurements: <u>11/10/2020</u>		
If split sampled, v	with whom? N/A		Datum reference point: Top of Casing		
Integrity of well:	Good		Datum elevation*: 485.57		
Installation date:	9/22/2015		Depth to water(below datum)*:17.18		
			4. Water level elevation*: 468.39		
5. Purging/Sam	pling method: Bailer	(Enter bailer or pump)	11. Sample event: Detection		
Were low-flow	w methods used?   🔲 yes	- Background - Corrective Action			
lf yes, wh	at volume was purged?	- Detection - Other			
6. Well volumes	s purged: <u>3.0</u>		- Assessment		
7. Was the well	dry before purging? □ yes	no (check one)	12. Sample schedule: Semi-Annual		
8. Was the well	dry after purging? 🔲 yes	no (check one)	- Quarterly - Fourth Year		
9. How long bef	ore sampling? 2		- Semi-Annual - Other		
10. Unit of meas	ure? hours (Enter	value as days, hours, or mins.)	- Annual		
			13. Sample type: Regular		
			- Regular - Split		
			- Duplicate - Other		
Field Measurem	ents:		- Resample		
	14. pH	6.68			
	15. Spec. cond.	8.28	16. <b>■</b> mS/cm		
	17. Temp.	23.53	18. □ F or ■ C (check one)		
	19. Turbidity	262	20. ■ NTU		
Laboratory:					
21. Nam	Pace Analytical All	en Laboratory	Phone: (972)-727-1123		
Addı	ress: 3714, 400 W Betha	any Dr #190, Allen, TX 75013			

Facility name:	Sandy Creek Energy Station	1. Facility Type:	Power Station			
Permittee:	Sandy Creek Energy Associate	es, L.P.	2. Monitor well no .:	DUP		
County:	McLennan	3. Date of sampling: <u>11/10/2020</u>				
Name of sample	r: Asher B	oudreaux	Most recent previous	sampling: N/A		
Affiliation of sam			Date of water level m	· · ·		
If split sampled,				nt: Top of Casing		
Integrity of well:			Datum elevation*:			
Installation date:			Depth to water(below	v datum)*: N/A		
			4. Water level elevat	ion*: N/A		
0 0	pling method: <u>N/A</u>	_(Enter bailer or pump) ] no (check one)	11. Sample event: D			
	w methods used?	- Background - Corrective Action				
-	at volume was purged? N//	- Detection - Other - Assessment				
	s purged: <u>N/A</u>	na (abaak ana)	12. Sample schedule: Semi-Annual			
	dry before purging? □ yes □ dry after purging? □ yes □		- Quarterl			
	fore sampling? N/A		- Quarten - Semi-Ar			
10. Unit of meas		ue as days, hours, or mins.)	- Annual			
TO: Onit of meas			13. Sample type: D	unlicate		
			- Regular			
			- Duplicat	·		
Field Measurem	ents:		- Resamp			
	14. pH	N/A	·			
	15. Spec. cond.	N/A	16. □ mS/cm			
	17. Temp.	N/A	18. 🗆 F 🛛 🗆	C (check one)		
	19. Turbidity	N/A	20. 🗆 NTU			
Laboratory:						
21. Nam	ne Pace Analytical Allen	Laboratory	P	hone: <u>(972)-727-1123</u>		
Addı	ress: 3714, 400 W Bethany	Dr #190, Allen, TX 75013				

## Appendix B

# 2020 Laboratory Reports with Chain of Custody Forms



Pace Analytical Services, LLC 400 W. Bethany Drive, Suite 190 Allen, TX 75013 (972) 727-1123

November 18, 2020

Asher Boudreaux SCS Engineering 1901 Central Drive, Ste 550 Bedford, TX 76021

RE: Pace Project 75144400 Project ID: Sandy Crreek 16220013.00 Task

Dear Asher Boudreaux:

Enclosed are the analytical results for sample(s) received by the laboratory on November 11, 2020. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lope Ъ

Ricky Lopez ricky.lopez@pacelabs.com (972)727-1123

Laboratory Certifications Pace Analytical Dallas : Texas Certification T104704232-20-32 Pace Analytical Dallas : EPA# TX00074



#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC





#### Pace Project 75144400

#### Client: <u>SCS Engineers</u> Project ID: <u>Sandy Crreek 16220013.00 Task</u>

Client Sample ID	Lab ID	Matrix	Collection Date/Time	Received Date/Time
BW1	75144400001	Water	11/10/2020 14:55	11/11/2020 12:24
MW1	75144400002	Water	11/10/2020 15:20	11/11/2020 12:24
MW2	75144400003	Water	11/10/2020 15:30	11/11/2020 12:24
MW3	75144400004	Water	11/10/2020 15:50	11/11/2020 12:24
DUP	75144400005	Water	11/10/2020 16:00	11/11/2020 12:24



Pace Project 75144400

Holding Times:

These holding times were exceeded due to sample receipt or re-extraction after the holding time expired.

Sample 75144400001 analysis 9040 pH Sample 75144400002 analysis 9040 pH Sample 75144400003 analysis 9040 pH Sample 75144400004 analysis 9040 pH Sample 75144400005 analysis 9040 pH

#### Blanks:

The following blank results were above method detection limits: Batch 155471 sample 707456 Chloride

Laboratory Control Samples:

All LCS recoveries were within QC limits.

Matrix Spikes and Duplicates:

MS or MSD recoveries outside of QC limits are qualified in the Report of Quality Control section.

Surrogate:

All surrogate recoveries were within QC limits.

#### Appendix A LABORATORY DATA PACKAGE COVER PAGE

This data package is for Job No. 75144400 and consists of:

This signature page, the laboratory review checklist, and the following reportable data:

X X X

Х

Х

Х

Х

Х

Х

Х

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
  - a. Items consistent with NELAC Chapter 5,
  - b. Dilution factors,
  - c. Preparation methods,
  - d. Cleanup methods, and
  - e. If required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
  - a. Calculated recovery (%R), and
  - b. The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
  - a. LCS spiking amounts,
  - b. Calculated %R for each analyte, and
  - c. The laboratory's LCS QC limits.
- R7 Test reports/summary forms for matrix spike/matrix spike duplicates (MS/MSDs) including:
  - a. Samples associated with the MS/MSD clearly identified,
  - b. MS/MSD spiking amounts,
  - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
  - d. Calculated %Rs and relative percent differences, and
  - e. The laboratory's MS/MSD QC limits.
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
  - a. The amount of analyte measured in the duplicate,
  - b. The calculated RPD, and,
  - c. The laboratory's QC limits for analytical duplicated.
  - R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte and
  - R10 Other problems or anomalies.

The exception Report for each "No" or "Not Reviewed (NR) " item in the Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

**Release Statement:** I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

**Check, if applicable:** [] This laboratory meets an exception under 30 TAC §25.6 and was last inspected by [X] TCEQ on 12/11/2019

Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name (Printed) Ricky Lopez

Signature Kindo Loper

Official Title (Printed) Project Manager <u>Date</u> 11/18/2020



Client ID: <u>BW1</u> Lab ID: <u>751444000</u> Collected: <u>11/10/2020</u>			ture: <u>N</u> ived <u>1</u>	<u>J/A</u> 1/11/2020	12:24		Project ID: 2 Pace Project 7 Matrix: <u>V</u>		220013.0	<u>0</u>
Parameters	DF	Results	Qua	Units	MQL	SDL	Analysis Date	Prep Date	Batch	Instr.
6010 Metals, Total	Ana	lytical Method	: EPA 6	010	Prepa	ration Met	hod: EPA 3010			
Boron	1	3140		ug/L	100	17.4	11/18/2020 11:50	11/17/2020 11:30	155529	75ICP1
Calcium	1	612000		ug/L	1000	92.5	11/18/2020 11:50	11/17/2020 11:30	155529	75ICP1
9040 pH	Ana	lytical Method	: EPA 9	040						
pH at 25 Degrees C	1	7.1	H3,H6	Std. Units	0.10	0.10	11/16/2020 13:27		155429	75WETP
9056 IC Anions	Ana	lytical Method	: EPA 9	056A						
Chloride	100	1170	M6	mg/L	80.0	5.4	11/17/2020 23:11		155471	75WTA4
Fluoride	1	< 0.20		mg/L	0.50	0.20	11/17/2020 20:48		155471	75WTA4
Sulfate	500	2710		mg/L	350	99.5	11/18/2020 09:16		155471	75WTA4
2540C Total Dissolved Solids	Ana	lytical Method	: SM 25	40C						
Total Dissolved Solids	1	6000		mg/L	500	500	11/12/2020 16:12		155234	75BL17



Client ID: <u>MW1</u> Lab ID: <u>75144400002</u> Mois           Collected: <u>11/10/2020 15:20</u> Received				<u>I/A</u> 1/11/2020	12:24		Project ID: <u>\$</u> Pace Project <u>7</u> Matrix: <u>V</u>	220013.0	<u>0</u>			
Parameters	DF	Results	Qua	Units	MQL	SDL	Analysis Date	Prep Date	Batch	Instr.		
6010 Metals, Total	Ana	alytical Method	: EPA 6	010	Prepa	aration Method: EPA 3010						
Boron	1	1180		ug/L	100	17.4	11/18/2020 11:54	11/17/2020 11:30	155529	75ICP1		
Calcium	1	539000		ug/L	1000	92.5	11/18/2020 11:54	11/17/2020 11:30	155529	75ICP1		
9040 pH	Analytical Method: EPA 9040											
pH at 25 Degrees C	1	7.2	H3,H6	Std. Units	0.10	0.10	11/16/2020 13:30		155429	75WETP		
9056 IC Anions	Ana	alytical Method	: EPA 9	056A								
Chloride	20	168		mg/L	16.0	1.1	11/18/2020 10:09		155471	75WTA4		
Fluoride	1	0.26	J	mg/L	0.50	0.20	11/18/2020 00:05		155471	75WTA4		
Sulfate	500	2350		mg/L	350	99.5	11/18/2020 10:27		155471	75WTA4		
2540C Total Dissolved Solids	Ana	alytical Method	: SM 25	40C								
Total Dissolved Solids	1	4060		mg/L	83.3	83.3	11/12/2020 16:12		155234	75BL17		



Client ID: <u>MW2</u> Lab ID: <u>751444000</u> Collected: <u>11/10/2020</u>	ure: <u>N</u> ived <u>1</u>	I <u>/A</u> 1/11/2020	12:24		Project ID: <u>\$</u> Pace Project <u>7</u> Matrix: <u>V</u>	220013.0	<u>0</u>					
Parameters	DF	Results	Qual	Units	MQL	SDL	Analysis Date	Prep Date	Batch	Instr.		
6010 Metals, Total	Ana	alytical Method	: EPA 6	010	Prepa	paration Method: EPA 3010						
Boron	1	2130		ug/L	100	17.4	11/18/2020 11:58	11/17/2020 11:30	155529	75ICP1		
Calcium	1	715000	ug/L		1000	92.5	11/18/2020 11:58	11/17/2020 11:30	155529	75ICP1		
9040 pH	Analytical Method: EPA 9040											
pH at 25 Degrees C	1	6.8	H3,H6	Std. Units	0.10	0.10	11/16/2020 13:32		155429	75WETP		
9056 IC Anions	Ana	alytical Method	: EPA 9	056A								
Chloride	500	2350		mg/L	400	27.0	11/18/2020 11:39		155471	75WTA4		
Fluoride	1	< 0.20		mg/L	0.50	0.20	11/18/2020 00:58		155471	75WTA4		
Sulfate	500	2830		mg/L	350	99.5	11/18/2020 11:39		155471	75WTA4		
2540C Total Dissolved Solids	Ana	alytical Method	: SM 25	40C								
Total Dissolved Solids	1	9670		mg/L	833	833	11/12/2020 16:13		155234	75BL17		



Client ID: MW3           Lab ID: 75144400004         Moist           Collected: 11/10/2020 15:50         Recei				I <u>/A</u> 1/11/2020	12:24		Project ID: <u>{</u> Pace Project <u>7</u> Matrix: <u>V</u>	<u>0</u>				
Parameters	DF	Results	Qual	Units	MQL	SDL	Analysis Date	Prep Date	Batch	Instr.		
6010 Metals, Total	Ana	ytical Method	EPA 6	010	Prepa	aration Method: EPA 3010						
Boron	1	3070		ug/L	100	17.4	11/18/2020 12:02	11/17/2020 11:30	155529	75ICP1		
Calcium	1	597000		ug/L	1000	92.5	11/18/2020 12:02	11/17/2020 11:30	155529	75ICP1		
9040 pH	Ana	ytical Method	: EPA 9	040								
pH at 25 Degrees C	1	7.1	H3,H6	Std. Units	0.10	0.10	11/16/2020 13:33		155429	75WETP		
9056 IC Anions	Ana	ytical Method	: EPA 9	056A								
Chloride	100	1160		mg/L	80.0	5.4	11/18/2020 03:04		155471	75WTA4		
Fluoride	1	< 0.20		mg/L	0.50	0.20	11/18/2020 02:28		155471	75WTA4		
Sulfate	500	2950		mg/L	350	99.5	11/18/2020 11:03		155471	75WTA4		
2540C Total Dissolved Solids	Ana	ytical Method	: SM 25	40C								
Total Dissolved Solids	1	6920		mg/L	500	500	11/12/2020 16:13		155234	75BL17		



Client ID: <u>DUP</u> Lab ID: <u>751444000</u> Collected: <u>11/10/2020</u>	ure: <u>N</u> ived <u>1</u>	<u></u>	Project ID:         Sandy Crreek 162200           Pace Project         75144400           11/2020 12:24         Matrix:         Water									
Parameters	DF	Results	Qual	Units	MQL	SDL	Analysis Date	Prep Date	Batch	Instr.		
6010 Metals, Total	Ana	alytical Method	: EPA 6	010	Prepa	paration Method: EPA 3010						
Boron	1	1250		ug/L	100	17.4	11/18/2020 12:07	11/17/2020 11:30	155529	75ICP1		
Calcium	1	543000		ug/L	1000	92.5	11/18/2020 12:07	11/17/2020 11:30	155529	75ICP1		
9040 pH	Analytical Method: EPA 9040											
pH at 25 Degrees C	1	6.6	H3,H6	Std. Units	0.10	0.10	11/16/2020 13:35		155429	75WETP		
9056 IC Anions	Ana	alytical Method	: EPA 9	056A								
Chloride	100	310	В	mg/L	80.0	5.4	11/18/2020 03:57		155471	75WTA4		
Fluoride	1	< 0.20		mg/L	0.50	0.20	11/18/2020 03:21		155471	75WTA4		
Sulfate	500	2990		mg/L	350	99.5	11/18/2020 11:21		155471	75WTA4		
2540C Total Dissolved Solids	Ana	alytical Method	: SM 25	40C								
Total Dissolved Solids	1	5520		mg/L	500	500	11/12/2020 16:13		155234	75BL17		



Batch: <u>155529</u> Method: <u>EPA 601</u> Prep <u>EPA 301</u>							Pace Project No.: 75144400 Instrument ID: 75ICP1						
Blank: 707665													
Parameters	Dilutio	Qual	s I	Result	Units	MQL	SDL	Analysis Date	Prep Date				
Boron	1	U		<17.4	ug/L	100	17.4	11/18/2020 11:30	11/17/2020 11:30				
Calcium	1	U		<92.5	ug/L	1000	92.5	11/18/2020 11:30	11/17/2020 11:30				
Laboratory Control Sar	nple: 70766	6											
Parameters			pk mt	LCS Result	Uni	ts	LCS %Rec	% Rec Limits	LCS Quals				
Boron			000	1030	ug/		103	80-120					
Calcium		10	000	10300	ug/		103	80-120					
Matrix Spike: 707667					Matrix Spi	ke Duplic	cate: 70766	58					
Original for Sample	e: Batch sa	mple 1442	263021										
	Original	MCN	160	MC	Med		Me						

Parameters	Original Result	MS Spk	MSD Spk	MS Result	MSD Result	Units	MS %Rec	MSD %Rec	% Rec Limits	RPD	Max RPD	Quals
Boron	<17.4	1000	1000	1040	1020	ug/L	103	101	84-113	1	20	
Calcium	274J	10000	10000	10500	10500	ug/L	102	102	10-200	0	20	



Batch: <u>155429</u> Method: <u>EPA 9040</u>				Pace Project No.: 75144400 Instrument ID: 75WETP					
Laboratory Control Sample	e: 707270								
Parameters		pk mt	LCS Result	Units	LCS %Rec	% Rec Limits	LCS Quals		
pH at 25 Degrees C		6 –	6.0	Std. Units	101	99-101	H6		
Duplicate: 707271									
Original for Sample: F	Project sample BW	V1							
Parameters	Original Result	Dup Resu		Units	RPD	Max RPD	Quals		

Parameters	Result	Result	Units	RPD	RPD	Quals
pH at 25 Degrees C	7.1	7.1	Std. Units	0	20	H3,H6



# Batch: <u>155471</u> Method: <u>EPA 9056A</u>

# Pace Project No.: 75144400 Instrument ID: 75WTA4

	Blan	<b>k:</b> 70	7456
--	------	--------------	------

Parameters	Dilutio	Quals	Result	Units	MQL	SDL	Analysis Date	Prep Date
Chloride	1	J	0.32	mg/L	0.80	0.054	11/17/2020 20:13	
Fluoride	1	U	<0.20	mg/L	0.50	0.20	11/17/2020 20:13	
Sulfate	1	U	<0.20	mg/L	0.70	0.20	11/17/2020 20:13	

Laboratory Control Sample: 707457

Parameters	Spk Amt	LCS Result	Units	LCS %Rec	% Rec Limits	LCS Quals
Chloride	5	4.6	mg/L	92	80-120	
Fluoride	5	4.7	mg/L	95	80-120	
Sulfate	5	4.8	mg/L	95	80-120	

Matrix Spike: 707458

Matrix Spike Duplicate: 707459

Original for Sample: Project sample BW1

Parameters	Original Result	MS Spk	MSD Spk	MS Result	MSD Result	Units	MS %Rec	MSD %Rec	% Rec Limits	RPD	Max RPD	Quals
Chloride	1170	500	500	1760	2020	mg/L	118	169	80-120	14	20	E
Fluoride	<0.20	5	5	4.1	4.3	mg/L	82	85	80-120	4	20	
Sulfate	2710	2500	2500	5310	5300	mg/L	104	104	80-120	0	20	



Batch: <u>155234</u> Method: <u>SM 254</u>			Pace Project No.: <u>75144400</u> Instrument ID: <u>75BL17</u>					
Blank: 706425								
Parameters	Dilutio	Quals	Result	Units	MQL	SDL	Analysis Date	Prep Date
Total Dissolved Solids	1	U	<25.0	mg/L	25.0	25.0	11/12/2020 16:12	
Laboratory Control Sa Parameters Total Dissolved Solids	-	<b>Spk</b> <b>Amt</b> 250	LCS Result 247	Uni mg/		<b>LCS</b> %Rec 99	% Rec Limits 85-115	LCS Quals
Duplicate: 706427								
Original for Sam	ple: Project sa	mple DUP						
Parameters	Origiı Resu		Dup Result	Units		RPD	Max RPD	Quals
Total Dissolved Solids	552		5440	mg/L	• •	4	5	



Analyte	Method	Unadjusted MQL	Reporting Units
Boron	EPA 6010	100	ug/L
Calcium	EPA 6010	1000	ug/L
pH at 25 Degrees C	EPA 9040	0.10	Std. Units
Chloride	EPA 9056A	0.80	mg/L
Fluoride	EPA 9056A	0.50	mg/L
Sulfate	EPA 9056A	0.70	mg/L
Total Dissolved Solids	SM 2540C	25.0	mg/L



Pace Project <u>75144400</u>

# DEFINITIONS

- DF Dilution Factor
- J Estimated concentration above the adjusted method detection limit and below the adjusted reporting
- U Indicates the compound was analyzed for, but not detected.
- SDL Sample Detection Limit
- MQL Method Quantitation Limit
- LCS(D) Laboratory Control Sample (Duplicate)
- MS(D) Matrix Spike (Duplicate)
- DUP Sample Duplicate
- RPD Relative Percent Difference
- TNI The Nelac Institute

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

# ANALYTE QUALIFIERS

- B Analyte was detected in the associated method blank.
- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- H3 Sample was received or analysis requested beyond the recognized method holding time.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.



Pace Project	<u>75144400</u>
--------------	-----------------

				Analytical
Sample ID	QC Batch Method	QC Batch	Analytical	
BW1	EPA 3010	155529	EPA 6010	155603
MW1	EPA 3010	155529	EPA 6010	155603
MW2	EPA 3010	155529	EPA 6010	155603
MW3	EPA 3010	155529	EPA 6010	155603
DUP	EPA 3010	155529	EPA 6010	155603
BW1	SM 2540C	155234		
MW1	SM 2540C	155234		
MW2	SM 2540C	155234		
MW3	SM 2540C	155234		
DUP	SM 2540C	155234		
BW1	EPA 9040	155429		
MW1	EPA 9040	155429		
MW2	EPA 9040	155429		
MW3	EPA 9040	155429		
DUP	EPA 9040	155429		
BW1	EPA 9056A	155471		
MW1	EPA 9056A	155471		
MW2	EPA 9056A	155471		
MW3	EPA 9056A	155471		
DUP	EPA 9056A	155471		
	BW1 MW2 MW3 DUP BW1 MW1 MW2 MW3 DUP BW1 MW1 MW2 MW3 DUP BW1 MW3 DUP BW1 MW3 MW3 MW3	BW1         EPA 3010           MW1         EPA 3010           MW2         EPA 3010           MW3         EPA 3010           DUP         EPA 3010           BW1         SM 2540C           MW1         SM 2540C           MW2         SM 2540C           MW2         SM 2540C           MW2         SM 2540C           MW2         SM 2540C           MW3         SM 2540C           DUP         SM 2540C           MW3         SM 2540C           DUP         SM 2540C           BW1         EPA 9040           MW1         EPA 9040           MW2         EPA 9040           MW3         EPA 9040           BW1         EPA 9040           MW3         EPA 9040           BW1         EPA 9040           BW1         EPA 9040           BW1         EPA 9056A           MW1         EPA 9056A           MW2         EPA 9056A           MW3         EPA 9056A	BW1         EPA 3010         155529           MW1         EPA 3010         155529           MW2         EPA 3010         155529           MW3         EPA 3010         155529           DUP         EPA 3010         155529           BW1         SM 2540C         155234           MW1         SM 2540C         155234           MW2         SM 2540C         155234           MW2         SM 2540C         155234           MW2         SM 2540C         155234           MW2         SM 2540C         155234           MW3         SM 2540C         155234           DUP         SM 2540C         155234           MW3         SM 2540C         155234           DUP         SM 2540C         155234           MW3         EPA 9040         155429           MW1         EPA 9040         155429           MW2         EPA 9040         155429           MW3         EPA 9040         155429           DUP         EPA 9040         155429           BW1         EPA 9056A         155471           MW1         EPA 9056A         155471           MW2         EPA 9056A	BW1       EPA 3010       155529       EPA 6010         MW1       EPA 3010       155529       EPA 6010         MW2       EPA 3010       155529       EPA 6010         MW3       EPA 3010       155529       EPA 6010         MW3       EPA 3010       155529       EPA 6010         DUP       EPA 3010       155529       EPA 6010         BW1       SM 2540C       155234         MW2       SM 2540C       155234         MW2       SM 2540C       155234         DUP       SM 2540C       155234         BW1       SM 2540C       155234         MW3       SM 2540C       155234         DUP       SM 2540C       155234         BW1       EPA 9040       155429         MW3       SM 2540C       155234         DUP       SM 2540C       155429         MW1       EPA 9040       155429         MW2       EPA 9040       155429         MW3       EPA 9040       155429         DUP       EPA 9040       155429         BW1       EPA 9056A       155471         MW2       EPA 9056A       155471         MW2       EP

		TRRP LABORATORY	REVIEW CHECKLIST							
La	boratory	Pace Analytical Services, LLC	LRC Date:	11/18/2020						
Proje	ct Name:	Sandy Crreek 16220013.00 Task	Laboratory Job	75144400	400					
F	Reviewer	Ricky Lopez	Prep Batch Number	See excepti	on repo	t.				
# ¹	A ²	Description		Ye	s N	D NA	³ NR ⁴	ER #		
R1	OI	Chain-of-custody (C-O-C)								
		Did samples meet the laboratory's standard conditions of	sample acceptability upon receip	it?	×			R1.1		
		Were all departures from standard conditions described ir	n an exception report?	X						
R2	OI	Sample and quality control (QC) identification								
		Are all field sample ID numbers cross-referenced to the la	aboratory ID numbers?	X						
		Are all laboratory ID numbers cross-referenced to the corr	responding QC data?	Х						
R3	OI	Test reports								
		Were all samples prepared and analyzed within holding ti			Х			R3.1		
		Other than those results < MQL, were all other raw values	s bracketed by calibration standa	rds?	×			R3.2		
		Were calculations checked by a peer or supervisor?		Х						
		Were all analyte identifications checked by a peer or supe		Х						
		Were sample detection limits reported for all analytes not	detected?	Х						
		Were all results for soil and sediment samples reported or	n a dry weight basis?			Х				
		Were % moisture (or solids) reported for all soil and sedin				X				
	Were bulk soils/solids samples for volatile analysis extracted with methanol per SW846 Method 5035? If required for the project, are TICs reported?		ethod		X					
				_						
					X					
R4	0	Surrogate recovery data				X				
	Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the laboratory QC limits?				×					
DE	0		ne laboratory QC limits?			^				
R5	OI	Test reports/summary forms for blank samples								
		Were appropriate type(s) of blanks analyzed?		X						
		Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical p	reason including propagation and	X						
		applicable, cleanup procedures?	nocess, including preparation and	^{1, II} X						
		Were blank concentrations < MQL?		Х						
R6	OI	Laboratory control samples (LCS):								
		Were all COCs included in the LCS?		Х						
		Was each LCS taken through the entire analytical proced	lure, including prep and cleanup s	steps? X						
		Were LCSs analyzed at the required frequency?		Х						
		Were LCS (and LCSD, if applicable) %Rs within the labor	ratory QC limits?	Х						
		Does the detectability check sample data document the la at the MDL used to calculate the SDLs?	aboratory's capability to detect the	e COCs X						
		Was the LCSD RPD within QC limits?				X				
R7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) da	ata							
		Were the project/method specified analytes included in th	e MS and MSD?	Х						
		Were MS/MSD analyzed at the appropriate frequency?		Х						
		Were MS (and MSD, if applicable) %Rs within the laborat	tory QC limits?		X			R7.3		
		Were MS/MSD RPDs within laboratory QC limits?		Х						
R8	OI	Analytical duplicate data								
		Were appropriate analytical duplicates analyzed for each	matrix?	Х						
		Were analytical duplicates analyzed at the appropriate fre		Х						
		Were RPDs or relative standard deviations within the labor		Х						
R9	OI	Method quantitation limits (MQLs):								
	•	Are the MQLs for each method analyte included in the lab	poratory data package?	X						
		Do the MQLs correspond to the concentration of the lowe								
		Are unadjusted MQLs and DCSs included in the laborator	ry data package?	X						
R10	OI	Other problems/anomalies	,,							
		Are all known problems/anomalies/special conditions note	ed in this LRC and ER?	X						
		Was applicable and available technology used to lower th								
		interference effects on the sample results?		X				<u> </u>		
		Is the laboratory NELAC-accredited under the Texas Labo analytes, matrices, and methods associated with this labo		the X						

	TRRP LABORATORY REVIEW CHECKLIST							
Laboratory	Laboratory         Pace Analytical Services, LLC         LRC Date:         11/18/2020							
Project Name:	Sandy Crreek 16220013.00 Task	Laboratory Job	75144400					
Reviewer	Ricky Lopez	Prep Batch Number	See exception report.					
letter "S" sho 2. O = Organic :	<ol> <li>Items identified by the letter "R" must be included in the laboratory in the laboratory data package submitted in the TRRP-required reports(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;</li> <li>O = Organic analyses; I = inorganic analysises (and general chemistry, when applicable);</li> </ol>							
	3. NA = Not applicable;							
4. NR = Not rev 5. ER# = Excep	ewed; tion Report identification number (an Exception Report should be d	completed for an item if "NR" or "No" is checked).						

		TRRP LABORATORY	REVIEW CHECKLIST								
La	aboratory	Pace Analytical Services, LLC	11/18/2020	18/2020							
Proje	ct Name:	Sandy Crreek 16220013.00 Task	Laboratory Job	75144400							
	Reviewer	Ricky Lopez	Prep Batch Number	See exceptio	n report.						
# ¹	A ²	Description	· · · · ·	Yes	No	NA ³	NR ⁴	ER #5			
S1	OI	Initial calibration (ICAL)									
		Were response factors and/or relative response factors f	or each analyte within QC limits?	Х							
		Were percent RSDs or correlation coefficient criteria me	t?	X				-			
		Was the number of standards recommended in the meth		X							
		Were all points generated between the lowest and highe	-					+			
								<u> </u>			
		Are ICAL data available for all instruments used? Has the initial calibration curve been verified using an ap	propriate accord course standars	X							
			propriate second source standard	X							
S2	OI	Initial and continuing calibration verification (ICCV a	nd CCV) and continuing calibra	tion							
-	_	blank (CCB): Was the CCV analyzed at the method-required frequence	N/2	X				-			
		Were percent differences for each analyte within the me	X				-				
		Was the ICAL curve verified for each analyte?		X							
		Was the absolute value of the analyte concentration in the	ne inorganic CCB < MDI ?	X							
S3	0	Mass spectral tuning									
	-	Was the appropriate compound for the method used for	tuning?			X					
		Were ion abundance data within the method-required Q				Х		<u> </u>			
S4	0	Internal standards (IS)									
		Were IS area counts and retention times within the meth	od-required QC limits?			X					
S5	OI	Raw data (NELAC Section 5.5.10)									
		Were the raw data (for example, chromatograms, spectr	al data) reviewed by an analyst?	Х							
		Were data associated with manual integrations flagged of	on the raw data?	X				+			
S6	0	Dual column confirmation									
00	•	Did dual column confirmation results meet the method-re	equired QC?			X		1			
S7	0	Tentatively identified compounds (TICs)									
	-	If TICs were requested, were the mass spectra and TIC	data subject to appropriate checks	s?		x		<u> </u>			
<u> </u>				_							
S8	I	Interference Check Sample (ICS) results Were percent recoveries within method QC limits?		X				-			
S9	1	Serial dilutions, post digestion spikes, and method d	of standard additions	^				-			
39	I	Were percent differences, recoveries, and the linearity w						-			
		method?		Х							
S10	OI	Method detection limit (MDL) studies									
		Was a MDL study performed for each reported analyte?		Х				<u> </u>			
		Is the MDL either adjusted or supported by the analysis	of DCSs?	X							
S11	OI	Proficiency test reports Was the laboratory's performance acceptable on the app	licable proficiency tasts or cyclus	tion							
		studies?		X X							
S12	OI	Standards documentation									
		Are all standards used in the analyses NIST-traceable o	r obtained from other appropriate	Х							
S13	OI	sources? Compound/analyte identification procedures									
010		Are the procedures for compound/analyte identification of	documented?	X							
S14	OI	Demonstration of analyst competency (DOC)									
2.1		Was DOC conducted consistent with NELAC Chapter 52	?	X							
		Is documentation of the analyst's competency up-to-date		X			1	1			
S15	OI	Verification/validation documentation for methods (I									
		Are all the methods used to generate the data document		X							
S16	OI	applicable?									
310		Laboratory standard operating procedures (SOPs) Are laboratory SOPs current and on file for each method	I performed?	X				-			
1.	Items identifie	Are laboratory SOP's current and on file for each method ad by the letter "R" must be included in the laboratory in the laboratory data p	•		fied by the		L	<u> </u>			
	letter "S" sho	uld be retained and made available upon request for the appropriate retention	n period;	,	,						
2. 3.	O = Organic a NA = Not app	analyses; I = inorganic analysises (and general chemistry, when applicable); licable;									
4. 5	NR = Not revi		for an itom if "NP" or "No" is shocked								
5.	EK# = EXCEP	tion Report identification number (an Exception Report should be completed	TOF AT ILETT IF INK" OF "NO" IS Checked).								

		TRRP LABORATORY	REVIEW CHECKLIST							
L	aboratory	Pace Analytical Services, LLC	LRC Date:	11/18/2020						
Proj	ect Name:	Sandy Crreek 16220013.00 Task	Laboratory Job	75144400						
	Reviewer	Ricky Lopez	Prep Batch Number	155234,155429,155471,155529						
ER # ¹		[	Description							
R1.1	Sample 70 time.	7271, Method EPA 9040, pH at 25 Degrees C: H3 - Sam	ple was received or analysis reque	ested beyond the recognized method holding						
R1.1	Sample 75 holding tim	144400001, Method EPA 9040, pH at 25 Degrees C: H3 e.	- Sample was received or analysis	s requested beyond the recognized method						
R1.1	holding tim			. , .						
R1.1	Sample 75144400003, Method EPA 9040, pH at 25 Degrees C: H3 - Sample was received or analysis requested beyond the recognized method holding time.									
R1.1	Sample 75 holding tim	144400004, Method EPA 9040, pH at 25 Degrees C: H3 e.	- Sample was received or analysis	s requested beyond the recognized method						
R1.1	Sample 75 holding tim	144400005, Method EPA 9040, pH at 25 Degrees C: H3 e.	- Sample was received or analysis	s requested beyond the recognized method						
R3.1	Sample 75	144400001, 9040 pH. Run on 11/16/20 13:27 is 5.9 days	past hold. Sample received after	hold date.						
R3.1	Sample 75	144400002, 9040 pH. Run on 11/16/20 13:30 is 5.9 days	past hold. Sample received after	hold date.						
R3.1	Sample 75	144400003, 9040 pH. Run on 11/16/20 13:32 is 5.9 days	past hold. Sample received after	hold date.						
R3.1	Sample 75	144400004, 9040 pH. Run on 11/16/20 13:33 is 5.9 days	past hold. Sample received after	hold date.						
R3.1	Sample 75	144400005, 9040 pH. Run on 11/16/20 13:35 is 5.9 days	past hold. Sample received after	hold date.						
R3.2	Sample 70	7458, Method EPA 9056A, Chloride: E - Analyte concent	ration exceeded the calibration rar	nge. The reported result is estimated.						
R3.2	Sample 70	7459, Method EPA 9056A, Chloride: E - Analyte concent	ration exceeded the calibration rar	nge. The reported result is estimated.						
R7.3	MSD Samp	ble #707459: Chloride 169% spike recovery outside labor	atory QC limit of 80-120%.							
1.	ER# = Exc	ception Report identification number (an Exception Repor	t should be completed for an item	if "NR" or "No" is checked).						

	Document Name: Sample Condition Upon Receipt	Document Revised: 7/27/20 Page 1 of 1
Pace Analytical*	Document No.:	Issuing Authority:
	F-DAL-C-001-rev.14	Pace Dallas Quality Office
	Sample Condition Upon Re	•
Dallas		
Client Name: SUS ENGINEE Courier: FedEX D UPS D USPS D Client LSC Tracking #: Custody Seal on Cooler/Box: Yes D No d	ERS Project Work order	
Received on ice: Wor 🗆 Blue 🗆 No ice 🗆		
Receiving Lab 1 Thermometer Used: TMTM	UB Cooler Temp °C: U.G (Rec	corded) (Correction Factor) (.5 (Actual)
		corded) <u>+0.1</u> (Correction Factor) <u>1.7</u> (Actual)
Temperature should be above freezing to 6°	•	in which evidence of cooling is acceptable
Triage Person: Date	e: 11-11-2020	
Chain of Custody relinquished	Yes 🔽 No 🗆	
Sampler name & signature on COC	Yes Z No 🗆	
Short HT analyses (<72 hrs)	Yes 🗆 No 🗹	
Login Person: Date	11.11.2020	
Sufficient Volume received	Yes, 🗆 No 🗆	
Correct Container used	Yes No 🗆	
Container Intact	Yes A No 🗆	······································
Sample pH Acceptable pH Strips:	Yes Z No 🗆	NA 🗆
Residual Chlorine Present Cl Strips:	Yes 🗆 No 🗆	NA
Sulfide Present Lead Acetate Strips:	Yes □ No □	NAU
Are soil samples (volatiles, TPH) receive (not applicable to TCLP VOA or PST Progr		NA
Unpreserved 5035A soil frozen within 4	18 hrs Yes 🗆 No 🗆	NALE
Headspace in VOA (>6mm)	Yes 🗆 No 🗆	
Project sampled in USDA Regulated Are Texas State Sampled:	ea outside of Yes D No D	NA
Non-Conformance(s):	Yes 🗆 No 🖆	

Labeling	Person	(if different	than log-in):
----------	--------	---------------	---------------

_ Date: _

180	
AR	
SE DE	
	Pace Analyti

# CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Name         Name <th< th=""><th></th><th></th><th></th><th></th><th></th><th>12</th><th>11</th><th>10</th><th>ø</th><th>8</th><th>7</th><th>o,</th><th>cn</th><th>4</th><th>ω</th><th>N</th><th>-</th><th>ITEM#</th><th>Request</th><th>Phone:</th><th>Email:</th><th>Address</th><th>Company:</th><th>Required (</th></th<>						12	11	10	ø	8	7	o,	cn	4	ω	N	-	ITEM#	Request	Phone:	Email:	Address	Company:	Required (	
Image: Construction					ADDITIONAL COMMENTS								DUP	MW-3	MW-2	MW-1	BW1	SAMPLE ID One Character per box. (A-Z, 0-9 /, -) Sample Ids must be unique	ed Due Date:	1-2288	aboudreaux@scsengineers.com	1901 Central Drive, Ste 550		A d Client Information:	
Name         Number of the second			X	Ash	REL								5	5	5	5	~	JOARSPER WYWOOD	Project #:	Project Name:	Purchase Order	Copy To:	Report To: A	Section B Required Proje	
Name         Number of the second					NOUISHE	Þ		-							L.			SAMPLE TYPE (G=GRAB C=COMP)		Sandy	*	2	sher Boud	ct Inform	
Production         Program		SAI	GH	nucla Leg	DBYINF	-	-						10/20 16:	holais	10/20/15	212201	HIPPON		3	Creek 16			xneau	ation;	
Market Market Standard     Provide Standard       Name     Name       Name     Name <t< td=""><td>PRINT N</td><td>APLER NA</td><td>WA.</td><td></td><td>LATION</td><td>┝</td><td></td><td></td><td></td><td></td><td></td><td></td><td>in lo</td><td>11 02:</td><td>11 25</td><td>1/11 02:</td><td>.75</td><td></td><td></td><td>220013.00</td><td></td><td></td><td></td><td></td></t<>	PRINT N	APLER NA	WA.		LATION	┝							in lo	11 02:	11 25	1/11 02:	.75			220013.00					
Proper Project Manager Advisor Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autority Autori	INE AND SIGNATURE	WE AND				-							91 april	and 15		51 040	H 20	Z		) Task 02					
Page: 1       Prime       manny Nane       Prige Namage: 100 point 2000 and 2000 point		SIGN	12	SAMPLE TEMP AT COLLECTION																					
Page: 1       Prime       manny Nane       Prige Namage: 100 point 2000 and 2000 point		뒲	120 62			-	┢							<u> </u>		<u> </u>			-	70	7		H	<u>न</u> (7	
NeOH       NeoH <th cols<="" td=""><td>m</td><td>32</td><td>T</td><td>$\vdash$</td><td>+</td><td></td><td><u> </u></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td>ace</td><td>açe T</td><td>ace</td><td></td><td>ttenti</td><td>Noic IV</td></th>		<td>m</td> <td>32</td> <td>T</td> <td>$\vdash$</td> <td>+</td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>ace</td> <td>açe T</td> <td>ace</td> <td></td> <td>ttenti</td> <td>Noic IV</td>		m	32	T	$\vdash$	+		<u> </u>				-	-				· · · · · · · · · · · · · · · · · · ·	ace	açe T	ace		ttenti	Noic IV
NeOH       NeoH <th cols<="" td=""><td>10</td><td></td><td>Ľ</td><td>21</td><td>m</td><td></td><td>†</td><td>$\vdash$</td><td></td><td></td><td></td><td></td><td></td><td>$\vdash$</td><td></td><td></td><td></td><td></td><td>rofile</td><td>, Jeje</td><td>Luote</td><td></td><td>19</td><td>8 D C</td></th>	<td>10</td> <td></td> <td>Ľ</td> <td>21</td> <td>m</td> <td></td> <td>†</td> <td>$\vdash$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>$\vdash$</td> <td></td> <td></td> <td></td> <td></td> <td>rofile</td> <td>, Jeje</td> <td>Luote</td> <td></td> <td>19</td> <td>8 D C</td>	10		Ľ	21	m		†	$\vdash$						$\vdash$					rofile	, Jeje	Luote		19	8 D C
NeOH       NeoH <th cols<="" td=""><td></td><td></td><td>1</td><td>7</td><td>192</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>HNO3 IJ</td><td>) #</td><td>:* Mar</td><td></td><td>ame</td><td></td><td>ALING</td></th>	<td></td> <td></td> <td>1</td> <td>7</td> <td>192</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>HNO3 IJ</td> <td>) #</td> <td>:* Mar</td> <td></td> <td>ame</td> <td></td> <td>ALING</td>			1	7	192								-					HNO3 IJ	) #	:* Mar		ame		ALING
NeOH       NeoH <th cols<="" td=""><td>/ Å. I</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>HCI</td><td>786</td><td>ager</td><td></td><td></td><td></td><td></td></th>	<td>/ Å. I</td> <td></td> <td>HCI</td> <td>786</td> <td>ager</td> <td></td> <td></td> <td></td> <td></td>	/ Å. I																	HCI	786	ager				
Date     Na25203     %       Image: State     Image: State     Image: State     Image: State       Image: State     Image: State     Imag	1/2		20										_					NaOH	3 Lin						
Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Sig	R		5	<u>EP2</u>	COE	L	<u> </u>											Na2S2O3		ricky					
Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee:	ac		20	R	PTED																				
Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Signed: Sig	8	6	2	<u>E</u>	BYIA	⊢														8					
Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee:		100		2-	TE	⊢							×	×	×	×	×	the second s		celab					
Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee: Synee:	DAT		2		ATION								×	×	×	×	×			S. CON					
Image: Page: 1     Rogulatory Agency       State / Location       MO#: 7514440       PM: RJL     Date / Location       MO#: 7514440       PM: RJL     Due Date:       Line Date     Tage: 1       Based on e     Y/N       V/N)     Note of the context on the	E Sig		8	5	181								×	×	×	×	×		Requ	-					
EMP in C 1.7 to convert the same teceived on e (//N) (uslody saled on convert to convert	рес I	1			26													6010	este:						
Improving     Regulatory Agency       State / Location       M       Roll       MOH       State / Location       MOH       TN       N       Roll																			Ana						
Page:         1         Openation         State 1 Location           MU         State 1 Location         1X         1X           NU         NU         Due Date:         1X           NT:         SCS         Englineer         1X           EMP in C         1.7         R         10000           VN         1.7         1.0000         1.0000           State 1 Location         1.0000         1.0000         1.0000					2	$\vdash$												- <mark>23/5-</mark>	hada						
EMP in C 1/7 Winf State 1 occurrent State 1 location The Date Trx SCS Englineer Control 1/7 State 1 occurrent State 1 oc			23		TE	<u> </u>															-	Ł	Ц		
EMP in C 1/7 Winf State 1 occurrent State 1 location The Date Trx SCS Englineer Control 1/7 State 1 occurrent State 1 oc		-	6	8	1	-	-								<u> </u>					The second		L			
EMP in C 7 State / Location X Regulatory Agency Regulatory Agency Regulatory Agency Received on e Y / Y / State / Control of the control of t		2	X		T		-											- <u> </u>	VINI	1010		Ŀ			
EMP in C         1         State / Location           i         1         514440           i         1         1           i         1         1           i         1         1           i         1         1           i         0         0         0	000		Ø		m		<u>†                                    </u>											- <mark>℃</mark> ~		STORE OF	1	L	- [		
Received on e Y/N) SAMPLE CONDITION SAMPLE CONDITION CONDITICO CON	EMP in C		$\overline{\mathbf{N}}$		12													<u>ຼື</u> ດີ 🗌		100	K			Pag	
teceived on e Y/N) Sustody saled sooler (N) (N) teceived on e Y/N) Sustody soled (N) (N) (N) (N) (N) (N) (N) (N)			N	5	12.00															State	e un de		ł	•••	
V(N) V V Agency V Sustody ealed jooler V(N) iamples tact (N)					SAN														Ż	î/Lo	Young				
Sustody ealed icoler (/N) Custody ealed Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Cooler (/N) Co	Y/N)			×	PL								(	1	ſ	:	1	<b>4</b>		catio	<b>WBen</b>			~	
cooler (N) iemples tact (N) (N) (N) (N) (N) (N) (N) (N)	Sustody ealed			5	OND								0	0	0	0	0	2		2	No.				
	Cooler			K	TION								Õ	10	Ŏ	ŏ	0				1000			g	
	amples	1		~	3							, I	S	+		2			A gan	1	1000				
																		18		The last	1000				



Pace Analytical Services, Inc. 400 W. Bethany Drive, Suite 190 Allen, TX 75013 (972) 727-1123

April 16, 2020

Jim Lawrence SCS Engineers 1901 Central Dr. Suite 550 Bedford, TX 76021

RE: Pace Project 75129503 Project ID: 16220013.00 Task01/Sandy Creek

Dear Jim Lawrence:

Enclosed are the analytical results for sample(s) received by the laboratory on April 09, 2020. Results reported herin conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Conveting Alolli-

Courtney Hollins courtney.hollins@pacelabs.com (972)727-1123

Laboratory Certifications Pace Analytical Dallas : Texas T104704232-19-29 Pace Analytical Dallas : Texas Certification #: T104704232-18-26



# **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.





# Client: <u>SCS Engineers</u> Project ID: <u>16220013.00 Task01/Sandy Creek</u>

Client Sample ID	Lab ID	Matrix	Collection Date/Time	Received Date/Time
BW-1	75129503001	Water	04/08/2020 15:32	04/09/2020 10:17
MW-1	75129503002	Water	04/08/2020 15:45	04/09/2020 10:17
MW-2	75129503003	Water	04/08/2020 15:53	04/09/2020 10:17
MW-3	75129503004	Water	04/08/2020 16:09	04/09/2020 10:17
DUP	75129503005	Water	04/08/2020 15:32	04/09/2020 10:17



Holding Times:

These holding times were exceeded due to sample receipt or re-extraction after the holding time expired.

Sample 75129503001 analysis 9040 pH Sample 75129503002 analysis 9040 pH Sample 75129503003 analysis 9040 pH Sample 75129503004 analysis 9040 pH Sample 75129503005 analysis 9040 pH

# Blanks:

All blank results were below reporting limits.

Laboratory Control Samples:

All LCS recoveries were within QC limits.

Matrix Spikes and Duplicates:

MS or MSD recoveries outside of QC limits are qualified in the Report of Quality Control section.

Surrogate:

All surrogate recoveries were within QC limits.

# Appendix A LABORATORY DATA PACKAGE COVER PAGE

This data package is for Job No. 75129503 and consists of:

This signature page, the laboratory review checklist, and the following reportable data:

X X X

Х

Х

Х

Х

Х

Х

Х

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
  - a. Items consistent with NELAC Chapter 5,
  - b. Dilution factors,
  - c. Preparation methods,
  - d. Cleanup methods, and
  - e. If required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
  - a. Calculated recovery (%R), and
  - b. The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
  - a. LCS spiking amounts,
  - b. Calculated %R for each analyte, and
  - c. The laboratory's LCS QC limits.
- R7 Test reports/summary forms for matrix spike/matrix spike duplicates (MS/MSDs) including:
  - a. Samples associated with the MS/MSD clearly identified,
  - b. MS/MSD spiking amounts,
  - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
  - d. Calculated %Rs and relative percent differences, and
  - e. The laboratory's MS/MSD QC limits.
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
  - a. The amount of analyte measured in the duplicate,
  - b. The calculated RPD, and,
  - c. The laboratory's QC limits for analytical duplicated.
  - R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte and
  - R10 Other problems or anomalies.

The exception Report for each "No" or "Not Reviewed (NR) " item in the Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

**Release Statement:** I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: [] This laboratory meets an exception under 30 TAC §25.6 and was last inspected by [X] TCEQ on 05/02/2018

Any findings affecting the data in this laboratory data package are noted in the Exception Reports herin. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name (Printed) Courtney Hollins Signature Country 4600-

Official Title (Printed) Project Manager <u>Date</u> 04/16/2020





Client ID: <u>BW-1</u> Lab ID: <u>751295030</u> Collected: <u>04/08/2020</u>			ture: <u>N</u> ived <u>C</u>	<u>1/A</u> )4/09/2020	10:17		Project ID: <u>16220013.00 Task01/Sandy</u> Pace Project <u>75129503</u> Matrix: <u>Water</u>			
Parameters	DF	Results	Qua	I Units	MQL	SDL	Analysis Date	Prep Date	Batch	Instr.
6010 Metals, Total	Ana	lytical Method	: EPA 6	6010	Prepa	aration Met	hod: EPA 3010			
Boron	5	3.7		mg/L	0.50	0.087	04/15/2020 18:47	04/14/2020 08:20	139802	75ICP1
Calcium	1	545	M1	mg/L	1.0	0.093	04/15/2020 12:31	04/14/2020 08:20	139802	75ICP1
9040 pH	Ana	lytical Method	: EPA 9	040						
pH at 25 Degrees C	1	6.9	H3,H6	Std. Units	0.10	0.10	04/10/2020 14:47		139670	75WETQ
9056 IC Anions	Ana	lytical Method	: EPA 9	056A						
Chloride	200	1070		mg/L	160	10.8	04/13/2020 23:04		139781	75WTA4
Fluoride	1	< 0.20	U,M1	mg/L	0.50	0.20	04/13/2020 22:10		139781	75WTA4
Sulfate	500	2760		mg/L	350	99.5	04/13/2020 23:57		139781	75WTA4
2540C Total Dissolved Solids	Ana	lytical Method	: SM 25	540C						
Total Dissolved Solids	1	6660		mg/L	500	500	04/14/2020 12:40		139835	75BL17



Client ID: <u>MW-1</u> Lab ID: <u>75129503(</u> Collected: <u>04/08/2020</u>			ure: <u>N</u> ived <u>0</u>	I <u>/A</u> 4/09/2020	10:17		Project ID: <u>16220013.00 Task01/San</u> Pace Project <u>75129503</u> Matrix: <u>Water</u>					
Parameters	DF	Results	Qual	Units	MQL	SDL	Analysis Date	Prep Date	Batch	Instr.		
6010 Metals, Total	Ana	lytical Method	: EPA 6	010	Prepa	paration Method: EPA 3010						
Boron	1	1.3		mg/L	0.10	0.017	04/15/2020 18:51	04/14/2020 08:20	139802	75ICP1		
Calcium	1	524		mg/L	1.0	0.093	04/15/2020 12:36	04/14/2020 08:20	139802	75ICP1		
9040 pH	Ana	lytical Method	: EPA 9	040								
pH at 25 Degrees C	1	7.1	H3,H6	Std. Units	0.10	0.10	04/10/2020 14:56		139670	75WETQ		
9056 IC Anions	Ana	lytical Method	: EPA 9	056A								
Chloride	50	152		mg/L	40.0	2.7	04/14/2020 14:47		139838	75WTA4		
Fluoride	1	< 0.20		mg/L	0.50	0.20	04/14/2020 01:27		139781	75WTA4		
Sulfate	500	2430		mg/L	350	99.5	04/14/2020 02:02		139781	75WTA4		
2540C Total Dissolved Solids	Ana	lytical Method	: SM 25	40C								
Total Dissolved Solids	1	4330		mg/L	125	125	04/14/2020 12:40		139835	75BL17		



Client ID: <u>MW-2</u> Lab ID: <u>751295030</u> Collected: <u>04/08/2020</u>			ure: <u>N</u> ved <u>0</u> 4	<u>/A</u> 4/09/2020	10:17		Project ID: <u>16220013.00 Task01/Sand</u> Pace Project <u>75129503</u> Matrix: <u>Water</u>				
Parameters	DF	Results	Qual	Units	MQL	SDL	Analysis Date	Prep Date	Batch	Instr.	
6010 Metals, Total	Anal	ytical Method:	EPA 60	)10	Prepa	aration Met	hod: EPA 3010				
Boron	1	1.9		mg/L	0.10	0.017	04/15/2020 18:55	04/14/2020 08:20	139802	75ICP1	
Calcium	1	650		mg/L	1.0	0.093	04/15/2020 12:40	04/14/2020 08:20	139802	75ICP1	
9040 pH	Anal	ytical Method:	EPA 90	)40							
pH at 25 Degrees C	1	6.8	H3,H6	Std. Units	0.10	0.10	04/10/2020 14:52		139670	75WETQ	
9056 IC Anions	Anal	ytical Method:	EPA 90	)56A							
Chloride	500	2410		mg/L	400	27.0	04/14/2020 02:38		139781	75WTA4	
Fluoride	1	< 0.20		mg/L	0.50	0.20	04/14/2020 02:20		139781	75WTA4	
Sulfate	500	3120		mg/L	350	99.5	04/14/2020 02:38		139781	75WTA4	
2540C Total Dissolved Solids		ytical Method:	SM 254	40C							
Total Dissolved Solids	1	9820		mg/L	500	500	04/14/2020 12:41		139835	75BL17	



Client ID: <u>MW-3</u> Lab ID: <u>751295030</u> Collected: <u>04/08/2020</u>			ture: <u>N/A</u> eived <u>04/09/2020 10:17</u>				Project ID: <u>16220013.00 Task01/San</u> Pace Project <u>75129503</u> Matrix: <u>Water</u>				
Parameters	DF	Results	Qual	Units	MQL	SDL	Analysis Date	Prep Date	Batch	Instr.	
6010 Metals, Total	Ana	lytical Method:	EPA 60	)10	Prepa	aration Met	hod: EPA 3010				
Boron	1	1.1		mg/L	0.10	0.017	04/15/2020 18:59	04/14/2020 08:20	139802	75ICP1	
Calcium	1	530		mg/L	1.0	0.093	04/15/2020 12:44	04/14/2020 08:20	139802	75ICP1	
9040 pH	Ana	lytical Method:	EPA 90	)40							
pH at 25 Degrees C	1	6.5	H3,H6	Std. Units	0.10	0.10	04/10/2020 14:57		139670	75WETQ	
9056 IC Anions	Ana	lytical Method:	EPA 90	)56A							
Chloride	50	307		mg/L	40.0	2.7	04/14/2020 03:14		139781	75WTA4	
Fluoride	1	< 0.20		mg/L	0.50	0.20	04/14/2020 02:56		139781	75WTA4	
Sulfate	500	3020		mg/L	350	99.5	04/14/2020 03:32		139781	75WTA4	
2540C Total Dissolved Solids	Ana	lytical Method:	SM 254	40C							
Total Dissolved Solids	1	5980		mg/L	500	500	04/14/2020 12:41		139835	75BL17	



Client ID: <u>DUP</u> Lab ID: <u>75129503(</u> Collected: <u>04/08/2020</u>			ure: <u>N</u> ived <u>0</u> 4	<u>/A</u> 4/09/2020	10:17		Project ID: <u>16220013.00 Task01/Sand</u> Pace Project <u>75129503</u> Matrix: <u>Water</u>				
Parameters	DF	Results	Qual	Units	MQL	SDL	Analysis Date	Prep Date	Batch	Instr.	
6010 Metals, Total	Anal	ytical Method:	EPA 60	)10	Prepa	aration Met	hod: EPA 3010				
Boron	1	3.4		mg/L	0.10	0.017	04/15/2020 19:04	04/14/2020 08:20	139802	75ICP1	
Calcium	1	583		mg/L	1.0	0.093	04/15/2020 12:48	04/14/2020 08:20	139802	75ICP1	
9040 pH	Anal	ytical Method:	EPA 90	)40							
pH at 25 Degrees C	1	7.2	H3,H6	Std. Units	0.10	0.10	04/10/2020 14:54		139670	75WETQ	
9056 IC Anions	Anal	ytical Method:	EPA 90	)56A							
Chloride	100	1160		mg/L	80.0	5.4	04/14/2020 04:43		139781	75WTA4	
Fluoride	1	< 0.20		mg/L	0.50	0.20	04/14/2020 03:50		139781	75WTA4	
Sulfate	500	2840		mg/L	350	99.5	04/14/2020 05:01		139781	75WTA4	
2540C Total Dissolved Solids	Anal	ytical Method:	SM 254	40C							
Total Dissolved Solids	1	6220		mg/L	500	500	04/14/2020 12:41		139835	75BL17	



#### Batch: 139802 Pace Project No.: 75129503 Instrument ID: 75ICP1 Method: EPA 6010 Prep EPA 3010 Blank: 636338 **Parameters** Dilutio Quals Result Units MQL SDL **Analysis Date Prep Date** Boron υ < 0.017 mg/L 0.10 0.017 04/15/2020 18:31 04/14/2020 08:20 1 Calcium U <0.093 0.093 04/15/2020 12:11 04/14/2020 08:20 1 mg/L 1.0 Laboratory Control Sample: 636339 LCS LCS % Rec LCS Spk **Parameters** Amt Result Units %Rec Limits Quals Boron 1 1.0 mg/L 102 88-111 Calcium 10 9.8 mg/L 98 87-112

Matrix Spike: 636340

Matrix Spike Duplicate: 636341

Original for Sample: Project sample BW-1

Parameters	Original Result	MS Spk	MSD Spk	MS Result	MSD Result	Units	MS %Rec	MSD %Rec	% Rec Limits	RPD	Max RPD	Quals
Boron	3.7	1	1	4.7	4.8	mg/L	92	105	84-113	3	20	
Calcium	545	10	10	593	588	mg/L	485	434	10-200	1	20	M1



Batch: <u>139670</u> Method: <u>EPA 9040</u>		Pace Project No.: 75129503 Instrument ID: 75WETQ						
Laboratory Control Sample:	635844							
Parameters	Spk Amt	LCS Result	Units	LCS %Rec	% Rec Limits	LCS Quals		
pH at 25 Degrees C	6	6.0	Std. Units	99	99-101	H6		
Duplicate: 635846								
Original for Sample: Pro	ject sample BW-1							
	Original	Dup			Max			

Parameters	Result	Result	Units	RPD	Max RPD	Quals
pH at 25 Degrees C	6.9	7.0	Std. Units	1	20	H3,H6



# Batch: <u>139781</u> Method: <u>EPA 9056A</u>

# Pace Project No.: 75129503 Instrument ID: 75WTA4

Parameters	Dilutio	Quals	Result	Units	MQL	SDL	Analysis Date	Prep Date
Chloride	1	U	<0.054	mg/L	0.80	0.054	04/13/2020 21:35	
Fluoride	1	U	<0.20	mg/L	0.50	0.20	04/13/2020 21:35	
Sulfate	1	U	<0.20	mg/L	0.70	0.20	04/13/2020 21:35	

### Laboratory Control Sample: 636248

Parameters	Spk Amt	LCS Result	Units	LCS %Rec	% Rec Limits	LCS Quals
Chloride	5	4.6	mg/L	91	80-120	
Fluoride	5	4.6	mg/L	91	80-120	
Sulfate	5	4.8	mg/L	95	80-120	

## Matrix Spike: 636249

Matrix Spike Duplicate: 636250

Original for Sample: Project sample BW-1

Parameters	Original Result	MS Spk	MSD Spk	MS Result	MSD Result	Units	MS %Rec	MSD %Rec	% Rec Limits	RPD	Max RPD	Quals
Chloride	1070	1000	1000	2160	2150	mg/L	109	108	80-120	0	20	
Fluoride	<0.20	5	5	3.2	3.3	mg/L	63	65	80-120	3	20	M1
Sulfate	2760	2500	2500	5380	5420	mg/L	105	106	80-120	1	20	



Batch: <u>139</u> Method: <u>EP</u> /	Pace Project No.: 75129503 Instrument ID: 75WTA4											
Blank: 636504												
Parameters	Dilutio	Qı	uals	Result	Units	MQL	SDI	_ A	nalysis Da	ate	Pre	o Date
Chloride	1		U	<0.054	mg/L	0.80	0.05	4 04	/14/2020 14	4:11		
Laboratory Contr	ol Sample: 63650	05										
Parameters			Spk Amt	LCS Result	Un	its	LCS %Rec		% Rec ₋imits	-	LCS Juals	
Chloride		-	5	4.9	mg	/L -	97		30-120			
Matrix Spike: 636	506			I	Matrix Spi	ke Dupli	cate: 636	507				
Original for	Sample: Project s	ample	MW-1									
Parameters	Original Result	MS Spk	MSD Spk	MS Result	MSD Result	Units	MS %Rec	MSD %Rec	% Rec Limits	RPD	Max RPD	Quals
Chloride	152	250	250	409	419	mg/L	103	107	80-120	2	20	



Batch: <u>139835</u> Method: <u>SM 2540</u>	Pace Project No.: 75129503 Instrument ID: 75BL17							
Blank: 636494								
Parameters	Dilutio	Quals	Result	Units	MQL	SDL	Analysis Date	Prep Date
Total Dissolved Solids	1	U	<25.0	mg/L	25.0	25.0	04/14/2020 12:39	
Laboratory Control Sa	mple: 636495	5						
		Spk	LCS			LCS	% Rec	LCS
Parameters		Amt	Result	Uni	ts	%Rec	Limits	Quals
Total Dissolved Solids		250	272	mg/	<u>/L</u>	109	85-115	



Analyte	Method	Unadjusted MQL	Reporting Units
Boron	EPA 6010	0.10	mg/L
Calcium	EPA 6010	1.0	mg/L
pH at 25 Degrees C	EPA 9040	0.10	Std. Units
Chloride	EPA 9056A	0.80	mg/L
Fluoride	EPA 9056A	0.50	mg/L
Sulfate	EPA 9056A	0.70	mg/L
Total Dissolved Solids	SM 2540C	25.0	mg/L



# DEFINITIONS

- DF Dilution Factor
- J Estimated concentration above the adjusted method detection limit and below the adjusted reporting
- U Indicates the compound was analyzed for, but not detected.
- SDL Sample Detection Limit
- MQL Method Quantitation Limit
- LCS(D) Laboratory Control Sample (Duplicate)
- MS(D) Matrix Spike (Duplicate)
- DUP Sample Duplicate
- RPD Relative Percent Difference
- TNI The Nelac Institute

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

# ANALYTE QUALIFIERS

- H3 Sample was received or analysis requested beyond the recognized method holding time.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.



Pace Projec	t <u>75129503</u>
-------------	-------------------

					Analytical
Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical	
75129503001	BW-1	EPA 3010	139802	EPA 6010	139862
75129503002	<b>MW-1</b>	EPA 3010	139802	EPA 6010	139862
75129503003	MW-2	EPA 3010	139802	EPA 6010	139862
75129503004	MW-3	EPA 3010	139802	EPA 6010	139862
75129503005	DUP	EPA 3010	139802	EPA 6010	139862
75129503001	BW-1	EPA 9040	139670		
75129503002	MW-1	EPA 9040	139670		
75129503003	MW-2	EPA 9040	139670		
75129503004	MW-3	EPA 9040	139670		
75129503005	DUP	EPA 9040	139670		
75129503001	BW-1	SM 2540C	139835		
75129503002	MW-1	SM 2540C	139835		
75129503003	MW-2	SM 2540C	139835		
75129503004	MW-3	SM 2540C	139835		
75129503005	DUP	SM 2540C	139835		
75129503001	BW-1	EPA 9056A	139781		
75129503002	MW-1	EPA 9056A	139781		
75129503003	MW-2	EPA 9056A	139781		
75129503004	MW-3	EPA 9056A	139781		
75129503005	DUP	EPA 9056A	139781		
75129503002	MW-1	EPA 9056A	139838		

		TRRP LABORATORY	REVIEW CHECKLIST	-											
Laboratory		Pace Analytical Services, Inc.	LRC Date:	04/16/2020											
Proje	ct Name:	16220013.00 Task01/Sandy Creek	75129503	29503											
	Reviewer	Courtney Hollins	Prep Batch Number	See exceptio	exception report.										
# ¹	A ²	Description		Yes	No	NA ³	NR ⁴	ER #5							
R1	OI	Chain-of-custody (C-O-C)													
		Did samples meet the laboratory's standard conditions of	sample acceptability upon receip	t?	X			R1.1							
		Were all departures from standard conditions described in	n an exception report?	X											
R2	OI	Sample and quality control (QC) identification													
		Are all field sample ID numbers cross-referenced to the la	aboratory ID numbers?	Х											
		Are all laboratory ID numbers cross-referenced to the cor	rresponding QC data?	Х											
R3 OI		Test reports													
		Were all samples prepared and analyzed within holding ti	imes?		Х			R3.1							
		Other than those results < MQL, were all other raw value:	s bracketed by calibration standa	^{rds?} X											
		Were calculations checked by a peer or supervisor?		X											
		Were all analyte identifications checked by a peer or supe	ervisor?	X				+							
		Were sample detection limits reported for all analytes not		X											
		Were all results for soil and sediment samples reported of			X		+								
		Were % moisture (or solids) reported for all soil and sedir			X		+								
		Were bulk soils/solids samples for volatile analysis extract	ethod				<u> </u>								
		5035?			Х										
		If required for the project, are TICs reported?			Х										
R4	0	Surrogate recovery data													
		Were surrogates added prior to extraction?			Х										
		Were surrogate percent recoveries in all samples within t			Х										
R5	OI	Test reports/summary forms for blank samples													
		Were appropriate type(s) of blanks analyzed?		X											
		Were blanks analyzed at the appropriate frequency?		X											
		Were method blanks taken through the entire analytical p	process, including preparation and	l, if X											
		applicable, cleanup procedures? Were blank concentrations < MQL?		X											
R6	OI			^				_							
RO	U	Laboratory control samples (LCS): Were all COCs included in the LCS?		×											
		Was each LCS taken through the entire analytical proced	dure, including prep and cleanup s	teps? X											
		Were LCSs analyzed at the required frequency?		Х											
		Were LCS (and LCSD, if applicable) %Rs within the labor	ratory QC limits?	X											
		Does the detectability check sample data document the la at the MDL used to calculate the SDLs?		COCs X				1							
		Was the LCSD RPD within QC limits?				Х		1							
R7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) d	ata												
		Were the project/method specified analytes included in th		X											
		Were MS/MSD analyzed at the appropriate frequency?		X				1							
		Were MS (and MSD, if applicable) %Rs within the laborat	tory QC limits?		X	1		R7.3							
		Were MS/MSD RPDs within laboratory QC limits?	-	X											
R8	OI	Analytical duplicate data													
-		Were appropriate analytical duplicates analyzed for each	matrix?	X											
		Were analytical duplicates analyzed at the appropriate free		X				<u>†</u>							
		Were RPDs or relative standard deviations within the labo		X				+							
R9	OI	Method quantitation limits (MQLs):	- ,												
		Are the MQLs for each method analyte included in the lab	boratory data package?	X											
		Do the MQLs correspond to the concentration of the lowe													
		Are unadjusted MQLs and DCSs included in the laborato	ry data package?	X				1							
R10	OI	Other problems/anomalies													
		Are all known problems/anomalies/special conditions not	ed in this LRC and ER?	X											
		Was applicable and available technology used to lower th		X				+							
		interference effects on the sample results? Is the laboratory NELAC-accredited under the Texas Lab						──							
		is the laboratory NELAC-accredited under the Texas Lab analytes, matrices, and methods associated with this labo		the X											

# TRRP LABORATORY REVIEW CHECKLIST Laboratory Pace Analytical Services, Inc. LRC Date: 04/16/2020 Project Name: 16220013.00 Task01/Sandy Creek Laboratory Job 75129503 Reviewer Courtney Hollins Prep Batch Number See exception report. 1. Items identified by the letter "R" must be included in the laboratory in the laboratory data package submitted in the TRRP-required reports(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period; O = Organic analyses; I = inorganic analysises (and general chemistry, when applicable); NA = Not applicable;

4. NR = Not reviewed;

5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

	oratory	Pace Analytical Services, Inc.	LRC Date:	04/16/2020	16/2020											
Project Name:		16220013.00 Task01/Sandy Creek	75129503													
Re	eviewer	Courtney Hollins	Prep Batch Number	See exception	exception report.											
# ¹	A ²	Description	•	Yes		NA ³	NR ⁴	ER #5								
<b>S</b> 1	OI	Initial calibration (ICAL)														
		Were response factors and/or relative response factors for	or each analyte within QC limits?	X												
		Were percent RSDs or correlation coefficient criteria met	?	x				+								
		Was the number of standards recommended in the meth		X				-								
		Were all points generated between the lowest and higher		curve? X												
		Are ICAL data available for all instruments used?		X												
		Has the initial calibration curve been verified using an ap	propriate second source standard													
		Initial and continuing calibration verification (ICCV a	nd CCVA and continuing calibra		_											
S2		blank (CCB):	nd CCV) and continuing calibra	tion												
		Was the CCV analyzed at the method-required frequency	y?	X												
		Were precent differences for each analyte within the met	hod-required QC limits?	X												
		Was the ICAL curve verified for each analyte?		X												
		Was the absolute value of the analyte concentration in th	e inorganic CCB < MDL?	X												
S3	0	Mass spectral tuning														
		Was the appropriate compound for the method used for t	tuning?			Х										
		Were ion abundance data within the method-required QC	C limits?			Х										
S4	0	Internal standards (IS)														
		Were IS area counts and retention times within the method	od-required QC limits?			Х										
S5	OI	Raw data (NELAC Section 5.5.10)														
		Were the raw data (for example, chromatograms, spectra	al data) reviewed by an analyst?	Х												
		Were data associated with manual integrations flagged o	on the raw data?	X												
S6	0	Dual column confirmation														
	-	Did dual column confirmation results meet the method-re	auired QC?	-		X										
<b>S</b> 7		Tentatively identified compounds (TICs)														
•		If TICs were requested, were the mass spectra and TIC of	data subject to appropriate checks	s?		X		<u> </u>								
S8	1	Interference Check Sample (ICS) results			_											
30		Were percent recoveries within method QC limits?		X				-								
S9		Serial dilutions, post digestion spikes, and method o	f standard additions													
	-	Were percent differences, recoveries, and the linearity w		v												
I		method?	· · · · · · · · · · · · · · · · · · ·	X	_											
S10		Method detection limit (MDL) studies														
		Was a MDL study performed for each reported analyte?		X				<u> </u>								
		Is the MDL either adjusted or supported by the analysis of	X	_			<u> </u>									
S11		Proficiency test reports	lipphia profisionau tanta ana i	tion												
		Was the laboratory's performance acceptable on the app studies?	tion X													
S12	OI	Standards documentation														
I		Are all standards used in the analyses NIST-traceable or	obtained from other appropriate	x												
640		sources?						-								
S13		Compound/analyte identification procedures	logumented?													
644		Are the procedures for compound/analyte identification d	ocumented?	X												
S14		Demonstration of analyst competency (DOC)														
		Was DOC conducted consistent with NELAC Chapter 5?	X X	-			+									
<b>64</b> 5	0	Is documentation of the analyst's competency up-to-date	^				-									
S15		Verification/validation documentation for methods (N Are all the methods used to generate the data document						-								
		applicable?		X				$\vdash$								
S16	OI	Laboratory standard operating procedures (SOPs)														
		Are laboratory SOPs current and on file for each method	•	X												
		d by the letter "R" must be included in the laboratory in the laboratory data p Id be retained and made available upon request for the appropriate retentior		orts(s). Items iden	ified by the											
2. C	) = Organic a	nalyses; I = inorganic analysises (and general chemistry, when applicable);														
	NA = Not appl NR = Not revie															
		on Report identification number (an Exception Report should be completed	for an item if "NR" or "No" is checked).													

		TRRP LABORATORY	REVIEW CHECKLIST					
L	aboratory	Pace Analytical Services, Inc.	LRC Date:	04/16/2020				
Project Name:		16220013.00 Task01/Sandy Creek	Laboratory Job	75129503				
Reviewer		Courtney Hollins	Prep Batch Number	139670,139781,139802,139835,139838				
ER # ¹		I	Description					
R1.1	Sample 63 time.	5845, Method EPA 9040, pH at 25 Degrees C: H3 - Sam	ple was received or analysis reque	ested beyond the recognized method holding				
R1.1	Sample 63 time.	5846, Method EPA 9040, pH at 25 Degrees C: H3 - Sam	ple was received or analysis reque	ested beyond the recognized method holding				
R1.1	Sample 75 holding tim	129503001, Method EPA 9040, pH at 25 Degrees C: H3 e.	- Sample was received or analysis	s requested beyond the recognized method				
R1.1	Sample 75 holding tim	129503002, Method EPA 9040, pH at 25 Degrees C: H3 e.	- Sample was received or analysis	s requested beyond the recognized method				
R1.1	Sample 75129503003, Method EPA 9040, pH at 25 Degrees C: H3 - Sample was received or analysis requested beyond the recognized method holding time.							
R1.1	Sample 75 holding tim	129503004, Method EPA 9040, pH at 25 Degrees C: H3 e.	- Sample was received or analysis	s requested beyond the recognized method				
R1.1	Sample 75 holding tim	129503005, Method EPA 9040, pH at 25 Degrees C: H3 e.	- Sample was received or analysis	s requested beyond the recognized method				
R3.1	Sample 75	129503001, 9040 pH. Run on 04/10/20 14:47 is 2 days p	ast hold. Sample received after ho	ld date.				
R3.1	Sample 75	129503002, 9040 pH. Run on 04/10/20 14:56 is 2 days p	ast hold. Sample received after ho	ld date.				
R3.1	Sample 75	129503003, 9040 pH. Run on 04/10/20 14:52 is 1.9 days	past hold. Sample received after	hold date.				
R3.1	Sample 75	129503004, 9040 pH. Run on 04/10/20 14:57 is 1.9 days	past hold. Sample received after	hold date.				
R3.1	Sample 75	129503005, 9040 pH. Run on 04/10/20 14:54 is 2 days p	ast hold. Sample received after ho	ld date.				
R7.3	MS Sample	e #636249: Fluoride 63% spike recovery outside laborato	ry QC limit of 80-120%.					
R7.3	MS Sample	e #636340: Calcium 485% spike recovery outside laborat	ory QC limit of 10-200%.					
R7.3	MSD Samp	ble #636250: Fluoride 65% spike recovery outside laborat	ory QC limit of 80-120%.					
R7.3	MSD Samp	ble #636341: Calcium 434% spike recovery outside laboration	atory QC limit of 10-200%.					
1.	ER# = Exc	eption Report identification number (an Exception Repor	t should be completed for an item	if "NR" or "No" is checked).				

$\mathcal{D}$	Document		Document Revised: 01/03/20	1
Pace Analytical*	Sample Condition Documen		Page 1 of 1	
	F-DAL-C-001		Issuing Authority: Pace Dallas Quality Office	
	Sample Condit	ion Upon Rece	int	
Dallas	s J Strt Worth	Corpus Chri	WO#:75129503	
	-	·		
Client Name: <u>SCS</u> Engin Courier: FedEX UPS USPS Client CLSC	<u>CCCS</u> Project	Work order:	75129503	
Tracking #:	424 4-9,20			
Custody Seal on Cooler/Box: Yes 🗸 No-🖌	Packing Material: I	Bubble Wrap/Bags 🗆	Foam 🗆 Nonev Other 🗆	
Received on ice: Yes to No D Type of Ice: W				
Thermometer Used: <u>IR - 12</u> Cooler T	°C: <u>5.5</u> (Re	ecorded) <u>- 0,3</u> (Co	prrection Factor) <u>5,7</u> (Actual)	
	Temperature sho	ould be above freezin	g to 6°C	
		-	8	
Triage Person: DHH Date	e: 04 · 09 · 2	0	2	
Chain of Custody relinquished		Yes 🔽 No 🗆		
Sampler name & signature on COC		Yes 🖌 No 🗆		
Short HT analyses (<72 hrs)		Yes 🗆 No 🗗		
Shore TTT analyses (<72 TTS)				
Login Person: DHH Date	<u>04.09.20</u>			,
Login Person: DHH Date	<u>04.09.20</u>	•	18	-1
Login Person: DHH Date Sufficient Volume received	: <u>04·04·20</u>	Yes No 🗆	8 	-1
-	: <u>04.09.20</u>	•		-1
Sufficient Volume received Correct Container used	: <u>04.09.20</u>	Yes 🔽 No 🗆		-1
Sufficient Volume received Correct Container used Container Intact	<u>. 04.09.20</u>	Yes No Yes No Yes No		-1
Sufficient Volume received Correct Container used Container Intact Sample pH Acceptable	:: <u>04.09.2</u> 0	Yes 🔽 No 🗆	IA 🗆	1
Sufficient Volume received Correct Container used Container Intact Sample pH Acceptable pH Strips: 166568 Residual Chlorine Present	:: <u>04.09.20</u>	Yes No Yes No Yes No		1
Sufficient Volume received Correct Container used Container Intact Sample pH Acceptable pH Strips: 16 (0568	: <u>04.09.20</u>	Yes No C Yes No C Yes No C Yes No C Yes No C		-1
Sufficient Volume received Correct Container used Container Intact Sample pH Acceptable pH Strips: 166568 Residual Chlorine Present Cl Strips:	: <u>04.04.20</u>	Yes No I Yes No I Yes No I Yes No I		
Sufficient Volume received Correct Container used Container Intact Sample pH Acceptable pH Strips:		Yes No C Yes No C Yes No C Yes No C Yes No C Yes No C		1
Sufficient Volume received Correct Container used Container Intact Sample pH Acceptable pH Strips:	 ed in 5035A Kits	Yes No C Yes No C Yes No C Yes No C Yes No C		
Sufficient Volume received Correct Container used Container Intact Sample pH Acceptable pH Strips: 166558 Residual Chlorine Present Cl Strips: Sulfide Present Lead Acetate Strips: Are soil samples (volatiles, TPH) received (not applicable to TCLP VOA or PST Progra	ed in 5035A Kits am TPH)	Yes       No       Image: Second seco		
Sufficient Volume received Correct Container used Container Intact Sample pH Acceptable pH Strips: <u>166568</u> Residual Chlorine Present Cl Strips: Sulfide Present Lead Acetate Strips: Are soil samples (volatiles, TPH) receive (not applicable to TCLP VOA or PST Progra	ed in 5035A Kits am TPH)	Yes       No       Image: Second seco		
Sufficient Volume received Correct Container used Container Intact Sample pH Acceptable pH Strips: <u>1000568</u> Residual Chlorine Present Cl Strips: Sulfide Present Lead Acetate Strips: Are soil samples (volatiles, TPH) receive (not applicable to TCLP VOA or PST Progra Unpreserved 5035A soil frozen within 4 Headspace in VOA (>6mm)	ed in 5035A Kits am TPH) 48 hrs	Yes       No       I		
Sufficient Volume received Correct Container used Container Intact Sample pH Acceptable pH Strips: <u>166568</u> Residual Chlorine Present Cl Strips: Sulfide Present Lead Acetate Strips: Are soil samples (volatiles, TPH) receive (not applicable to TCLP VOA or PST Progra Unpreserved 5035A soil frozen within 4 Headspace in VOA (>6mm) Project sampled in USDA Regulated Are	ed in 5035A Kits am TPH) 48 hrs ea:	Yes       No       Image: Second seco		
Sufficient Volume received Correct Container used Container Intact Sample pH Acceptable pH Strips: <u>1 (o (o 568</u> ) Residual Chlorine Present Cl Strips: Sulfide Present Lead Acetate Strips: Are soil samples (volatiles, TPH) receive (not applicable to TCLP VOA or PST Progra Unpreserved 5035A soil frozen within 4 Headspace in VOA (>6mm) Project sampled in USDA Regulated Are State Sampled: <u>TX</u>	ed in 5035A Kits am TPH) 48 hrs ea:	Yes       No       I		
Sufficient Volume received Correct Container used Container Intact Sample pH Acceptable pH Strips: <u>166568</u> Residual Chlorine Present Cl Strips: Sulfide Present Lead Acetate Strips: Are soil samples (volatiles, TPH) receive (not applicable to TCLP VOA or PST Progra Unpreserved 5035A soil frozen within 4 Headspace in VOA (>6mm) Project sampled in USDA Regulated Are	ed in 5035A Kits am TPH) 48 hrs ea:	Yes       No       I		

Pace Analytical WWW.INCELAR.COM

# CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

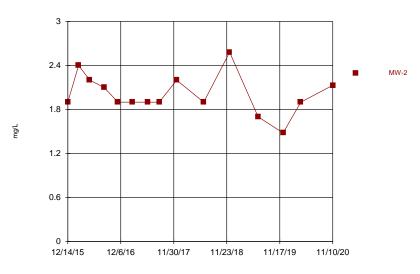
Section /									Section C																						
											Invoice Information:												Page: 1 Of 1								
Company										Attention:																					
Address:	1901 Central Drive	Сору То:						Company Name:																							
	TX 76021							Address:													Regulatory Agency										
	thilbrand@scsengineers.com	Purchase Order #:						_	Pace Quote:																						
Phone:	hone: 817-571-2288 Fax: Project Name: 16220013.00 T equested Due Date: Project #:					Sandy Cra	ek		Pace Project Manager: courtney.hollins@pacelabs.com,											State / Location											
Requeste						Pace Profile #: 5660											хт														
<u> </u>		T					Requested Analysis Fil												Filte	nd ()	1/10						Contraction of the				
			codes to left) 3 C=COMP)	1		z Preservatives																		- 8				Contraction of the			
	MATRIX	CODE	s to left COMP)		COLL	CTED		z			Pre	sen	/ativ	es		X								1		100		1	Colores II.	Contraction of the local division of the loc	
	Drinking Wit	ANY DW . WT	80																							Т			1.1		
	Waste Wat Product	r WW	물 ≵					Ψ								-		-									2				
	SAMPLE ID Sold/Solid	SL	(G=GRAB	57	ART	E	an I	8	<u>س</u>			1	1			Test		1	e, Sulfa and B)							2	Ĩ			3	
	One Character per box.	OL ····································			ART END														Chlonde, Fluonde, Sulfate 6010 Metals (Ca and 8)								Ê.				
	(A-Z, 0-9 / , -) Air Other	AR	MATRIX CODE SAMPLE TYPE					N.	# OF CONTAINERS	§				<u>_</u>  _		Analyses	ş	- 1	-							Ĩ	Š			2	
# 	Sample ids must be unique Tissue	TB	ΧË					Ē	8	§ 🛪			-1	X S		1 BC	8										<u>ē</u>				
Ē			MATRIX (					¥	Ъ,	Unpreserved H2SO4	EONH	₫	Reg	Na2S203 Methanol	Ę	₹	pH by 9040	<u>ڳ</u>	Chioride, Flu 6010 Metals						1 1					1	
Official Sector			2 0	÷	TIME	DATE	TIME	Ø			·   <del>-</del>	-	-	<u> </u>		-	đ		o đ	+	┝╼┾		+	+	⊢┥		-				
1	BW-1		wī	4/4/2	1532												x	x	x x									-0	01		
2	NW-1		wr	l i	1545										Ì		x	x	x x										061		
3	NW-2		wT		03					Τ			Τ		Τ		x	¥ I	x x				T	Τ	Π				03		
					1609					+			+		+					$\mathbf{T}$		-+-	+	+	$\square$						
All Street	MW-3		WT	╞╌┠┈	in the		4	<del>──┼╂╎╎╎┥┥</del> ╎┼┼					+							-	╋	-001					r				
5	CUP		WT	1													х	x I:	<u>x x</u>									_	00	5	
6																								}							
7											Π														Π						
A REAL PROPERTY.										╈		╡	+		$\uparrow$			+	╈			╉	╈	+	┢╌┨						
8								-	+	+	┽┥	+	+	┿	╋		$\vdash$	-+	+		$\vdash$	-+-	+	+	H	-	⊢				
9	3 8		+ +	+	<u> </u>					+	+		-+	+	┢		$\vdash$	$\rightarrow$	_		$\square$	+	+	$\downarrow$	$\square$						
10				L	L						$\square$				$\perp$		$\square$						$\perp$								
11																															
12	Starte V									T					Τ				Τ				T	T	$\square$						
	ADDITIONAL COMMENTS	F	<b>HELINQUE</b>	SHED BY /	AFTELIATIO	N	DATE		T	ME				CCEPI		(I AP	FILIAT	TION			D	ATE		TIME	E		SA	MPLECO	MOITIONS		
Pe	r client - use		1.1	Jal	in	,	4 http		1/25	1-7	-	6.		w	2 .		2.			L	19	12		1 40 -		5.1	1	VI	$\sim$	N	
	arliest collection	2 M	ní	alin	100	U						矛		NH		M	17	"D	$\sqrt{c}$					200 101	#	2.	4		+	1	
	· · · · ·			TIL	太大		1·10·2		<u>^</u>	20				-W	₹	. 7	Par	<u>~ 13</u>	-10	V V		10/-		<u></u>	<u>v</u>	0.0				7	
	me for duplicate.	<del>رنب</del>	241		K K		<u>. (n. V</u>	עב	נט	170	ΨĽ	ШИ	VW T	MU		-+	ra	<u>,                                    </u>			<u>H 1</u>	1016		04	- 94	0.2	+	<b>Y</b>	N		
	alph 4/9/20	2.2			a di second				and the second		A COLUMN	-	-			-	and the second second	- The	-		200.00						+-	-+			
	104.75120502				The Party of the P	RNAME	and the state of the second	2505.	Station and Providence of the	S Tree	-1		A PLAN		-	The second	1		1000	1	0	Tal	-	Ser-	-	0	5				
	WO#:75129503					NT Name			<b>A</b> S	her	50	nd	çe	an	X											TEMP in C	eived	_ l	8 <u>8</u> _	Samples Intact (Y/N)	
	PM: CRH Due Date: 04	/16/20			SIG	NATURE	OT SAMPL	ER:	J.	VI C-	539		-7				^c		Signe	ª:4	/9/	20	20			TEN	<b>P</b>	85	S S S S	San Intac VN	
	CLIENT: SCS Engineer				1.190	a		1	pag	C ES	9 2	5	1																		

Appendix C Historical Groundwater Analytical Data

													ATTLESNAK ESEL, TX 766													
Units	t Water Level	Conductiviy	Z Z Turbidity	LO LO Mg/L	Calcium mg/L	Chloride ^{mg/T}	pH at 25°C Stq. Duits	Sulfate mg/T	m Total Dissolved Solids	Antimony	Arsenic T/Bu	Barium mg/L	Beryllium ^{mg/T}	Cadmium T/ ⁸	Chromium T/Bu	Cobalt T/ ⁸	read mg/L	Lithium mg/L	Mercury mg/L	Molybdenum mg/L	Selenium ^{mg/T}	Thallium mg/L	<mark>d</mark> 7/r 7/r	<mark>d</mark> 7/ <mark>7</mark> Radium-228	Combined Radium	Eluoride mg/L
MW-1 12/14/2015 2/25/2016 5/11/2016 8/16/2016 11/17/2016 2/23/2017 6/7/2017 8/24/2017 12/20/2017 6/21/2018 12/13/2018 6/24/2019 12/10/2019 4/8/2020 11/10/2020	453.53 453.38 454.14 453.67 454.43 454.72 454.42 454.69 454.22 453.85 454.86 455.38 455.38 453.99 454.99 454.45	4.51 4.98 4.83 4.47 4.45 5.08 4.77 4.58 4.287 4.67 4.369 4.142 4.278 4.66 4.73	25.2 >800 >800 17.7 452 500 223 66.2 681 30 22.9 64 137 4.7	1.2 1.4 2.6 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.25 1.35 1.1 1.1 1.1 1.3 1.18	454 520 1030 535 542 531 530 518 548 548 548 548 548 548 548 548 548 54	253 236 402 239 216 223 203 241 248 247 241 169 192 152 168	7.6 7.5 7.2 6.8 7 7 7.5 7.1 7.4 7.38 7.52 7.2 7.43 7.1 7.2	2090 2190 2580 2300 2130 2350 2010 2620 2340 2530 2570 2430 2420 2430 2430	4090 4060 5260 3880 3720 3980 3680 4550 4250 4250 4270 4100 4030 3720 4330 4060	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 n/a n/a n/a n/a n/a n/a	<0.0050 <0.0050 <b>0.12</b> <0.0050 <0.0050 <0.0050 <0.0060 n/a n/a n/a <b>0.000667</b> n/a n/a	0.044 0.033 1 0.022 0.018 <0.20 0.019 0.02 0.017 n/a n/a n/a n/a n/a n/a n/a n/a	<0.0010 <0.0010 <b>0.029</b> <0.0010 <0.0050 <0.0010 <0.0010 <0.0010 n/a n/a n/a n/a n/a n/a	<0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0010 <0.0050 n/a n/a n/a n/a n/a n/a n/a	0.0073 0.0074 0.69 <0.0050 <0.0050 <0.0050 <0.0050 <0.0070 n/a n/a n/a n/a n/a n/a n/a	<0.0025 <0.0025 <b>0.087</b> <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 n/a n/a n/a n/a n/a n/a	<0.0050 <b>0.0084</b> <b>0.21</b> <0.0050 <0.0050 <0.0050 <0.0050 <0.010 n/a n/a n/a n/a n/a n/a n/a	0.43 0.39 0.78 0.41 0.37 0.44 0.36 0.395 0.38 n/a n/a n/a n/a n/a n/a n/a	<0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 n/a n/a n/a n/a n/a n/a n/a	<0.010 <0.020 <0.010 <0.020 <0.010 <0.020 <0.020 <0.030 n/a n/a n/a n/a n/a n/a n/a	0.16 0.2 0.039 0.13 0.16 0.066 0.15 0.17 0.18 n/a n/a n/a n/a n/a n/a n/a	<0.00050 <0.00050 <b>0.00050</b> <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 n/a n/a n/a n/a n/a n/a n/a	$1.04 \pm 0.838$ $0.922 \pm 0.720$ $3.94 \pm 1.31$ $0.593 \pm 0.620$ $0.338 \pm 0.339$ $-0.207 \pm 0.945$ $0.000 \pm 0.449$ $0.577 \pm 0.429$ $1.26 \pm 0.680$ n/a n/a n/a n/a n/a n/a n/a n/a	8.39 ± 1.74 3.29 ± 0.828 2.49 ± 0.783 3.13 ± 0.908 1.30 ± 0.518	2.13 2.382 12.33 3.883 2.828 2.923 1.3 2.267 3.72 n/a n/a n/a n/a n/a n/a n/a n/a	<0.30 <0.30 <0.30 <b>0.35</b> <0.30 <0.30 <0.30 <b>0.4</b> <b>1.1</b> <b>0.3</b> J <b>0.585</b> <b>0.73</b> <b>0.236</b> < <b>0.20</b> <b>0.26</b> J
MW-2 12/14/2015 2/25/2016 5/11/2016 8/16/2016 11/17/2016 2/23/2017 6/7/2017 8/24/2017 12/20/2017 6/21/2018 12/13/2018 6/24/2019 12/10/2019 4/8/2020 11/10/2020	424.11 429.50 430.72 430.78 430.80 430.85 431.12 431.20 429.47 430.02 430.72 430.72 430.72 430.72 430.07 430.07	10.6 11.3 10.8 11.9 10.7 13.7 11 11.4 6.198 12.66 11.89 10.77 8.676 13 13.7	2.8 52.2 23.7 5.5 0.4 6.2 30.5 8.1 37.7 4.42 15.1 9.87 19.1 6.6 20.4	1.9 2.4 2.2 2.1 1.9 1.9 1.9 2.2 1.9 2.58 1.7 1.48 1.9 2.13	569 697 613 680 701 646 640 664 716 706 690 656 660 650 715	1890 2080 2340 2440 2140 2320 2420 2520 2590 2840 2740 2420 2180 2410 2350	6.7 7.3 6.7 6.7 6.9 7.5 6.8 7.2 7.09 6.71 7.0 6.93 6.8 6.8	2810 2890 3010 3080 2770 3110 2970 3710 3100 3400 3220 3480 2620 3120 2830	8520 8070 9930 7870 9680 9630 14200 9600 9600 10200 10500 9560 8120 9820 9670	<0.0010 <0.0010 <0.0020 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 n/a n/a n/a n/a n/a n/a n/a n/a		0.031 0.038 0.027 0.021 0.024 <0.20 0.016 0.017 0.022 n/a n/a n/a n/a n/a n/a n/a n/a n/a	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 n/a n/a n/a n/a n/a n/a n/a	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0010 <0.0020 <0.010 n/a n/a n/a n/a n/a n/a n/a		0.0061 <0.011 0.0079 0.0084 0.0064 <0.010 0.0051 0.0065 0.0072 n/a n/a n/a n/a n/a n/a n/a n/a	<0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.010 <0.020 n/a n/a n/a n/a n/a n/a n/a	0.69 0.74 0.87 0.84 0.82 0.8 0.75 0.729 0.74 n/a n/a n/a n/a n/a n/a n/a n/a	<0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 n/a n/a n/a n/a n/a n/a n/a n/a	<0.010 <0.010 <0.010 <0.010 <b>0.024</b> <0.010 <0.020 <0.020 <0.030 n/a n/a n/a n/a n/a n/a n/a	<0.010 <0.010 <0.010 <0.010 <0.020 <0.010 <b>0.026</b> <0.040 n/a n/a n/a <0.010 n/a n/a <0.010	<0.00050 <0.00050 <0.0010 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 n/a n/a n/a n/a n/a n/a n/a n/a	$1.41 \pm 0.938$ $0.857 \pm 0.590$ $0.859 \pm 0.561$ $0.237 \pm 0.329$ $0.923 \pm 0.594$ $1.52 \pm 1.50$ $0.344 \pm 0.415$ $1.12 \pm 0.610$ $0.945 \pm 0.578$ n/a n/a n/a n/a n/a n/a n/a n/a	2.57 ± 0.665 3.13 ± 0.822 3.28 ± 0.775 3.16 ± 0.826 4.27 ± 1.07 3.82 ± 0.931	4.17 3.427 3.989 3.517 4.083 5.79 4.164 4.9 5.015 n/a n/a n/a n/a n/a n/a n/a n/a	0.98 <0.30 <0.30 0.64 0.35 0.46 1.3 0.32 <0.50 <0.6 0.618 <0.18 0.229 <0.20 <0.20
MW-3 12/14/2015 2/25/2016 5/11/2016 8/16/2016 11/17/2016 2/23/2017 6/7/2017 8/24/2017 12/20/2017 6/21/2018 12/13/2018 6/24/2019 12/10/2019 4/8/2020 11/10/2020	421.77 421.66 421.94 420.42 421.03 422.58 422.23 419.66 421.08 418.68 422.36 423.00 419.87 422.06 420.03	1.17 6.04 3.82 6.01 5.43 6.79 3.68 6.55 6.459 6.633 4.47 5.659 6.189 6.189 6.46 7.21	11.9 93.3 197 101 87 82 145 82.6 22.4 51.1 10.6 10.3 34.3 21.6 18.9	0.35 1.2 1.1 1.2 1.1 1.1 1.2 1.1 1.3 1.13 1.08 0.99 1.26 1.1 3.07	67.6 479 465 505 494 389 486 519 563 526 327 452 572 530 597	12.3 347 349 381 322 202 327 401 380 396 206 306 345 307 1160	7.2 7 6.5 7.3 6.6 7 7.1 6.5 6.8 6.76 6.61 6.6 6.67 6.5 7.1	135 2430 2330 2950 2420 1450 2260 2890 2830 3160 1790 3130 3140 3020 2950	586 5400 5440 5680 5420 2900 4740 6160 5790 6090 3520 5740 5830 5980 6920	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 n/a n/a n/a n/a n/a n/a n/a	<0.0050 <b>0.0061</b> <0.0050 <0.0050 <0.010 <0.0060 n/a n/a n/a n/a n/a n/a n/a n/a	0.021 0.052 0.024 0.018 0.028 <0.20 0.015 0.014 0.034 n/a n/a n/a n/a n/a n/a n/a	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 n/a n/a n/a n/a n/a n/a n/a	<0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0020 <0.0050 n/a n/a n/a n/a n/a n/a n/a	<0.0050 <0.0050 <0.0050 <0.0050 <0.010 <0.0050 <0.0070 n/a n/a n/a n/a n/a n/a n/a	<0.0025 0.0098 0.0059 0.006 0.0068 <0.010 0.0058 0.0084 0.0086 n/a n/a n/a n/a n/a n/a n/a	<0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.010 <0.010 n/a n/a n/a n/a n/a n/a n/a n/a	<0.050 0.85 0.65 0.98 0.94 0.7 0.62 1.03 0.92 n/a n/a n/a n/a n/a n/a n/a	<0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 n/a n/a n/a n/a n/a n/a n/a n/a	<0.010 <0.010 <0.010 <0.020 <0.020 <0.020 <0.020 <0.030 n/a n/a n/a n/a n/a n/a	<0.010 <0.010 <0.010 <0.010 <0.020 <0.020 <0.020 n/a n/a n/a <0.010 n/a n/a n/a	<0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 n/a n/a n/a n/a n/a n/a n/a	0.997 ± 0.813 1.26 ± 0.762 1.54 ± 0.797 0.891 ± 0.626 0.872 ± .0579 -0.239 ± 1.09 0.941 ± 0.658 1.26 ± 0.600 0.626 ± 0.567 n/a n/a n/a n/a n/a n/a	$3.02 \pm 0.791$ $1.62 \pm 0.547$ $5.10 \pm 1.13$ $5.23 \pm 1.30$ $4.07 \pm 1.03$ $2.76 \pm 0.765$ $4.41 \pm 1.07$	1.733 4.28 3.16 5.991 6.102 3.831 3.701 5.67 3.396 n/a n/a n/a n/a n/a n/a n/a	0.62 0.9 <0.30 <0.30 0.45 0.57 <0.30 0.61 <0.3 0.662 <0.18 0.137 <0.20 <0.20
BW-1 12/14/2015 2/25/2016 5/11/2016 8/16/2016 11/17/2016 2/23/2017 6/7/2017 8/24/2017 12/20/2017 6/21/2018 12/13/2018 6/24/2019 12/10/2019 4/8/2020 11/10/2020	465.60 465.44 465.56 465.71 466.12 466.57 466.17 466.38 466.51 466.13 467.24 467.37 467.39 467.63 468.39	5.35 5.8 7.5 7.52 7.36 7.17 7.58 7.81 7.063 7.755 7.159 7.21 6.612 8.15 8.28	155 307 866 56 8.1 245 852 162 180 39.3 81.8 157 214 428 262	1.8 3.5 4 3.7 2.8 3.1 3.8 3.4 3.5 3.31 3.25 3.1 2.98 3.7 3.14	465 586 566 548 532 539 531 658 610 637 564 591 545 612	727 1050 1120 1130 991 1080 1020 1160 1120 1120 1160 1150 1070 1170	9.5 7.4 7 7.2 6.8 7.2 7.7 7.1 7.2 7.2 7.1 7.1 7.1 6.9 7.1	2130 2690 2610 2720 2590 2760 2220 2870 2620 3030 2780 2930 2830 2760 2710	4900 6420 6360 6280 6400 6280 7320 7260 6140 6640 6400 6380 6300 6660 6000	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 n/a n/a n/a n/a n/a n/a n/a	<0.0050 0.015 0.0084 0.0064 <0.010 <0.0050 <0.010 <0.0060 n/a n/a n/a 0.00236 n/a n/a	0.17 0.055 0.04 0.023 <0.20 0.026 0.037 0.044 n/a n/a n/a n/a n/a n/a n/a	<0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0010 <0.0010 <0.0010 n/a n/a n/a n/a n/a n/a	<0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0010 <0.0020 <0.0050 n/a n/a n/a n/a n/a n/a n/a	0.015 0.0053 0.011 0.0073 <0.0050 <0.0050 <0.0070 n/a n/a n/a n/a n/a n/a n/a	0.0026 0.0035 0.0035 0.0029 <0.0025 <0.010 <0.0025 <0.0050 0.0034 n/a n/a n/a n/a n/a n/a n/a	<0.0050 0.0091 <0.0050 <0.0050 <0.0050 <0.010 <0.010 n/a n/a n/a n/a n/a n/a n/a	0.7 0.71 0.79 0.78 0.74 0.73 0.79 0.738 0.73 n/a n/a n/a n/a n/a n/a n/a	<0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 n/a n/a n/a n/a n/a n/a n/a	<0.010 <0.010 <0.010 <b>0.022</b> <0.010 <0.020 <0.020 <0.030 n/a n/a n/a n/a n/a n/a	<0.010 <0.010 <0.010 <0.020 <0.020 <0.020 <0.020 n/a n/a n/a <b>&lt;0.010</b> n/a n/a n/a	0.00073 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 n/a n/a n/a n/a n/a n/a n/a	0.900 ± 0.728 0.887 ± 0.697 2.40 ± 0.944 0.610 ± 0.483 0.605 ± 0.548 0.816 ± .0983 1.36 ± 0.685 1.58 ± 0.602 1.07 ± 0.681 n/a n/a n/a n/a n/a n/a n/a	$1.82 \pm 0.541$ $2.80 \pm 0.710$ $3.42 \pm 0.777$ $2.94 \pm 0.799$ $4.07 \pm 1.08$ $3.13 \pm 0.783$ $2.80 \pm 0.759$	2.03 2.707 5.2 4.03 3.545 4.886 4.49 4.38 4.2 n/a n/a n/a n/a n/a n/a n/a	<0.30 0.67 0.32 0.94 0.85 <0.30 <0.30 0.37 <0.50 <0.3 0.586 0.9 0.309 <0.20 <0.20


40 CFR 257 Appendix III Constituent 40 CFR 257 Appendix IV Constituent 40 CFR 257 Appendix III & IV Constituent "<" - Indicates analyte was not detected above the laboratory reporting limit "J" Indicates value is above method detection limit (MDL) but below laboratory reporting limit ND- indicates constituent was non-detect

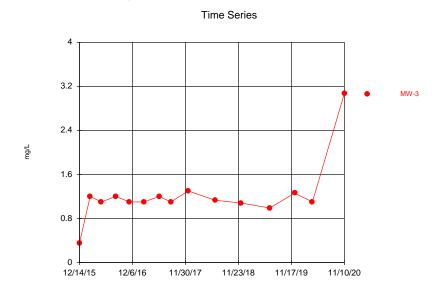
### **APPENDIX C - GROUNDWATER ANALYTICAL DATA**


2020 ANNUAL GROUNDWATER MONITORING REPORT SANDY CREEK ENERGY STATION

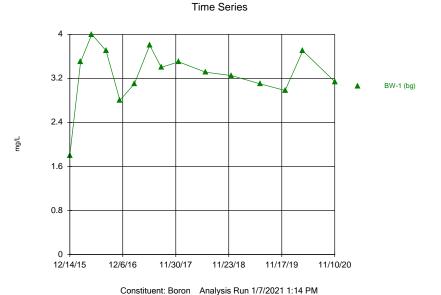
2161 RATTLESNAKE ROAD

Appendix D Time Series Graphs




Constituent: Boron Analysis Run 1/7/2021 1:14 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020




**Time Series** 

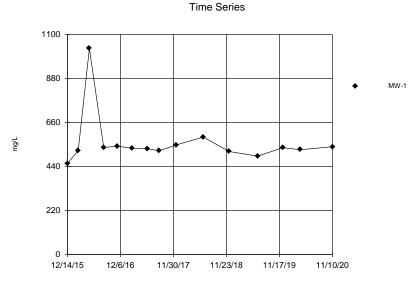
Constituent: Boron Analysis Run 1/7/2021 1:14 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. EPA



Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. EPA




Constituent: Boron Analysis Run 1/7/2021 1:14 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020

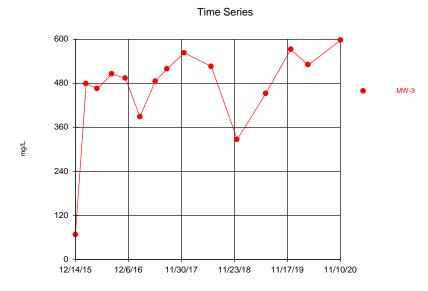
VI.C-543


Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020

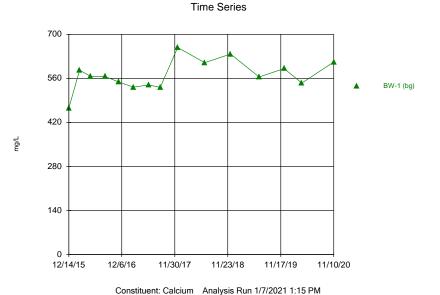
Sanitas[™] v.9.6.27 Sanitas software licensed to SCS Engineers. EPA

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. EPA




Constituent: Calcium Analysis Run 1/7/2021 1:15 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020

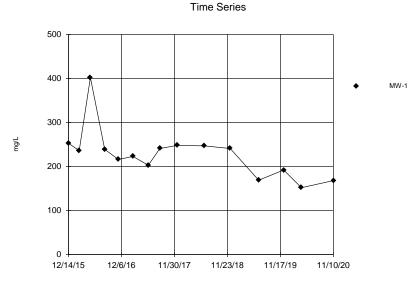



**Time Series** 

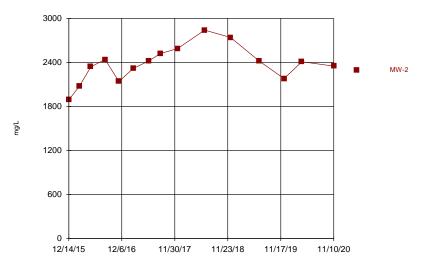
Constituent: Calcium Analysis Run 1/7/2021 1:15 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. EPA




Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. EPA

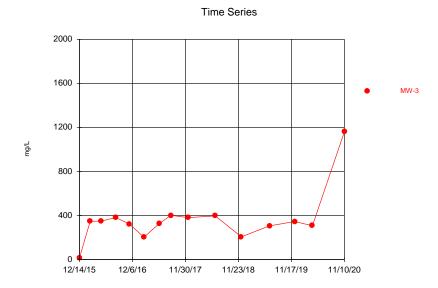



Constituent: Calcium Analysis Run 1/7/2021 1:15 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020

VI.C-544

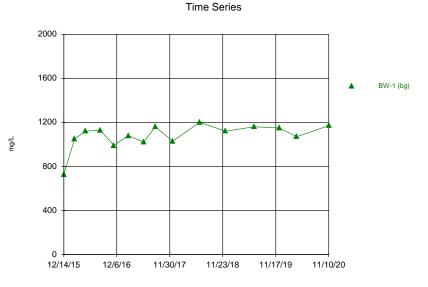
Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020



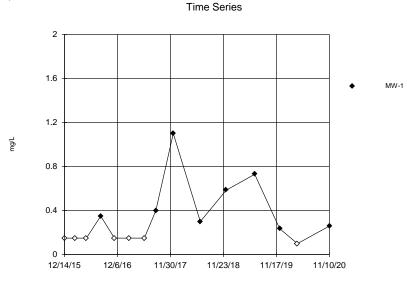

Constituent: Chloride Analysis Run 1/7/2021 1:15 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020



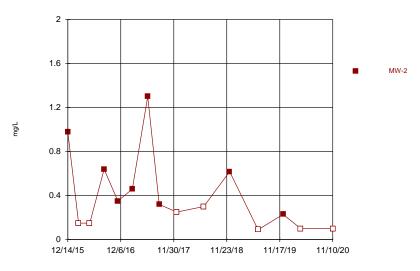
**Time Series** 


Constituent: Chloride Analysis Run 1/7/2021 1:15 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. EPA



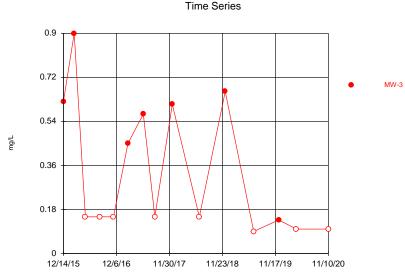

Constituent: Chloride Analysis Run 1/7/2021 1:15 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020 Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. EPA


VI.C-545



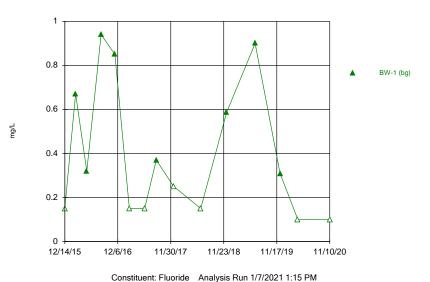
Constituent: Chloride Analysis Run 1/7/2021 1:15 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020 Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. EPA Hollow symbols indicate censored values.




Constituent: Fluoride Analysis Run 1/7/2021 1:15 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020 Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. EPA Hollow symbols indicate censored values.

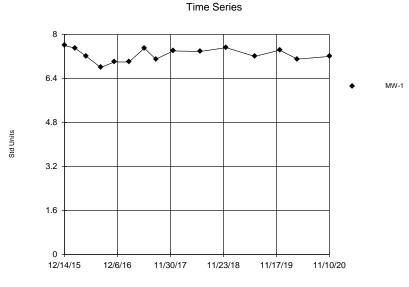


**Time Series** 

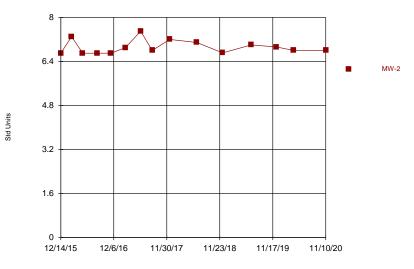

Constituent: Fluoride Analysis Run 1/7/2021 1:15 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. EPA Hollow symbols indicate censored values.




Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. EPA Hollow symbols indicate censored values.

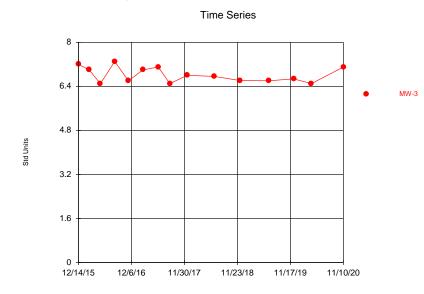




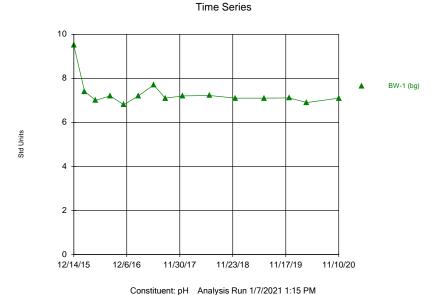

Constituent: Fluoride Analysis Run 1/7/2021 1:15 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020

Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020




Constituent: pH Analysis Run 1/7/2021 1:15 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020




**Time Series** 

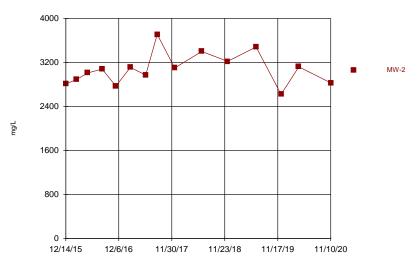
Constituent: pH Analysis Run 1/7/2021 1:15 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. EPA



Sanitas[™] v.9.6.27 Sanitas software licensed to SCS Engineers. EPA

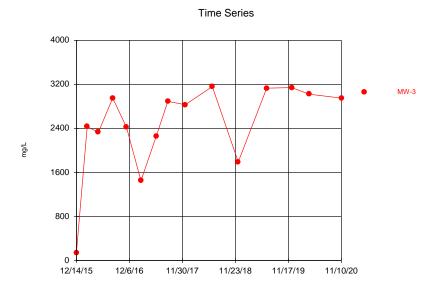



Constituent: pH Analysis Run 1/7/2021 1:15 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020

VI.C-547

Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020




Constituent: Sulfate Analysis Run 1/7/2021 1:15 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020

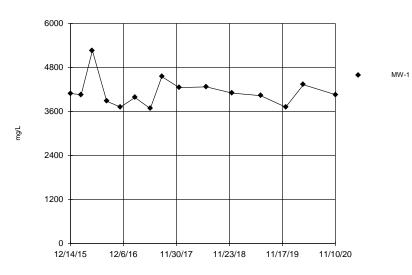


**Time Series** 

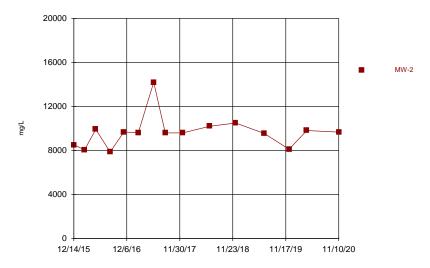

Constituent: Sulfate Analysis Run 1/7/2021 1:15 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020

Sanitas[™] v.9.6.27 Sanitas software licensed to SCS Engineers. EPA




Constituent: Sulfate Analysis Run 1/7/2021 1:15 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020 Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. EPA

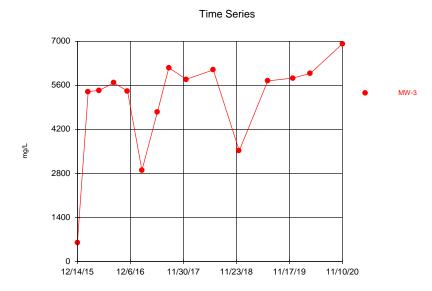
VI.C-548




Constituent: Sulfate Analysis Run 1/7/2021 1:15 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020

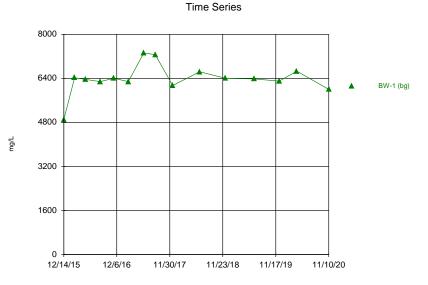
#### Time Series




Constituent: Total Dissolved Solids Analysis Run 1/7/2021 1:16 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020



**Time Series** 


Constituent: Total Dissolved Solids Analysis Run 1/7/2021 1:16 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020

Sanitas[™] v.9.6.27 Sanitas software licensed to SCS Engineers. EPA



Constituent: Total Dissolved Solids Analysis Run 1/7/2021 1:16 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020 Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. EPA

VI.C-549



Constituent: Total Dissolved Solids Analysis Run 1/7/2021 1:16 PM Sandy Creek Energy Station Client: Sandy Creek Data: Sandy Creek GWdata (Sanitas)_11.10.2020

# Appendix E 2020 Alternate Source Demonstrations

January 29, 2021 SCS Project 16220013.00

Mr. Darryl Sparks Compliance Manager NAES Corporation 2161 Rattlesnake Road Riesel, Texas 76682

Subject: Alternate Source Demonstration for Boron and Chloride in MW-3 2020 Annual Groundwater Monitoring Report Sandy Creek Energy Station McLennan County, Texas

Dear Mr. Sparks:

SCS Engineers (SCS) is submitting this Alternate Source Demonstration (ASD) in accordance with the site Groundwater Sampling and Analysis Plan (GWSAP) for the Sandy Creek Energy Station (SCES) prepared by SCS, dated March 2, 2016, and Coal Combustion Residual Rule Title 40 Code of Federal Regulations (CFR) §257.94(e)(2). This ASD addresses the boron and chloride detections in groundwater monitoring well MW-3 during the November 2020 groundwater monitoring event. Boron was detected in MW-3 at 3.07 mg/L, above the statistical limit of 1.2 mg/L, and chloride was detected in MW-3 at 1160 mg/L, above the statistical limit of 606.9 mg/L. This ASD is being undertaken to demonstrate that the boron and chloride detections likely result from the natural variation in groundwater quality at the site, and are not indicative of impacts from the SCES landfill. In accordance with 40 CFR §257.94(e)(2), this ASD is being completed within 90 days of detecting an unconfirmed statistically significant increase (SSI) above background values.

#### Project Background

The CCR landfill is classified as an existing landfill as defined under §257.53, which was constructed and commenced operation prior to October 14, 2015. The landfill is currently comprised of two CCR disposal cells, Cells 1 and 2, which commenced receiving waste in early 2013 and October 2014, respectively. The approximate area of Cells 1 and 2 are 10.0 and 14.3 acres, respectively.

The primary wastes disposed in the landfill are dry scrubber ash and bottom ash generated during the coal combustion process at the facility. Incidental wastes generated during the operation of the facility may also be disposed in the landfill, as described in the initial registration notification to TCEQ and the most recent version of the Operations Plan for the facility.

In accordance with 40 CFR §257 Appendix III and IV, the initial list of constituents for background monitoring at SCES included 18 inorganic compounds, total dissolved solids, radium-226, and radium-228. Currently, all monitoring wells are sampled and analyzed for 40 CFR §257 Appendix III constituents, in accordance with 40 CFR §257.94(a).

#### Naturally Occurring Boron in Texas Soils

The Texas Commission on Environmental Quality (TCEQ) Texas-Specific Soil Background Concentration (TSBC) for boron is 30 mg/kg (equivalent mg/L) in soil (see attached TCEQ TSBC guidance). Note that the naturally-occurring median boron concentration expected in Texas soils is much greater than the concentration that is the subject of this ASD, detected in groundwater on November 10, 2020. SCS recognizes that these numbers are not directly comparable, but it is reasonable to assume the multiple-orders-of-magnitude difference can be responsible for significant fluctuations in the small concentrations detected in water moving through these sediments.

#### Monitoring Well #3 Data Are Consistent with General Background

Consistent with the prevalence of boron in area soils (see attached TCEQ TSBC guidance) in concentrations sufficient to account for the levels in groundwater, monitoring of boron in the SCES background well (BW-1) finds concentrations of magnitude very similar to the levels observed in MW 3. Similarly, the November 2020 chloride concentration in MW-3 is generally similar to chloride concentrations in background well BW-1.

Well ID	Sample Date	Boron Concentration (mg/L)
MW-3 (D)	11/10/2020	3.07
BW-1 (U)	5/11/2016	4.0
Well ID	Sample Date	Chloride Concentration (mg/L)
MW-3 (D)	11/10/2020	1160
BW-1 (U)	6/21/2018	1200

#### Table 1 – Boron and Chloride Concentrations (mg/L) Comparison Between MW-3 (D) Present Concentrations vs. BW-1 (U) Highest Concentrations

The data compiled in Table 1 demonstrate that these concentrations are not abnormal for the site, and in fact are consistent with background concentrations.

#### **Concentration Trends**

We also note that chloride and boron concentrations would experience a sustained increase over time if the landfill was impacting site groundwater. Time-series graphs prepared as a part of the 2020 Annual Groundwater Monitoring and Corrective Action Report do not show increasing trends. We also note that Total Dissolved Solids in this sampling period are somewhat higher than historical concentrations in the MW-3. This could account for higher boron and chloride concentrations.

#### Groundwater Travel Distance

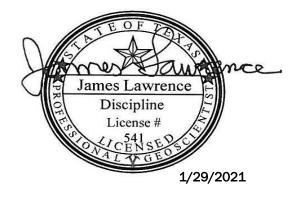
Attribution of the levels in MW3 to leakage from the landfill would be inconsistent with the information available about calculated groundwater flow rate. The closest upgradient waste deposit relative to MW-3 is the southwest corner of Cell 1. The distance between these two locations is approximately 1,120 feet. As reported in the 2020 Annual Groundwater Monitoring and Corrective Action Report, the calculated site groundwater flow rate is 71 ft/yr. As stated previously in the Project Background, Cell 1 has received waste for seven years, starting in early 2013. The calculated Site groundwater travel distance over this seven-year period of time is approximately 497 feet. Comparing this groundwater travel distance (497 feet) to the distance between the upgradient southwest corner of Cell 1 and downgradient well MW-3 (1,120 feet) demonstrates that there would not have been sufficient time for any assumed landfill leakage to travel from waste to MW-3.

#### Conclusion

The detections of boron and chloride are most likely a naturally-derived component of the site geology, which can result in a natural variation in groundwater quality. SCS recommends that the facility remain in detection monitoring, in accordance with 40 CFR §257.94, as this ASD satisfies the 90-day demonstration period requirement outlined in 40 CFR §257.94(e)(2). Please contact Jim Lawrence at (817) 358-6106 if you have comments or require additional information.

Sincerely,

Asher Boudreaux Associate Staff Professional SCS ENGINEERS TBPE Registration No. F-3407




Brett DeVries, Ph.D., P.E. Project Engineer SCS ENGINEERS

James Lawrence, P.G. Project Director SCS ENGINEERS

Attachments:

TCEQ Texas-Specific Soil Background Concentrations Guidance



Texas-Speci milli	fic Soil Background Concentrations grams per kilogram (mg/kg) ¹
Metal	Median Background Concentration (mg/kg)
Aluminum	30,000
Antimony	1
Arsenic	5.9
Barium	300
Beryllium	1.5
Boron	30
Total Chromium	30
Cobalt	7
Copper	15
Fluoride	190
Iron	15,000
Lead	15
Manganese	300
Mercury	0.04
Nickel	10
Selenium	0.3
Strontium	100
Tin	0.9
Titanium	2,000
Thorium	9.3
Vanadium	50
Zinc	30

¹ Source: "Background Geochemistry of Some Rocks, Soils, Plants, and Vegetables in the Conterminous United States", by Jon J. Connor, Hansford T. Shacklette, et al., Geological Survey Professional Paper 574-F, US Geological Survey.

#### SANDY CREEK ENERGY STATION COAL COMBSUTION RESIDUAL WASTE MANAGEMENT FACILITY REGISTRATION APPLICATION TCEQ REGISTRATION NO. -----McLENNAN COUNTY, TEXAS

#### PART VII CLOSURE AND POST-CLOSURE CARE PLAN

**Prepared for:** 

SANDY CREEK SERVICES, LLC 2161 Rattlesnake Road Riesel, Texas 76682



#### **Prepared by:**

**SCS ENGINEERS** 

Texas Board of Professional Engineers, Reg. No. F-3407 Dallas/Fort Worth Office 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

> Revision 0 – January 2022 SCS Project No. 16221059.00

SECTION

6.2

8.1

8.2

7

8

9

10

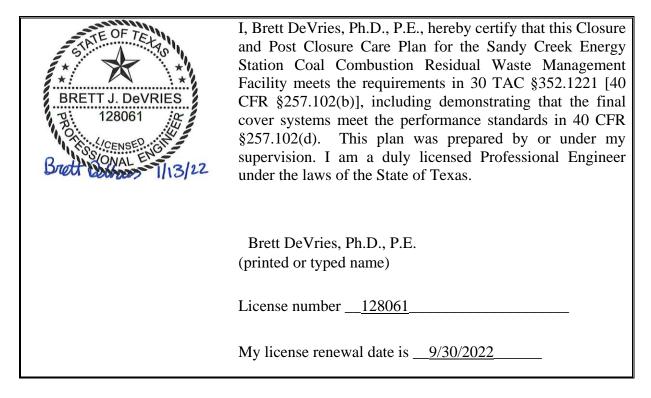
PAGE

#### TABLE OF CONTENTS

		S	·
1	PE CERTIFICA	TION (40 CFR §257.102(b)(4))	*/1-1
2		S BRETT J. DeVRIE	S
3	FINAL COVE	ON	
•	3.1 INTR	ODUCTION CENSE?	3-1
	3.2 FINA	LI COVER SYSTEM DESIGN	3/22 31
		L COVER QUALITY CONTROL PLAN	
	3.3 FINA 3.3.1	Infiltration Layer Testing	
	3.3.1	Geomembrane Testing	
	3.3.2	Installation Monitoring and Testing	
	3.3.4	Non-Destructive Testing	
	3.3.5	Destructive Seam Testing	
	3.3.6	Seam Failure Delineation	
	3.3.7	Seam Failure Repairs and Retesting	
	3.3.8	Wrinkles	
	3.3.9	Folded Material	
	3.3.10	Bridging or Induced Tension	3-9
	3.3.11	Anchor Trench	3-9
	3.3.12	Geocomposite and Erosion Layer Testing	3-10
	3.4 FINA	L COVER SYSTEM EVALUATION REPORT	3-11
4	CLOSURE PR	OCEDURES	4-1
	4.1 SEQ	UENCE OF FINAL COVER PLACEMENT	4-1
	4.2 CLO	SURE DURING ACTIVE LIFE	4-2
	4.2.1	Estimate of Maximum Inventory of Waste Ever On Site	
	4.2.2	Estimate of Largest Area Ever Requiring Final Cover	4-3
5	CLOSURE SC	HEDULE	5-1
	5.1 FINA	L CLOSURE REQUIREMENTS	5-1
	5.2 PRO	VISIONS FOR EXTENDING CLOSURE TIMEFRAMES	5-1
6	POST-CLOSU	JRE CARE ACTIVITIES	6-1
	6.1 MOI	NITORING AND MAINTENANCE	6-1

POST-CLOSURE CARE COST ESTIMATE (§352.1101(b)).....9-1 

CONTACT PERSON DURING POST-CLOSURE CARE ACTIVITIES §257.104(d)(1)(ii)......7-1


#### <u>Tables</u>

- 3-1 Infiltration Layer Soil Material Pre-Construction Testing Schedule
- 3-2 Infiltration Layer Construction Testing Schedule
- 3-3 Geomembrane Conformance Testing
- 3-4 Geomembrane Seam Strength
- 3-5 Manufacturer's Testing Schedule for Geocomposite



SCS Engineers TBPE Reg. # F-3407

### 1 PE CERTIFICATION (40 CFR §257.102(b)(4))



### 2 INTRODUCTION

This Closure and Post-Closure Care Plan has been prepared for Sandy Creek Services, LLC (Owner and Operator) of the Sandy Creek Energy Station (Plant) Coal Combustion Residual (CCR) Waste Management Facility (Landfill), located in McLennan County. The Plan has been prepared consistent with Title 30 of the Texas Administrative Code (30 TAC), Chapter 352, Subchapter J, as well as the relevant provisions of Title 40 of the Code of Federal Regulations (40 CFR), Part 257, Subpart D, adopted by reference. The Landfill Completion Plan for the Landfill consists of final contours and drainage features for the completed Landfill, as presented in Drawing IV-4.

The landfill design drawings, including the Landfill Completion Plan and fill cross-sections, are provided in Part IV, related to Landfill Criteria and Design Drawings.

In accordance with \$352.1321(c) and Section 4 of the Part V – Site Operating Plan (SOP), this Final Closure and Post-Closure Plan will be placed in the Site Operating Record and the Landfill's publicly accessible website following submittal to the TCEQ.

### 3 FINAL COVER SYSTEM

#### 3.1 INTRODUCTION

The final cover system for the Landfill was developed to meet or exceed the requirements of 30 TAC §352.1221 (40 CFR §257.102).

These rules define the procedures and timeframes for implementing closure of the Landfill, including the installation of a final cover system (leaving the waste in-place) designed and constructed to minimize infiltration and erosion. Such a system will include installation of a multi-layer final cover system and surface water drainage system, addressed in Part IV, Appendix IV.C – Run-on and Run-off Control Plan.

#### 3.2 FINAL COVER SYSTEM DESIGN

As depicted on Drawing IV-10 (Part IV), two separate multi-layer final cover systems will be used at the Landfill to provide a low maintenance cover and reduce rainfall percolation through the final cover system, thereby minimizing leachate generation within the Landfill. As depicted on Drawing IV-4, a 3 percent topslope and 3.5(H):1(V) sideslopes are provided to minimize erosion and facilitate drainage of the Landfill.

The final cover systems are designed consistent with §257.102(d)(3) and areas receiving final cover are depicted on Drawing IV-4. A soil-only final cover system will be constructed overlying Cells 1 and 2, which consist of soil-only (Cell 1) and soil-geocomposite (Cell 2) liner systems, as described in Part IV, Appendix IV.A – Leachate Collection and Removal System Plan. A composite final cover system will be constructed over Cell 3, which consist of a composite liner system, as described in Part IV, Appendix IV.A. At the discretion of the Landfill Owner/Operator, a composite final cover may be installed over Cells 1 and/or 2.

Beginning from the surface and working down, the final cover systems will be comprised of the following components:

- Soil-only final cover (overlying Cell 1 and 2):
  - Vegetation (native and/or introduced vegetation);
  - 18-inch-thick vegetative erosion layer, with the upper 6 inches capable of sustaining vegetation; and
  - 18-inch-thick clayey soil infiltration layer (k  $\leq$  1x10⁻⁷ cm/sec).
- Composite final cover (overlying Cell 3):
  - Vegetation (native and/or introduced vegetation);
  - 18-inch-thick vegetative erosion layer, with the upper 6 inches capable of sustaining vegetation;

- Geocomposite (double-sided);
- 60-mil high-density polyethylene (HDPE) geomembrane, or 40-mil linear low density polyethylene (LLDPE) geomembrane (textured both sides on the sideslopes); and
- 18-inch-thick clayey soil infiltration layer (k  $\leq$  1x10⁻⁵ cm/sec).

Appropriate field survey controls will be implemented to control the final lift of waste as well as the successive soil layers of the final cover system (see Part V - SOP, Section 2.6.2). If the Landfill has in-place intermediate cover at the time of final cover construction, the top 6 inches of intermediate cover may be incorporated into the 18-inch infiltration layer provided the in-place soil meets the requirements of the infiltration layer, as defined in Section 3.3.1.2. The infiltration layer will be a clayey soil, placed and compacted under controlled moisture-density conditions with appropriate compaction equipment. A geomembrane liner (40-mil LLDPE or 60-mil HDPE) will be placed over the infiltration layer (composite final cover only). The erosion layer will be placed directly over the infiltration layer (soil-only final cover) or drainage geocomposite (composite final cover) for final cover areas. The surface of the erosion layer will be seeded or sodded immediately following placement of the final cover to establish a vegetative cover and minimize erosion. Vegetation will be established such that sufficient coverage of native and introduced vegetation is achieved.

#### 3.3 FINAL COVER QUALITY CONTROL PLAN

Testing and evaluation of the final cover system materials and components prior to construction and during construction will be performed under the supervision of a geotechnical professional (GP), as defined in Part IV, Appendix IV.B – Liner Construction Quality Assurance (CQA) Plan, Section 1.2. Additionally, a qualified CQA Monitor will perform construction quality assurance and quality control (CQA/CQC) observation and testing under the direct supervision of the GP. A Final Cover System Evaluation Report (FCSER) will be developed and placed in the Site Operating Record in accordance with Section 3.4. The following subsections describe the CQA/CQC testing methods, frequencies, and material specifications that will be required for the 18-inch infiltration layer, geomembrane (if applicable), geocomposite (if applicable), and 18-inch erosion layer. Unless specifically stated, the subsections below describe CQA/CQC procedures for the soil-only and composite final covers.

#### 3.3.1 Infiltration Layer Testing

#### 3.3.1.1 Pre-Construction Testing

Prior to construction, pre-construction testing will be performed for the soil materials that are selected for the infiltration layer. The soil materials used in the final cover will be obtained from in-situ soil strata, which will be stockpiled during excavation of Landfill disposal areas or other onsite borrow source(s). Representative samples from all sources will be subject to the minimum pre-construction testing schedule per Table 3-1.

Soil types on the property are predominantly clay. A soil classification will be used as a guide for identifying soils with the minimum material specifications. Typically, clays and silts (i.e., CH, CL, M) are ideal for construction of the infiltration layer; however, these soils are not required provided the recompacted soil samples comply with the following minimum material specifications: Plasticity Index (PI)  $\geq$  15; liquid limit (LL)  $\geq$  30; percent passing No. 200 sieve  $\geq$  30; particle size  $\leq$  1 inch; and hydraulic conductivity (k)  $\leq$  1  $\times$  10⁻⁷ cm/sec.

TEST	METHOD USED	FREQUENCY
Soil Classifications: USCS	<b>ASTM D2487</b>	1 per soil type / minimum 1
Particle-Size Sieve	ASTM D422	per borrow source
Analysis	or D1140	
Atterberg Limits	ASTM D4318	
Moisture/Density Relationship (Moisture Content)	ASTM D698	
Hydraulic Conductivity ⁽¹⁾	ASTM D5084 (2)(3)	1 per Moisture-Density Relationship

Table 3-1Infiltration Layer Soil Material Pre-Construction Testing Schedule

Field testing of permeability (in accordance with ASTM D5093) is optional, and may be replaced by laboratory testing.
 Testing procedures in Appendix VII of the Corps of Engineers Manual EM 1110-2-1906, November 30, 1970, Laboratory

Soils Testing, may be used as an alternative method.

3. Permeability tests will be conducted with tap water or 0.05N solution of CaSO4. Distilled water will not be allowed.

#### 3.3.1.2 Construction Testing

Construction quality assurance for the infiltration layer will consist of both laboratory and field testing, as specified in Table 3-2. Quality assurance laboratory testing (sieve analysis, Atterberg limits, and hydraulic conductivity) will be conducted on representative samples of the constructed infiltration layer. The following tests will be performed to verify that the infiltration layer complies with the specification provided herein.

TEST	METHOD	MINIMUM FREQUENCY
Field Moisture/Density Test	ASTM D1556, D2167, or D6938	1 per 16,000 ft ² per 6-inch lift $^{(1)}$
Sieve Analysis	ASTM D422 or D1140	1 per 200,000 ft ² per 6-inch lift ⁽²⁾
Atterberg Limits	ASTM D4318	6-inch lift ⁽²⁾
Hydraulic Conductivity ^{(3) (4)}	ASTM D5084 or CoE EM 1110-2-1906	1 per 200,000 ft ² per 6-inch lift
Thickness	Survey	1 per 10,000 ft ^{2 (5)}

#### Table 3-2Infiltration Layer Construction Testing Schedule

1. A minimum of three tests must be conducted for each 6-inch lift, regardless of cover area.

2. A minimum of one test must be conducted for each lift, regardless of cover area.

3. Testing will be conducted on undisturbed samples.

4. Permeability tests will be run using tap water or a 0.05N solution of CaSO₄. Distilled water will not be allowed.

5. A minimum of two reference points are required.

The GP will verify passing permeability test results (i.e.,  $k < 1x10^{-7}$  cm/s), conducted at a frequency of no less than one test per surface acre of final cover. All laboratory permeability tests conducted will be uniformly distributed over the area. The infiltration layer will be placed and compacted in 6-inch lifts. At a minimum, the infiltration layer will be compacted to 95 percent of the maximum dry density and moisture content of 0 to +4% above optimum, as determined by ASTM D698.

Failing quality assurance tests on the constructed infiltration layer will be addressed consistent with Part IV, Appendix IV.B – Liner Construction Quality Control (CQA) Plan, Section 3.5, related to Procedures for Addressing Failing Tests. The results of both passing and failing tests will be recorded and documented within the FCSER.

Any penetrations required for obtaining laboratory samples will be repaired by backfilling the hole with bentonite chips or 50/50 powdered/granulated bentonite/soil/sand mixture hand-tamped into place. If the penetration is in the upper lift of soil, the upper 2 inches will be backfilled with clayey soil, which will be hand-tamped sufficiently to blend the backfill into the adjacent soil lift.

The lift thicknesses of the infiltration layer will be verified by settlement plates or surveying methods. The verification points, for record purposes, will be on grid such that there exists a minimum of one verification point per 10,000 square feet. A minimum of 2 reference points are required for verification. The selected grid will be the same for both beginning and finished elevations of the infiltration layer, so that minimum thickness can be calculated and verified. All elevation calculations necessary for thickness determination will be included as part of the supporting documentation in the FCSER.

#### 3.3.2 Geomembrane Testing

#### 3.3.2.1 Manufacturer Quality Control Testing

A geomembrane (40-mil LLDPE or 60-mil HDPE) will be installed in the composite final cover over the completed infiltration layer. Prior to the installation of the geomembrane in the composite

final cover system, the manufacturer or installer will provide the GP with quality control certificates signed by a responsible party employed by the manufacturer. Each quality control certificate will include roll identification numbers, testing procedures, and results of quality control tests. The quality control tests will be performed in accordance with project-specific testing methods and subject to one test per 100,000 square feet of material or a minimum of one test per resin lot, whichever is greater.

All geomembrane properties must meet the minimum values set forth in the most recent version of Geosynthetic Research Institute (GRI) standard GM-13 for 60-mil HDPE, or GM-17 for LLDPE. The GP will review the test results prior to acceptance of the geomembrane to assure that the certified minimum properties meet specified values.

#### 3.3.2.2 Conformance Testing

Conformance testing shall be performed by a third-party independent laboratory. Conformance testing methods and frequencies will be performed in accordance with Table 3-3.

TEST	METHOD	MINIMUM FREQUENCY
Thickness (laboratory)	ASTM D5994	
Density	ASTM D1505 or D792	1 per 100,000 $ft^2$ and every resin lot
Carbon black content	ASTM D1603	
Carbon black dispersion	ASTM D5596	
Tensile properties ⁽¹⁾	ASTM D638, Type IV	

 Table 3-3
 Geomembrane Conformance Testing

1. 2-inch initial gauge length assumed for elongation at break at 2.0 in/min.

#### 3.3.3 Installation Monitoring and Testing

Upon delivery of geosynthetic material, the CQA Monitor will observe that the materials are handled and stored in accordance with manufacturer's recommendations.

Field seaming of the geomembrane will be performed in strict accordance with methods approved by the manufacturer. This usually includes fusion welding or extrusion welding. Tack welds (if used) will use heat only. No double-sided tape, glue, or other method will be permitted when extrusion or fusion welding is used for bonding.

Each day prior to commencing field seaming, trial seams will be made on pieces of geomembrane material to verify that conditions are adequate for production seaming. Each trial test seam will be at least 3 feet long by 1-foot wide. Four adjoining one-inch wide specimens will be die-cut from the test seam sample. Two specimens will be tested in the field for shear and two for peel.

The failure criteria are the same as that for destructive seam testing as described below. The test specimens must exhibit a Film Tear Bond (FTB). If one test seam fails, the trial seam will be repeated. If this trial seam fails, then 2 more trial seams must be constructed and tested. This

process must continue and no welding can begin for the machine or welder until all test seams are passing. Additional trial seams will be made for all of the following:

- At the beginning of each seaming period for each seaming apparatus used that day (the beginning of each seaming period is considered to be morning, and immediately after a break);
- Each occurrence of significantly different environmental conditions (i.e., temperature, humidity, dust, etc.);
- Any time the machine is turned off for more than 30 minutes.

Both the welder and the machine must be tested for extrusion welding. Only the machine needs to be tested according to the above schedule for fusion welding. Each individual seamer will make at least one test seam each day he/she actually performs seaming.

#### 3.3.4 Non-Destructive Testing

Continuous, non-destructive testing will be performed on all seams by the installer. Air pressure testing on dual-track fusion welds and vacuum-box testing for extrusion welds are the only acceptable methods. Leaks must be isolated and repaired by the following procedures:

- 1. Air-Pressure Testing (GRI GM6) The ends of the air channel of the dual-track fusion weld must be sealed and pressured to approximately 30 psi, if possible. The air pump must then be shut off and the air pressure observed after five (5) minutes. A loss of less than 4 psi is acceptable if it is determined that the air channel is not blocked between the sealed ends. A loss of 4 psi or more indicates the presence of a seam leak that must then be isolated and repaired by following the procedures described under "Seam Failure Repairs and Retesting." The GP or his/her qualified representatives must observe and record all pressure gauge readings.
- 2. Vacuum-Box Testing (ASTM D4437) A suction value of approximately 3 to 5 inches of gauge vacuum must be applied to all extrusion welded seams that can be tested in this manner. Examples of extrusion welded seams that do not easily lend themselves to vacuum testing would be around boots, appurtenances, etc. The seam must be observed for leaks at least ten seconds while subjected to this vacuum. The GP or his/her qualified representative must observe 100 percent of this testing.

#### 3.3.5 Destructive Seam Testing

Destructive seam testing will be performed in accordance with ASTM D6392. Destructive samples will be taken at a minimum of one strategic location for every 1,000 linear feet of seaming or major fraction thereof. The total footage of individual repairs of leaks of more than 10 feet in seaming length and individual repairs of more than 10 feet in seaming length for failed seams must also be counted and destructively tested using the same frequency of testing described above. At a minimum, a destructive test must be done for each welding machine used for seaming or repairs. A sufficient amount of the seam must be removed in order to conduct field testing, independent laboratory testing, and archiving of enough material in order to retest the seam, if necessary. Field

testing will include at least 2 peel test specimens. Destructive seam-testing locations will be capstripped and the cap completely seamed by extrusion welding to the geomembrane. Capped sections will be non-destructively tested. Additional destructive test samples may be taken if deemed necessary by the GP or his/her qualified representative.

All field-tested specimens from a destructive-test location must be passing in both shear and peel for the seam to be considered as passing. Field tested specimens, are determined as passing if the specimen tested in peel fails in FTB and all test specimens meet the criteria listed in the Table 3-4 The independent laboratory testing must confirm these field results. The minimum passing criteria for independent laboratory testing are all three of the following:

- Five of five specimens tested in the peel mode must fail in FTB.
- Five of five specimens from each peel and shear determination must meet the minimum specified value in Table 3-4.
- All five specimens from each peel and shear determination must should meet the minimum percent elongation at break value in Table 3-4.

The above criteria apply to both tracks from each dual-track fusion welded seam before it is considered as passing. It should be noted that geomembrane manufacturers may have differing values for their geomembrane sheets and therefore, the specific values are not meant to be minimum or maximum values as construction materials and specifications may vary between manufacturers and throughout the life of the site. Consequently, the manufacturer's sheet-strength values must be provided in order to determine if the test results are passing.

D (	0 116	<b>T</b> T •4	Specifi	T4	
Property	Qualifier	Unit	60-mil HDPE	40-mil LLDPE	Test
Shear Strength	Min.	lb/in	120	60	
Shear Elongation at Break	Min.	%	50	50	ASTM D6392
<b>Peel Strength:</b> Fusion Extrusion	Min Min.	lb/in lb/in	91 78	50 44	ASTM D6392

 Table 3-4
 Geomembrane Seam Strength

#### 3.3.6 Seam Failure Delineation

In the event failing tests are obtained at a destructive test location, new destructive test samples will be obtained, a minimum of 10 feet in either direction of the failing test. If one, but not both, of the additional tests fail, further additional destructive testing will be required until passing tests are obtained at both ends of the original destructive test location. A cap will be required for the areas subject to destructive testing, and testing of the cap will be placed in accordance with Section 3.3.7. If more than two failing destructive test locations are observed for a single seam, the CQA Monitor will have the alternative of requiring the entire seam be removed, and a new seam welded.

In the event more than one failing destructive test are observed for a single welding apparatus, new (passing) trial welds will be required prior to resuming geomembrane welding or seaming with the apparatus.

#### 3.3.7 Seam Failure Repairs and Retesting

Any portion of the geomembrane with a detected flaw, or which fails a nondestructive or destructive test, or where destructive tests were cut, or where nondestructive tests left cuts or holes, must be repaired. The CQA Monitor will locate and record all repairs on the repair log. Repair techniques include the following:

- Patching used to repair holes, tears, large panel defects, undispersed raw materials, contamination by foreign matter, and destructive sample locations.
- Extrusion used to repair small defects in the panels and seams. In general, this procedure should be used for defects less than 3/8-inch in the largest dimension.
- Capping used to repair failed welds or to cover seams where welds or bonded sections cannot be nondestructively tested.
- Removal used to replace areas with large defects where the preceding methods are not appropriate. Also used to remove excess material (wrinkles, fishmouths, intersections, etc.) from the installed geomembrane. Areas of removal shall be patched or capped.

For any repair method, the following provisions will be satisfied:

- Surfaces of the geomembrane which are to be repaired using extrusion methods will be ground no more than one hour prior to the repair;
- All surface will be clean and dry at the time of repair;
- Patches or caps will extend at least 6 inches beyond the edge of the defect, and all corners of patches will be rounded with a radius of approximately 3 inches or more;
- All repairs will be nondestructively tested as previously described; and
- All seaming equipment, personnel, and operation procedures used in repair work will meet the same requirements as for new seaming operations.

The GP or his/her qualified representative will observe all destructive and non-destructive testing of repairs and will record the number of each repair, type, date and test outcome. Repairs that pass the non-destructive tests will be taken as an indication of an adequate repair. Repairs more than 150 feet long will also be required to have a destructive test performed. Repairs that fail the initial retest will be redone and retested until a passing test results. All work and testing of repairs will be fully documented in a repair log.

#### 3.3.8 Wrinkles

During placement of cover materials over the geomembrane, temperature changes or creep can cause wrinkles to develop in the geomembrane. Wrinkles which can fold over must be repaired either by cutting out the excess material or, if possible, by allowing the liner to contract by temperature reduction. In no case can material be placed over the geomembrane which could result in the membrane folding. The CQA Monitor must monitor the geomembrane for wrinkles and notify the Contractor if wrinkles are being covered by soil. The CQA Monitor is then responsible for documenting corrective action to remove the wrinkles.

#### 3.3.9 Folded Material

All folded geomembrane must be removed. Remnant folds evident after deployment of the roll which are due to manufacturing process are acceptable.

#### 3.3.10 Bridging or Induced Tension

Bridging or Induced Tension: Bridging is defined as areas where the geomembrane is not in contact with the subgrade due to a void in the subgrade or the sheet is pulled in tension so as to span over depressions in the subgrade. Areas likely to promote bridging, i.e. trenches, toe of slopes, etc., shall be loaded with sandbags after deployment and after seaming. Induced tension is stress introduced into the geomembrane during installation or covering. These areas will likely result in bridging. Areas with excessive bridging shall be identified and repaired by either of the following methods:

- 1. The geomembrane shall be cut by the Contractor, so the tension is relieved and the geomembrane conforms to the subgrade contours. The cut geomembrane shall be repaired and tested according to the Contract Documents regarding repairs and testing.
- 2. The geomembrane shall be cut by the Contractor, and subgrade material shall be added and placed, in accordance with the contract specifications, so as bring the geomembrane in contact with the subgrade. The cut geomembrane shall be repaired and tested according to the Contract Documents regarding repairs and testing.

#### 3.3.11 Anchor Trench

An anchor trench will be constructed on the topdeck of the Landfill where the leading edge(s) of the geomembrane will not be needed for future tie-in for expansion into the next final cover area. The anchor trench backfill material will be placed as outlined in the technical specifications. Care will be taken when backfilling and compaction to prevent damage to the underlying geomembrane. Slightly rounded corners will be provided in anchor trenches where the geomembrane enters the trench as to avoid sharp bends in the geomembrane.

The geomembrane anchor trench will be left open until seaming is completed. Expansion and contraction of the geomembrane should be accounted for in the final cover placement. The anchor trench will be filled in the morning when temperatures are coolest to reduce bridging of the geomembrane.

The anchor trench backfill material will be placed in uniform lifts compacted to at least 90 percent of standard Proctor (ASTM D 698) density at a moisture content ranging from -2 to +4 percent of optimum. Compaction density and moisture of the anchor trench backfill will be visually verified by the CQA Monitor. Specific density and moisture testing of in-place anchor trench backfill will be at the discretion of the CQA Monitor.

#### 3.3.12 Geocomposite and Erosion Layer Testing

When placing overlying material on the geomembrane in the composite final cover, every effort must be made to minimize wrinkle development and stress imparted to the geomembrane, as described in Section 3.3.8. If possible, cover should be placed during the coolest weather available. Small wrinkles should be isolated and covered as quickly as possible to prevent their growth. In no case will the geomembrane be allowed to fold over on itself.

#### 3.3.12.1 Geocomposite

A double-sided geocomposite will be installed over the geomembrane in the composite final cover system only. The geocomposite will conform to the material and performance properties specified by the GP, consistent with project construction plans and technical specifications. The geocomposite transmissivity shall meet or exceed a transmissivity of  $3.7 \times 10^{-4}$  m²/sec at a gradients of 0.28 (see Part IV, Appendix IV.A, Attachment IV.A1 – Leachate Generation Model Narrative) and the non-woven geotextile heat-bonded to the geonet shall comply with the minimum material properties presented in the calculations provided in Part IV, Appendix IV.A, Attachment IV.A2. The drainage geocomposite manufacturer (or supplier), will conduct the tests methods presented in Table 3-5 and certify that all materials delivered comply with project specifications. The material certifications shall be reviewed by the GP and approved for the project prior to acceptance of any of the material.

PRODUCT	TEST	METHOD	MINIMUM FREQUENCY		
Resin	Density	ASTM D1505 or D792	1 per batch and every resin lot		
Resin	Melt Flow Index	ASTM D1238	I per batch and every feshi lot		
	Density	ASTM D1505 or D792			
Geonet	Mass/Area	ASTM D1603	1 per 100,000 ft ² and every resin lot		
	Thickness	ASTM D5199			
	Mass/Area	ASTM D5261			
	Grab Tensile StrengthASTM D4632Trapezoidal Tear StrengthASTM D4533				
Geotextile			1 per 100,000 ft ² and every resin lot		
	Apparent Opening Size	ASTM D4751			
	Permittivity	ASTM D4491			
Geocomposite	Transmissivity	ASTM D4716	One test per product type		

Table 5-5 Manufacturer's Testing Schedule for Geocombos	Table 3-5	Manufacturer's Testing Schedule for Geocomposite
---------------------------------------------------------	-----------	--------------------------------------------------

Installation of the geocomposite will be conducted in accordance with Section 5.4 of Part IV, Appendix IV.B, specifically related to surface preparation, placement, and repairs.

#### 3.3.12.2 Erosion Layer

The erosion layer will consist of a 18-inch-thick soil layer, with the top 6 inches capable of sustaining vegetation in accordance with \$257.102(d)(3)(i)(c). The required thickness of the layer will be verified by settlement plates or survey methods on an established grid system with not less than one verification point per 10,000 square feet of surface area. A minimum of two verification points are required. The selected grid will be the same for both beginning and finished elevations of the erosion layer, so that minimum thickness can be calculated and verified. All elevation calculations necessary for thickness determination will be included as part of the supporting documentation in the FCSER.

The erosion layer does not require compaction control; however, it should be stable for construction traffic. When applicable, the erosion layer will be deployed in "fingers" along the geomembrane or geocomposite to control the amount of slack and minimize wrinkles and/or folds. Soil cover will generally be placed in an up-slope direction on sideslopes so that stress imparted to the geocomposite and geomembrane (if applicable) is minimized. Care will be exercised in placement of the erosion layer so as not to shift, wrinkle or damage any underlying geosynthetic layers, and the placement methods will be documented.

#### 3.4 FINAL COVER SYSTEM EVALUATION REPORT

Upon completion of each area of final cover construction and evaluation, the GP will prepare a FCSER, prepared in accordance with this Plan. This report will be placed in the Site Operating Record for the life of the site.

Each FCSER will include a discussion of the construction of the final cover elements, a cover placement map which shows the covered area that was constructed and areas covered by all previous FCSERs with the dates of placing in the Site Operating Record. The map will depict a grid system, graphic scale, and north arrow. The FCSER will be signed and sealed by the GP performing the evaluation and a Responsible Official for the Plant.

The report will contain a narrative describing the work performed and the testing procedures performed prior to and during construction, record drawings, and results of field and laboratory testing. The FCSER will include the following:

- All field and laboratory test documentation for infiltration layer soils, including test and sample locations plotted on plan view drawings representing each 6 inch lift;
- Geomembrane manufacturer's certifications (for the composite final cover only), documentation of all manufacturer's and independent testing, geomembrane seaming and repair logs, seam testing results, and a site map showing locations of panels, repairs, and tests;
- Geocomposite manufacturer's certification and testing documentation (for the composite final cover only); and
- Survey or other documentation for the thickness of the infiltration layer and erosion layer.

### 4 CLOSURE PROCEDURES

#### 4.1 SEQUENCE OF FINAL COVER PLACEMENT

Final cover will be placed throughout the active life of the Landfill. Therefore, the sequence of final cover placement will ultimately be governed by having a sufficient area or number of cells or subcells constructed to allow the Landfill Owner/Operator to construct the aerial fill portion of the Landfill up to the design final grades. The largest area requiring final cover at any time during the Landfill's active life is described in Section 4.2.1. The final cover placement procedures listed below will be followed until all areas have been closed.

- Survey controls will be implemented during waste placement to control the filling of waste to the bottom of intermediate cover layer elevations.
- No later than the date of closure initiation, a notice of intent to close the Landfill or portion thereof will be prepared, submitted to the TCEQ, and placed in the Site Operating Record. The notification will include a certification by a qualified professional engineer that the design of the final cover system meets the requirements of §257.102(d)(3).
- The final cover system layers will be constructed at the appropriate time following placement of the final lift of waste. Installation and testing of the various components of the final cover system will be performed in accordance with Section 3.3 of this Plan.
- A FCSER will be prepared by an independent registered professional engineer, as described in Section 3.4, which will include a closure completion certification. This FCSER will be submitted for TCEQ approval, certifying that the final cover has been constructed in accordance with this Plan and requirements of §257.102(d).
- The FCSER, including closure completion certification, will be placed in the Site Operating Record, and the notification placed on the Landfill's publicly accessible website in accordance with Section 4 of the SOP, and the inspection checklist will be updated to reflect final cover placement.
- Prior to closure completion certification approval by the TCEQ, a financial assurance mechanism must be in place consistent with \$352.1101(b).
- Following final closure of the Landfill, the following will be completed:
  - Equipment that has come in contact with CCR during active operations or closure activities will be cleaned prior to demobilizing the equipment from the Landfill or placing it into service for post-closure activities.
  - A notation will be recorded on the deed indicating that: (i) the property has been used for CCR disposal; and (ii) the use of the property is restricted under the postclosure care requirements of §257.104(d)(1)(iii). A notification stating that the notation has been recorded in the McLennan County Deed Records will be placed in the Site Operating Record and submitted to the TCEQ.

Note, the placement of final cover does not represent closure of a portion of the Landfill. Requirements for final closure of the Landfill are discussed in Section 5 of this Plan. In addition, post-closure care activities will not begin until the entire Landfill has been closed as discussed in Section 4.

### 4.2 CLOSURE DURING ACTIVE LIFE

As described above, the final cover will be constructed as fill areas achieve the design final contours. Should closure of the Landfill become necessary at any time during the active life of the Landfill, the following steps will be taken:

- Engineering plans will be developed to address site closure at the time of discontinued waste filling.
- The final waste received will be placed and properly compacted.
- Excavations (if any) will be graded to drain to the elevations shown in the closure engineering plans, and the site will be graded to promote runoff and prevent ponding.
- Consistent with the closure engineering plans, sections of the Landfill that are above-grade will be regraded and reshaped, as needed, to provide the proper slope for positive drainage, consistent with closure engineering plans.
- The final cover system will be constructed in accordance with this Plan and closure engineering plans.
- Following application of final cover, the Landfill will be seeded or sodded with appropriate vegetation to minimize erosion.
- Consistent with the closure engineering plans and with Part IV, Appendix IV.C Run-on and Run-off Control Plan, remaining unconstructed portions of the surface water drainage system will be constructed to minimize erosion.
- A closure certification will be prepared by an independent registered professional engineer and a notification submitted to TCEQ as stated in Section 5 of this Plan.
- All proper notices and documentation will be filed with the appropriate agencies.

#### 4.2.1 Estimate of Maximum Inventory of Waste Ever On Site

Consistent with §257.102(b)(1)(iv), the estimate of maximum inventory of waste (defined as waste and intermediate cover) ever on site over the active life of the Landfill is 19,986,382 cubic yards (based upon volumes computed within Cells 1 through 3 from bottom of liner and top of final grade elevations, less liner and final cover thicknesses).

#### 4.2.2 Estimate of Largest Area Ever Requiring Final Cover

In accordance with §257.102(b)(1)(v), the largest area ever requiring final cover at any time during the Landfill's active life is estimated to be approximately 34.0 acres. The estimated largest area requiring final cover includes the cells that were constructed prior to or during the time of preparing this Registration Application, including Cells 1 and 2 and a portion of Cell 3 (inclusive of Subcells 3A through 3D). If the Landfill is expanded in the future (e.g., Subcell 3E constructed), then this Plan will be amended consistent with Section 10.

In addition, the entire 149.3 acres within the Landfill Registration Boundary will also be administratively closed.

## 5 CLOSURE SCHEDULE

### 5.1 FINAL CLOSURE REQUIREMENTS

The Landfill will be closed in an orderly fashion, consistent with §352.1221 (§257.102 and §257.104), while implementing the following steps:

- No later than the date of closure initiation, a notice of intent to close the Landfill or portion thereof will be prepared, submitted to the TCEQ, and placed in the Site Operating Record. The notification will include a certification by a qualified professional engineer that the design of the final cover system meets the requirements of §257.102(d)(3).
- Final closure activities will commence at the Landfill no later than 30 days after the date the Landfill receives the known final receipt of wastes, in accordance with §257.102(e)(1). If there is a reasonable likelihood that the Landfill will receive additional waste in the foreseeable future, final closure activities will commence no later than two years after the most recent receipt of wastes.
- Final closure activities of the Landfill will be completed in accordance with this Plan within six months of commencing closure activities, in accordance with \$257.102(f)(1).
- Within 30 days of completion of final closure activities at the Landfill, a notification of closure will be submitted to the TCEQ, placed in the Site Operating Record, and placed on a publicly accessible website in accordance with Section 4 of the SOP. The inspection checklist will be updated to reflect final cover placement. In addition, a notation will be recorded on the deed indicating that: (i) the property has been used for CCR disposal; and (ii) the use of the property is restricted under the post-closure care requirements as provided by §257.104(d)(1)(iii). The notification will state that the above mentioned notation has been recorded in the McLennan County Deed Records.

#### 5.2 PROVISIONS FOR EXTENDING CLOSURE TIMEFRAMES

Consistent with §257.102(e)(2)(ii), closure activities will commence no later than two years after the most recent receipt of wastes. Two-year time extensions to commence closure may be obtained by developing written documentation if there is a reasonable likelihood that the Landfill will receive additional waste in the foreseeable future. At a minimum, the documentation will provide information specified in §257.102(e)(2)(ii)(A) and (B). The time extension(s) will be submitted to the TCEQ, placed in the Site Operating Record, and placed on the Landfill's publicly accessible website in accordance with Section 4 of the SOP prior to the end of any two-year period.

Consistent with \$257.102(f)(1), final closure activities of the Landfill will be completed in accordance with this Plan within six months of commencing closure activities. One-year time extensions for completing closure may be obtained by developing a demonstration that it is not feasible to complete closure within the required timeframe specified in \$257.102(f)(1); and includes the statement specified in \$257.102(f)(2)(iii), and signed by a Responsible Official for the Plant. No more than a total of two one-year extensions will be obtained for the Landfill. The time extension(s) will be submitted to the TCEQ, placed in the Site Operating Record, and placed

on the Landfill's publicly accessible website in accordance with Section 4 of the SOP prior to the end of any two-year period.

## 6 POST-CLOSURE CARE ACTIVITIES

#### 6.1 MONITORING AND MAINTENANCE

In accordance with §257.104, post-closure care requirements, including monitoring and maintenance, will commence upon completion of final closure requirements set forth in Sections 2 through 5 of this Plan. Post-closure care monitoring and maintenance will continue for a period of 30 years in accordance with §257.104(c)(1) unless the Landfill is operating under assessment monitoring in accordance with §257.95 at the end of the post-closure care period. Post-closure care monitoring and maintenance will consist, at a minimum, of the following requirements to be carried out by the Landfill Owner/Operator, in accordance with §257.104(b):

- Inspections of the Landfill cover, run-on and run-off drainage system, and leachate collection and removal system (LCRS) will be conducted monthly in accordance with Section 3 of the SOP. As a result of these inspections the following maintenance or remediation activities will be performed:
  - Conduct maintenance and/or remediation activities, as a result of inspections, in order to maintain the integrity and effectiveness of the final cover, site vegetation, run-on and run-off drainage system, and LCRS.
  - Maintain adequate vegetation coverage on the final cover to minimize erosion.
  - Maintain surface water run-on and run-off controls in order to minimize the erosion of the final cover system.
  - Correct the effects of settlement, subsidence, ponded water, erosion, or other events or failures determined to be detrimental to the integrity of the closed Landfill.
- Maintain and operate the LCRS in accordance with Part IV, Appendix IV.A Leachate Collection and Removal System Plan. The Landfill Owner/Operator reserves the right to submit a demonstration to the TCEQ at the appropriate time that leachate will no longer pose a threat to human health, the environment, or property. If the demonstration is approved by the TCEQ, the Landfill Owner/Operator may be allowed to discontinue the maintenance and operation of the LCRS. Following the discontinuation of maintenance and operation of the LCRS or completion of the post-closure care period, the leachate evaporation pond will be decommissioned by disposing of the geomembrane and protective cover soil at an authorized facility. It is assumed that leachate will be evaporated in the existing leachate evaporation pond and that off-site disposal will not be required following pond decommissioning at the end of post-closure care period.
- Maintain the groundwater monitoring system in accordance with Section 3 of the SOP and monitor groundwater in accordance with §257.95 through §257.98 and Part VI, Appendix VI.A - Groundwater Sampling and Analysis Plan. In accordance with Part VI, Appendix VI.A, the minimum monitoring frequency will be semiannually. However, the Landfill Owner/Operator reserves the right to request TCEQ approval of (1) an alternative

monitoring frequency, and (2) an alternative list of parameters to be monitored. Such requests will be based on supporting data available at the time of the request.

## 6.2 COMPLETION OF POST-CLOSURE CARE PERIOD

In accordance with §352.1241 [§257.104(e)], no later than 60 days following the completion of the post-closure care period, a written notification by a qualified professional engineer verifying that post-closure care has been completed in accordance with this Plan and the Landfill possess no threat to human health, the environment, or property will be placed in the Site Operating Record. The notification will be submitted to the TCEQ for approval and placed on the Landfill's publically accessible website within 30 days of placing in the Site Operating Record in accordance with Section 4 of the SOP.

The post-closure period will be extended until the TCEQ approves a demonstration that the Landfill poses no threat to human health, the environment, or property. The Landfill Owner/Operator will maintain the financial assurance required in §352.1101(d) (see Part VIII) until the TCEQ post-closure care is no longer required.

# 7 CONTACT PERSON DURING POST-CLOSURE CARE ACTIVITIES §257.104(D)(1)(II)

In accordance with §257.104(d)(1)(ii), at the time of development of this Registration Application, the following is the contact person for the Landfill during the post-closure care period:

Name and Title:	Dana Perry, Business Manager
Address:	2161 Rattlesnake Road Riesel, Texas 76682
Telephone:	(254) 896-4218
Email:	dperry@sandycreekservices.com

If the Landfill was closed and required to start post-closure care as of the date of this Registration Application submittal, the Business Manager would be the person to contact during the postclosure period. The person responsible for conducting post-closure activities is subject to change. However, as part of the closure notification, as required by §257.102(h), the contact person will be provided in the notification.

# 8 POST-CLOSURE LAND USE

## 8.1 INTENDED USE

There are no currently planned uses for the Landfill after closure. If the closed Landfill is considered for other use(s) in the future, this Plan will be amended in accordance with \$257.104(d)(3) and Section 10 of this Plan.

## 8.2 CONSTRAINTS OF POST-CLOSURE CONSTRUCTION

In accordance with §257.104(d)(1)(iii), the post-closure use will not disturb the integrity of the final cover, liner, or any other components of the containment system or the function of the post-closure monitoring systems unless necessary to comply with the TCEQ regulations. Disturbances to the above mentioned components are allowed, provided that a demonstration that the disturbance to the final cover, liner, or other components of the containment system, including any removal of waste, will not increase the potential threat to human health, environment, or property. The demonstration will be certified by a professional engineer in the state of Texas, will be submitted to the TCEQ, and placed on the Landfill's publically accessible website within 30 days of placing in the Site Operating Record in accordance with Section 4 of the SOP.

## 9 POST-CLOSURE CARE COST ESTIMATE (§352.1101(B))

A detailed written cost estimate, in current dollars (2021), for the cost of hiring a third party to conduct post-closure care activities for the Landfill, in accordance with this Closure and Post-Closure Care Plan, is provided in Part VIII – Post-Closure Care Cost Estimate and Financial Assurance Mechnism, in accordance with §352.1241. Part VIII also describes procedures for updating the post-closure cost estimate.

# 10 AMENDMENT OF CLOSURE AND POST-CLOSURE PLAN

In accordance with §257.102(b)(3) and §257.104(d)(3), this Closure and Post-Closure Plan may be amended at any time. Any amendment of this Plan will be submitted in accordance with 30 TAC §305.62, and requires a written certification by a qualified professional engineer that the amendment meets the requirements of §257.102(b) and/or §257.104(d).

When conditions occur that necessitate a change to this Plan, it must be amended within the following timeframes:

- At least 60 days prior to changing the operation of the Landfill in a manner that would substantially affect the activities described in this Plan;
- Within 60 days after an unanticipated event requires the need to revise the activities described in this Plan, if closure or post-closure activities have not yet been initiated for the Landfill; and
- Within 30 days after an unanticipated event requires the need to revise the activities described in this Plan, if closure or post-closure activities are underway.

The written certification will be submitted for approval to the TCEQ in accordance with §305.62, and placed on the Landfill's publically accessible website within 30 days of placing in the Site Operating Record in accordance with Section 4 of the SOP.

### SANDY CREEK ENERGY STATION COAL COMBUSTION RESIDUAL WASTE MANAGEMENT FACILITY REGISTRATION APPLICATION TCEQ REGISTRATION NO. -----McLENNAN COUNTY, TEXAS

### PART VIII POST-CLOSURE CARE COST ESTIMATE AND FINANCIAL ASSURANCE

**Prepared for:** 



SANDY CREEK SERVICES, LLC 2161 Rattlesnake Road Riesel, Texas 76682

**Prepared by:** 

**SCS ENGINEERS** 

Texas Board of Professional Engineers, Reg. No. F-3407 Dallas/Fort Worth Office 1901 Central Drive, Suite 550 Bedford, Texas 76021 817/571-2288

> Revision 0 – January 2022 SCS Project No. 16221059.00

## **TABLE OF CONTENTS**

### **SECTION**

### <u>PAGE</u>

1	INTRODUCTION1	- 1
2	POST-CLOSURE CARE COST ESTIMATE2	- 1
3	POST-CLOSURE COST ESTIMATE ADJUSTMENTS	- 1
4	FINANCIAL ASSURANCE MECHANISM (30 TAC §352.1101(c))4	- 1

### <u>Appendix</u>

- VIII.A Post-Closure Care Cost Estimate Calculations
- VIII.B **Financial Assurance Mechanism**



# 1 INTRODUCTION

This Post-Closure Cost Estimate and Financial Assurance have been prepared for the Sandy Creek Services, LLC (Owner and Operator) of the Sandy Creek Energy Station (Plant) Coal Combustion Residual Waste Management Facility (Landfill), located in McLennan County. This plan has been prepared consistent with Title 30 of the Texas Administrative Code (30 TAC), Chapter 352, Subchapter I. The post-closure cost estimate(s) are summarized on Tables VIII.A1 and VIII.A2, and the corresponding calculations are included in Attachment VIII.A1 of this appendix.

The Landfill Owner/Operator will establish financial assurance for the cost of post-closure care in an amount no less than the amount specified in this plan for existing Cells 1, 2, and 3A through 3D in accordance with §352.1241. In accordance with §352.1101(c), the Landfill Owner/Operator will submit to the TCEQ the required documentation to demonstrate financial assurance in an amount no less than the total cost of the 30 year post-closure period for the estimated largest area ever requiring final cover. This demonstration will be made no later than 90 days following TCEQ approval of this Registration Application.

If a demonstration for ending the post-closure period cannot be made in accordance with §352.1241 at the end of the 30 year closure period, then the Landfill Owner/Operator will continue to maintain financial assurance until the TCEQ approves a demonstration that the Landfill poses no threat to human health, the environment, or property. In accordance with §352.1101(d), the Landfill Owner/Operator will prepare and submit to the TCEQ a cost estimate for the cost of continuing the post-closure care specified in Part VII – Closure and Post-Closure Care Plan no later than 180 days before the end of the preceding post-closure care period. Financial assurance for the cost of post-closure care in an amount no less than the amount for continuing the post-closure case will be submitted and approved by the TCEQ.

Consistent with §352.1101(e), the TCEQ may use or direct the use of the post-closure care funds to perform post-closure care at the Landfill when the TCEQ determines that the Landfill Owner/Operator has failed to perform the post-closure care specified in Part VII.

# 2 POST-CLOSURE CARE COST ESTIMATE

30 TAC §352.1101(b) states that, "The owner or operator shall prepare and include with the application for registration, a written cost estimate in current dollars of the total cost of the 30-year post-closure care period to perform post-closure care requirements as prescribed in §352.1241 of this title. The cost estimate shall be based on the costs of hiring a third-party to conduct post-closure maintenance."

As such, the following detailed post-closure cost estimate, in current dollars, is based on the cost of hiring a third party to conduct post-closure care activities for the Landfill, in accordance with Part VII. This post-closure care cost estimate accounts for the total costs of conducting post-closure care for the largest area ever requiring final cover in accordance with Section 4.2.2 of Part VII. The Landfill Owner/Operator will decrease or increase the post-closure care cost estimate and the amount of financial assurance provided that changes to the Closure and Post-Closure Plan or the Landfill conditions decrease or increase the maximum cost of post-closure care at any time during the life of the Landfill in accordance with Section 3 of this plan.

The post-closure care period has been established by the TCEQ to be 30 years. During this period, the final cover system, including the run-on and run-off systems, will be maintained in a condition consistent with their design intent. Also, the groundwater monitoring system and leachate collection and removal system will be maintained in appropriate operating condition.

The post-closure care cost estimates are based on the Closure and Post-Closure Care Plan (see Part VII) and include the cost for routine monitoring and maintenance of the final cover system, leachate collection and removal system, and groundwater monitoring system. This estimate for routine monitoring and maintenance is a cumulative cost throughout the 30-year post-closure care period. This cost estimate is based on current dollars. A summary of post-closure care costs is presented in TCEQ Form 20890, Table VIII.A1 – Post-Closure Cost Summary for Existing Registered Units and Table VIII.A2 – Post-Closure Cost Summary for Proposed Registered Units. Table VIII.A1 includes the post-closure summary for the cells that were constructed prior to or during the time of preparing this Registration Application, including Cells 1 and 2 and a portion of Cell 3 (Subcells 3A through 3D); and Table VIII.A2 includes the post-closure summary for the remaining portion of Cell 3 (i.e., unconstructed portion of Cell 3). Calculations and supporting data for the cost estimates are included in Attachment VIII.A1 - Post-Closure Care Cost Estimate Calculations. Unit rate cost estimates provided in Attachment VIII.A1 are based on data available from similar work and/or construction and monitoring projects.

#### Table VIII.A.1 - POST-CLOSURE COST SUMMARY FOR EXISTING REGISTERED UNITS. EXISTING CELLS 1, 2, AND 3A THROUGH 3D SANDY CREEK ENERGY STATION POST-CLOSURE CARE COST SUMMARY

Description	Quantity	Unit	U	Unit Cost		otal Cost
1.0 ENGINEERING						
1.1 Annual Site Inspections	1	YR	\$	2,986	\$	2,986
1.2 Correctional Plans and Specifications (annual)	1	YR	\$	8,500	\$	8,50
					\$	11,48
2.0 Site Monitoring						
2.1 Groundwater Sampling and Analysis (semi-annual)	1	YR	\$	18,000	\$	18,00
2.2 Groundwater Well Plugging and Abandonment	1	YR	\$	200	\$	20
					\$	18,20
3.0 CONSTRUCTION / MAINTENANCE						
3.1 Cap and Sideslopes Repairs and Revegetation	1	YR	\$	1,700	\$	1,70
3.2 Mowing and Vegetation Management	1	YR	\$	3,400	\$	3,40
3.3 Groundwater Monitoring System Maintenance	1	YR	\$	2,500	\$	2,50
3.4 Perimeter Fence and Gates Maintenance	1	YR	\$	1,500	\$	1,50
3.5 Access Roads Maintenance	1	YR	\$	4,500	\$	4,50
3.6 Drainage System Cleanout/Repairs	1	YR	\$	3,500	\$	3,50
					\$	17,10
4.0 LEACHATE MANAGEMENT			¢		<i>•</i>	
4.1 Leachate Management System Operation and Maintenance	1	YR	\$	5,000	\$	5,00
4.2 Decommissioning of Existing Leachate Pond	1	YR	\$	2,333	\$	2,33
4.2 Leachate Disposal	N/A	N/A	1	N/A	¢	N/.
5.0 ADMINISTRATIVE					\$	7,33
5.1 Annual Report Preparation and Submittal to TCEQ	1	YR	\$	4,500	\$	4,50
SUBTOTAL					\$	58,61
CONTINGENCY	10%				\$	5,86
THIRD PARTY ADMINISTRATION AND PROJECT MGMT	2.5%				\$	1,46
TOTAL ANNUAL POST-CLOSURE CARE COST					\$	65,94
30 YEAR POST-CLOSURE CARE COST					\$	1,978,38

#### Table VIII.A.2 - POST-CLOSURE COST SUMMARY FOR PROPOSED REGISTERED UNITS. FUTURE CELLS SANDY CREEK ENERGY STATION POST-CLOSURE CARE COST SUMMARY

Description	Quantity	Unit	Unit Cost		Total Cost	
1.0 ENGINEERING						
1.1 Annual Site Inspections	1	YR	\$	-	\$	
1.2 Correctional Plans and Specifications (annual)	1	YR	\$	1,675	\$	1,67
					\$	1,67
2.0 Site Monitoring						
2.1 Groundwater Sampling and Analysis (semi-annual)	1	YR	\$	-	\$	
2.2 Groundwater Well Plugging and Abandonment	1	YR	\$	-	\$	
					\$	
3.0 CONSTRUCTION / MAINTENANCE	_					
3.1 Cap and Sideslopes Repairs and Revegetation	1	YR	\$	340	\$	34
3.2 Mowing and Vegetation Management	l	YR	\$	670	\$	67
3.3 Groundwater Monitoring System Maintenance	1	YR	\$	-	\$	
3.4 Perimeter Fence and Gates Maintenance 3.5 Access Roads Maintenance	1	YR YR	\$	-	\$	
	1	YR YR	\$ \$	-	\$ \$	
3.6 Drainage System Cleanout/Repairs	1	IK	Ф	-	Դ Տ	1,01
4.0 LEACHATE MANAGEMENT					φ	1,01
4.1 Leachate Management System Operation and Maintenance	1	YR	\$	-	\$	
4.2 Decommissioning of Existing Leachate Pond	1	YR	\$	-	\$	
4.2 Leachate Disposal	N/A	N/A		N/A		N/.
					\$	
5.0 ADMINISTRATIVE						
5.1 Annual Report Preparation and Submittal to TCEQ	1	YR	\$	-	\$	
SUBTOTAL					\$	2,68
CONTINGENCY	10%				\$	26
THIRD PARTY ADMINISTRATION AND PROJECT MGMT	2.5%				\$	e
TOTAL ANNUAL POST-CLOSURE CARE COST					\$	3,02
30 YEAR POST-CLOSURE CARE COST					\$	90,63

## 3 POST-CLOSURE COST ESTIMATE ADJUSTMENTS

An increase in the post-closure care cost estimate and the amount of financial assurance will be made if changes to the Closure and Post-Closure Plan or the Landfill conditions increase the maximum cost, as discussed in Section 2 of this plan. As noted in Section 2, in the event cost estimate increase, such updated cost estimate will be submitted to the TCEQ for approval along with appropriate changes to the financial assurance in accordance with §305.62.

A request to reduce the post-closure care cost estimate and the amount of financial assurance may be submitted to the TCEQ if the cost estimate exceeds the maximum cost of post-closure care remaining over the post-closure care period. The Landfill Owner/Operator will submit a written request to the TCEQ of the detailed justification for the reduction of the cost estimates and the amount of financial assurance in accordance with §305.62.

At the time of these revisions to the post-closure care cost estimate, the Landfill Owner/Operator will also confirm that the assumptions regarding this estimate are valid and that the associated estimates are accurate in view of the Landfill's operating practice since the previous estimates were made.

## 4 FINANCIAL ASSURANCE MECHANISM (30 TAC §352.1101(c))

In accordance with 30 TAC §352.1101(c), no more than 90 days after the executive director's approval of the Application, a financial assurance mechanism acceptable to the executive director will be submitted for the cost of post-closure care in an amount no less than the amount specified in the approved cost estimate. Financial assurance for post-closure care shall be demonstrated in compliance with §352.1101, except as indicated in §352.1111 (relating to Exceptions). The financial assurance meeting these requirements and in an amount no less than the amount specified in Table VIII.A1 is provided in Appendix VIII.B, and may be adjusted based on post-closure care cost estimate adjustments discussed in Section 3 of this Plan.

## **APPENDIX VIII.A**

### **POST-CLOSURE CARE COST ESTIMATE CALCULATIONS**

#### SANDY CREEK ENERGY STATION POST-CLOSURE CARE COST ESTIMATE CALCULATIONS EXISTING CELLS 1, 2, AND 3A THROUGH 3D

<u>Required:</u>					-				ting cells 1, 2, and 3A through hese costs are in 2021 dollars.
<u>References:</u>									(Revised December 7, 2017). ruction and monitoring projects.
<u>Solution:</u>	Develop annual cost for the required 30-year post-closure period. The item numbers are from Table VIII.A.1 - Post Closure Cost Summary for Existing Registered Units (Cells 1, 2, and 3A though 3D).								
			Post closure	e care r	period =	30	vr		
		Area to l	oe administrat			149.3	-		
			Area with w					(Includes	s Cells 1 and 2, and 3A
					•			ough 3D)	
	1.0 Engineerin	ng Costs						0 /	
	1.1 Site Inspec	tion and Reco	dkeening						
	iii Site iiispee	149.3	ac @	\$	20.00	/ ac / yr =	\$	2,986	/ <b>v</b> r
	1.2 Correction	al Plans and St	0			5		)	5
		-			4				
	I	Assume engine		-				-	-
		34.0	ac @	\$	500	/ ac / 2-yr =		17,000	•
			En	~ <b>:</b>	ing Cost	a Subtatal -	\$ ¢	8,500 <b>11,486</b>	-
			En	gineer	ing Cost	s Subtotal =	Э	11,480	/ yr
	2.0 Site Monit	<u>toring</u>							
	2.1 Groundwa	ter Sampling a	nd Analysis o	f Moni	itoring W	ells (6 wells	at ti	me of clos	sure)
		6	wells						
		\$ 1,500	/ well / event						
		2	events / yr			Total =	\$	18,000	/ yr
	2.2 Groundwat	er Well Pluggi	ng and Aband	lonmer	nt				
		66	6 wells @	\$	1,000	/well	\$	6,000	total (one-time event)
					,		\$	200	
			Site M	onitor	ing Cost	s Subtotal =	\$	18,200	2
					ing Cost	5 Subiotal –	Φ	10,200	, j <del>.</del>
	3.0 Construct			_					
	3.1 Cap and Si		-						- /
		1.70	ac @	\$	1,000	/ ac / yr =	\$	1,700	/ yr

#### SANDY CREEK ENERGY STATION POST-CLOSURE CARE COST ESTIMATE CALCULATIONS EXISTING CELLS 1, 2, AND 3A THROUGH 3D

3.2 Mowing	and Vegetatior	Management									
	34.0	ac @	\$	100	/ ac / yr =	\$	3,400	/ yr			
3.3 Groundwater Monitoring System Maintenance											
					Lump Sum =	\$	2,500	/ yr			
3.4 Perimeter	Fence and Gat	tes Maintenan	ce								
					Lump Sum =	\$	1,500	/ yr			
3.5 Access Re	oads Maintena	nce									
					Lump Sum =	\$	4,500	/ yr			
3.6 Drainage	System Cleand	•									
	Assume drain	age system rej	pairs requir	ed ev	very other year		7 000				
					Lump Sum =	\$ \$	3,500	/ event			
	<b>a</b> .		•	~		•	,	5			
			aintenance	Cost	ts Subtotal =	\$	17,100	/ yr			
4.0 Leachate	e Managemen	t									
4.1 Leachate	Management S	ystem Operat	ion and Ma	inten							
					Lump Sum =	\$	5,000	/ yr			
4.2 Decommi	ssioning of Ex	isting leachate	Evaporatio	on Po							
					Lump Sum =			total (one-time event)			
						\$	2,333	/ yr			
4.3 Leachate	Disposal										
	•	All leachate	generated s	shall	discharge into	exis	ting leacl	nate evaporation pond. It is			
	N/A				-			evaporation pond and that off-			
		-		e req	uired followin	g po	nd decon	nission at the end of the post-			
		closure care									
		Leachate Ma	inagement	Cost	ts Subtotal =	\$	7,333	/ yr			
5.0 Adminis	<u>trative</u>										
5.1 Annual R	eport Preparati	on and Submi	ttal to TCE	Q		<b>A</b>					

Lump Sum = \$ 4,500 / yr Administrative Costs Subtotal = \$ 4,500 / yr

#### SANDY CREEK ENERGY STATION POST-CLOSURE CARE COST ESTIMATE CALCULATIONS Future Cells

**Required:** Estimate the cost to hire a third party to conduct post-closure care activities for future cells following preparation of this registration application. Note, these costs are in 2021 dollars. **References:** 1. TCEQ, Technical Guideline No. 10, Closure and Post-Closure Care Cost Estimates (Revised December 7, 2017). 2. Unit rate cost estimates are based on data available from similar work and/or construction and monitoring projects. Solution: Develop annual cost for the required 30-year post-closure period. The item numbers are from Table VIII.A.2 - Post-Closure Cost Summary for Proposed Registered Units. Post-closure care period = 30 yr Area to be administratively closed = 0.0 ac Area with waste in place = 6.7 ac (Includes future cells) 1.0 Engineering Costs 1.1 Site Inspection and Recordkeeping (entire area included for existing cells) ac @ 20.00 / ac / yr = \$ - / yr 1.2 Correctional Plans and Specifications Assume engineering plans required to correct erosion issues every other year. 500 / ac / 2-yr =6.7 ac @ \$ 3,350 / 2-yr \$ 1,675 / yr Engineering Costs Subtotal = \$ 1,675 / yr 2.0 Site Monitoring 2.1 Groundwater Sampling and Analysis of Monitoring Wells (6 wells at time of closure, included for existing cells) wells 1,500 / well / event \$ 2 events / yr Total = \$ - / yr 2.2 Groundwater Well Plugging and Abandonment 0 wells @ 1,000 /well \$ - total (one-time event) \$ \$ / yr Site Monitoring Costs Subtotal = \$ - / yr 3.0 Construction and Maintenance Costs 3.1 Cap and Sideslopes Repairs and Revegetation (Assumes 5% of Final Cover area each year) 0.34 ac @  $\frac{1,000}{\text{ac}/\text{yr}} =$ 340 / yr

#### SANDY CREEK ENERGY STATION POST-CLOSURE CARE COST ESTIMATE CALCULATIONS Future Cells

3.2 Mowing and	U	U		100		<i>•</i>		,		
	6.7	ac @	\$	100	/ ac / yr =	\$	670	/ yr		
3.3 Groundwater Monitoring System Maintenance (included for existing cells)										
					Lump Sum =	\$	-	/ yr		
3.4 Perimeter Fence and Gates Maintenance (included for existing cells)										
					Lump Sum =	\$	-	/ yr		
3.5 Access Roads	3.5 Access Roads Maintenance (included for existing cells)									
					Lump Sum =	\$	-	/ yr		
3.6 Drainage Syst	tem Cleanout/I	Repairs (in	cluded f	for exis	ting cells)					
Ass	sume drainage	system rep	pairs requ	uired ev	very other year					
			-		Lump Sum =	\$	-	/ event		
						\$		/		
						φ	-	/ yr		
	Constructio	on and Ma	intenan	ice Cost	ts Subtotal =	•	- 1,010	•		
4.0 Leachate Ma		on and Ma	intenan	ice Cost	ts Subtotal =	•		•		
<u>4.0 Leachate Ma</u> 4.1 Leachate Mar	anagement					\$	1,010	/ yr		
	anagement					\$ d for	1,010 existing	/ yr		
4.1 Leachate Mar	anagement nagement Syste	em Operati	ion and M	Mainten	ance <b>(include</b> Lump Sum =	\$ d for \$	1,010 existing -	/ yr cells) / yr		
	anagement nagement Syste	em Operati	ion and M	Mainten	ance (include Lump Sum = ond (included	\$ d for \$ for e	1,010 existing - xisting c	/ yr cells) / yr ells)		
4.1 Leachate Mar	anagement nagement Syste	em Operati	ion and M	Mainten	ance (include Lump Sum = ond (included	\$ d for \$ for e: \$	1,010 existing - xisting c	/ yr cells) / yr ells) total (one-time event)		
<ul><li>4.1 Leachate Mar</li><li>4.2 Decommissio</li></ul>	anagement nagement Syste ning of Existin	em Operati ng leachate	on and N Evapora	Mainten ation Pc	ance (include Lump Sum = ond (included	\$ d for \$ for e: \$	1,010 existing - xisting c -	/ yr cells) / yr ells) total (one-time event)		
4.1 Leachate Mar	anagement nagement Syste ning of Existin	em Operati ng leachate	on and N Evapora	Mainten ation Pc	ance (include Lump Sum = ond (included	\$ d for \$ for e: \$	1,010 existing - xisting c -	/ yr cells) / yr ells) total (one-time event)		

All leachate generated shall discharge into existing leachate evaporation pond. It is assumed that leachate will be evaporated in the leachate evaporation pond and that offsite dispsosal will not be required following pond decomission at the end of the postclosure care period.

Leachate Management Costs Subtotal = \$ - / yr

#### 5.0 Administrative

5.1 Annual Report Preparation and Submittal to TCEQ (included for ex	isting cel	ls)
Lump Sum =	\$	- / yr
Administrative Costs Subtotal =	\$	- / yr

### **APPENDIX VIII.B**

### FINANCIAL ASSURANCE MECHANISM

To be included following TCEQ approval of the post-closure care cost estimate calculations.